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Generation of Talbot‑like fields
Jorge A. Anaya‑Contreras1,3, Arturo Zúñiga‑Segundo1,3*, David Sánchez‑de‑la‑Llave2,3 & 
Héctor M. Moya‑Cessa2,3

We present an integral of diffraction based on particular eigenfunctions of the Laplacian in two 
dimensions. We show how to propagate some fields, in particular a Bessel field, a superposition of 
Airy beams, both over the square root of the radial coordinate, and show how to construct a field that 
reproduces itself periodically in propagation, i.e., a field that renders the Talbot effect. Additionally, it 
is shown that the superposition of Airy beams produces self‑focusing.

In recent years there has been much interest in the propagation of light in free space where it has been shown that 
light not only propagates in straight lines but there are beams that also bend while propagating, such as the Airy 
 beams1–15, which also present weak diffraction, i.e. they remain propagation invariant for distances that are much 
longer than the usual diffraction length of Gaussian beams with the same  beamwidth16, self-healing, i.e. they 
regenerate themselves when a part of the beam is  obstructed17, and abrupt  autofocusing18,19, i.e. their maximum 
intensity remains constant while propagating and close to a particular point they autofocus increasing its maxi-
mum intensity by orders of magnitude. All of the above mentioned properties are very suitable for applications 
in medicine, several experimental settings where a sudden ignition is required for nonlinear processes, energy 
delivery on a remote target, imaging, particle manipulation, and material processing, to name just a  few18,20.

Another interesting effect is the so called Talbot (or self-imaging) effect. The phenomenon was first observed 
by H. F. Talbot in  183621. It is widely known for coherent monochromatic periodic fields in the Fresnel diffrac-
tion regime. Without the aid of lenses or any other optical element, the periodic field intensity repeats itself in 
planes located at multiples of the Talbot distance, defined by 2d

2

l  , where d is the period of the field and l is its 
wavelength. The field intensities located in planes between the Talbot distance maintain a periodic structure, 
although not necessarily with the same period. In this work, we present the less known case of nonperiodic 
objects, for which  Montgomery22–25 has established the necessary and sufficient conditions for the self-imaging 
effect to take place, i.e., the object Fourier spectrum must lie on the circles of a Fresnel zone plate. The Talbot 
effect has found applications not only in optics, but in other fields such as acoustics, electron microscopy, plas-
monics, x-ray26, quantum state reconstruction of the electromagnetic  field27 and Bose-Einstein  condensates26. 
In optics, its main applications are related to image processing and synthesis, technology of optical elements, 
optical testing and optical  metrology28.

In this contribution, by using eigenfunctions of the perpendicular Laplacian in polar coordinates, we propose 
a novel diffraction integral which we use to propagate some fields, namely,  Bessel29,30 functions and superposi-
tion of Airy functions, both divided by the square root of the radial coordinate. As expected, the modified Bessel 
functions do not present propagation invariant properties whereas the superposition of modified Airy functions 
presents abrupt  focusing18,31–34, a common effect in such superpositions. We also show that particular series of 
Bessel beams with integer or fractional order reproduce themselves during propagation, i.e., giving rise to the 
Talbot effect. The integral of diffraction introduced in the manuscript may help in the search for structured light 
fields that  maintain35, repeat their form or autofocus during propagation.

Paraxial equation
We begin our analysis by recalling the paraxial equation, usually written as:

whose solution is given by

(1)∇2
⊥E + 2ik
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where ∇2
⊥ is the Laplacian that in Cartesian coordinates can be expressed as

In order to obtain the commonly used diffraction integral from (2), we first define the operators Dx = ∂
∂x and 

Dy = ∂
∂y , therefore we may write the propagated field as

Then we may write E(x, y, 0) in terms of its two-dimensional Fourier transform, i.e.,

such that we obtain

where we have used the fact that eiux is an eigenfunction of the operator Dx , with eigenvalue given by iu (similar 
expressions are obtained for the y coordinate). In the following sections, we employ the concepts of eigenfunc-
tions and eigenvaules to produce an integral of diffraction that may be easily used when the field to be propagated 
is divided by the square root of the radial coordinate. In particular, we exploit the fact that in polar coordinates 
we may find a set of eigenfunctions described by

with eigenvalues given by −α2.

Proposed diffraction integral. If we consider the field at z = 0 given in the form

and follow the procedure employed to obtain Eq. (6), a diffraction integral can be readily written as (we set k = 1 ) 
(In all calculations, by replacing z → z

k , arbitrary k’s may be considered).

where, for simplicity, we have used the plus sign in Eq. (7), but when we consider superpoistions of Airy func-
tions below, we will use both signs. We have also applied the property that a function of the operator ∇2

⊥ applied 
to the eigenfunction is simply the function of the eigenvalue times the eigenfunction, i.e.,

Propagating a Bessel function
Let us consider the following field at z = 0

where Jn(x) is a Bessel function of order n and the case n = 0 is not considered because it would produce a sin-
gular field. We write the Bessel function in terms of its integral representation

such that, by applying the property described by Eq. (10), we obtain

Hereafter, we show that the integral above is a so-called Generalized Bessel function. First, we rewrite it as
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and define Z = a2z/4 and use a Taylor series for the cosine term argument exponential, yielding

and developing the binomial inside the integral we obtain

We extend the second sum to infinity as we would only add zeros to the sum and exchange the order of the 
sums, yielding

and start the sum that runs on m at m = m (as for m < k the terms added are zero), i.e.,

By letting j = m− p we obtain

that, by using the integral representation of Bessel functions, we may write

By letting s = p− j we obtain

where we have extended the sum on s to minus infinity as we simply add zeros.
Finally, the last equation can be rewritten as a sum of the products of two Bessel functions of different order, 

i.e.,

the so-called Generalized Bessel functions studied by Dattoli et al.30,36 and  Eichelkraut37. By using that generalized 
Bessel functions, given by the expression Jn(r, z; g) =

∑∞
s=−∞ gsJn−2s(r)Js(z) , we write the propagated field as

In Fig. 1 we plot the field intensity for an initial Bessel function of order n = 1 as a function of the propagation 
distance Z and the radial coordinate. It may be observed that there is an energy redistribution from the central 
rings towards the outer rings as the field propagates, nevertheless, an overall intensity decrease also exists.

Propagating a superposition of airy functions
We now study the propagation of a superposition of airy  functions2,6. Its field distribution at z = 0 is given by

where we have written the Airy function in its integral representation. By applying the integral of diffraction 
given by Eq. (9) we obtain
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By changing variables in the integrals above, we may rewrite them as

that finally yields the following superposition of Airy functions

We plot the propagated field intensity in Fig. 2 where the abrupt focusing observed may be attributed to the 
superposition of the Airy functions. There is one Airy function whose main contribution would be in the nega-
tive part of the axis, and would bend towards the right. However, as r is always positive, it does not have enough 
weight to produce an effect. On the other hand, the Airy function whose main contribution is on the positive 
part, dominates the propagation and bends towards the left. Although there is no medium, the focusing may 
be explained by the fact that the Airy function produces an effective index of refraction (the so-called Bohm 
potential in quantum mechanics)38,39 that gives rise to such behaviour.

Talbot effect for the superposition of Bessel functions of order 1
2

We can superimpose the eigenfunctions described by Eq. (7) with the same eigenvalue to find another eigenfunc-
tion, a beam of the form sin br√

r
 , which takes us to a Bessel function of order one half, described by

that is indeed, a diffraction-free beam. A plot of its intensity as a function of the radial coordinate and the propa-
gation distance z is depicted in Fig. 3.

It is straight forward to show that a superposition of them, namely
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Figure 1.  Intensity field distribution |E(r, z)|2 obtained from the initial state given in Eq. (11) with n = 1 and 
a = 1 (figure made with OriginPro 9.0. Available from https:// www. origi nlab. com).

https://www.originlab.com
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Figure 2.  Intensity field distribution |E(r, z)|2 obtained from the initial state given by Eq. (24) (figure made with 
OriginPro 9.0. Available from https:// www. origi nlab. com).

Figure 3.  Normalized field intensity distribution |E(r, z)|2 obtained from the initial state (28) (figure made with 
OriginPro 9.0. Available from https:// www. origi nlab. com).

https://www.originlab.com
https://www.originlab.com
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where N indicates the number of components that the field has (at z = 0 ) and cm is a weight that is written in 
order to have the most arbitrary field possible, propagates as

We note that the field described by the last equation presents the interesting property of repeating itself 
periodically at values of z = n (n = 1, 2, 3, ...) , this is:
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2
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)

= E(r, θ , z = 0).

Figure 4.  Normalized Field intensity distribution |E(r, z)|2 obtained from the non-periodic initial state given by 
Eq. (35) with N = 20 and cm = 1 , for (a) ν = 1/2 , (b) ν = 1 , (c) ν = 3/2 , (d) ν = 2 (figure made with OriginPro 
9.0. Available from https:// www. origi nlab. com).

https://www.originlab.com
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The self-imaging effect can be seen clearly in Fig. 4a, where a plot of the normalized field intensity is shown, 
for cm = 1 and N = 10 , as a function of the radial coordinate and the propagation distance z. We remark the 
fact that the propagated field is not periodic, nevertheless it fullfills the conditions stablished by  Montgomery22 
for the Talbot effect to take place.

Generalization of the Talbot effect to a superposition of Bessel functions of any order. It is 
well-known that Bessel functions (of integer or fractional order) obey the differential  equation40

which, if multiplied by eiνθ , may be rewritten as

or

making the functions Jν(βr)eiνθ eigenfunctions (with eigenvalue −β2 ) of the Laplacian in polar coordinates and 
therefore becoming propagation invariant  fields29. Therefore a field at z = 0 given by

propagates as

yielding Eq. (30) for ν = 1/2 . Therefore, the field at z = 0 reproduces itself periodically at propagation distances 
given by z = n (n = 1, 2, 3, ...) , i.e.,

Plots of the normalized field intensity are shown in Fig. 4b–d for v=1, 3/2, and 2, respectively. The values of cm 
and N are 1 and 20, respectively. All non-periodic fields shown in Fig. 4 clearly exhibit the Talbot effect.

Conclusions
We have shown that by properly writing a field at z = 0 we may propagate it by using a novel diffraction integral 
that we introduced in this manuscript. We have shown how to propagate Bessel and a superposition of Airy beams 
(over the square root of the radial coordinate) and have shown that a series of Bessel functions that may have 
integer or fractional order and with proper parameters reproduces itself during propagation, therefore producing 
the Talbot effect. We have shown self focusing of the superposition of Airy beams that may be explained by the 
existence of an effective index of refraction related to the Bohm potential.
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