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A Robust Machine Learning Based 
Framework for the Automated 
Detection of ADHD Using 
Pupillometric Biomarkers and Time 
Series Analysis
William Das1,3* & Shubh Khanna2,3

Accurate and efficient detection of attention-deficit/hyperactivity disorder (ADHD) is critical to ensure 
proper treatment for affected individuals. Current clinical examinations, however, are inefficient and 
prone to misdiagnosis, as they rely on qualitative observations of perceived behavior. We propose a 
robust machine learning based framework that analyzes pupil-size dynamics as an objective biomarker 
for the automated detection of ADHD. Our framework integrates a comprehensive pupillometric 
feature engineering and visualization pipeline with state-of-the-art binary classification algorithms 
and univariate feature selection. The support vector machine classifier achieved an average 85.6% 
area under the receiver operating characteristic (AUROC), 77.3% sensitivity, and 75.3% specificity 
using ten-fold nested cross-validation (CV) on a declassified dataset of 50 patients. 218 of the 783 
engineered features, including fourier transform metrics, absolute energy, consecutive quantile 
changes, approximate entropy, aggregated linear trends, as well as pupil-size dilation velocity, were 
found to be statistically significant differentiators (p < 0.05), and provide novel behavioral insights 
into associations between pupil-size dynamics and the presence of ADHD. Despite a limited sample 
size, the strong AUROC values highlight the robustness of the binary classifiers in detecting ADHD—as 
such, with additional data, sensitivity and specificity metrics can be substantially augmented. This 
study is the first to apply machine learning based methods for the detection of ADHD using solely 
pupillometrics, and highlights its strength as a potential discriminative biomarker, paving the path for 
the development of novel diagnostic applications to aid in the detection of ADHD using oculometric 
paradigms and machine learning.

Attention-deficit/hyperactivity disorder (ADHD) is a clinically heterogeneous neurobehavioral disorder charac-
terized by inattention, impulsivity, and  hyperactivity1. Its overall prevalence among children and adolescents is 
5–8%, affecting upwards of 1 million children per year in the US  alone2. The long-term effects of untreated ADHD 
are detrimental for individuals and their families. Children and adults with untreated ADHD suffer from poor 
educational outcomes and familial  relationships3, as well as increased economic burdens. Moreover, untreated 
ADHD during childhood is a risk factor for later adult mental health  issues4. Lack of treatment impairs social 
and occupational functioning and increases the likelihood of developing comorbid disorders such as heightened 
anxiety, depression, personality disorders, and antisocial  behaviors5. Additionally, inaccurate clinical evaluations 
can lead to inappropriate treatment interventions, such as incorrectly administering stimulant drug medications 
that have side effects on healthy  children6,7. Accurate and efficient diagnosis of ADHD, thus, is crucial to effec-
tively administer treatments and prevent subsequent complications for a child’s socioemotional development, 
academic and occupational achievement, and overall welfare.

Current Diagnosis. Current clinical diagnosis is subjective, inefficient, and inaccurate. There is no reliable 
objective test to diagnose  ADHD8,9, as diagnosis is based solely on observed behavior and reported symptoms, 
creating a risk of over and under-diagnosis9,10. Evaluations are based on a checklist of eighteen symptoms, nine 
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related to inattention and nine related to hyperactivity and  impulsivity11. These subjective clinical assessments 
often last multiple  hours6. Moreover, the demand for these examinations greatly exceeds the maximum capacity 
of available developmental pediatric  clinics6. As a result, children are often waitlisted for over a year, preventing 
timely diagnosis and delaying the start of necessary  treatment6. Wait times can extend beyond 13 months for 
minorities or socioeconomically disadvantaged  groups6. Other assessment methods such as computerized per-
formance tests have been criticized due to poor clinical  utility12. Medical experts collectively agree that the lack 
of an objective and efficient mechanism to characterize ADHD remains a pervasive and detrimental problem, 
precluding effective treatment  regimens3.

Pupillometric Variation in ADHD. Due to the currently deficient methods for diagnosing ADHD, a reli-
able objective mechanism to characterize the disorder is necessary to ensure accurate and efficient diagnosis. 
Oculomotor paradigms are particularly adept in analyzing abnormalities in brains affected by neurodevelop-
mental  disorders13–16. Pupillometric-based analyses have been applied to a number of psychiatric disorders, 
such as obsessive compulsive disorder, autism, dyslexia, and Tourette syndrome, in order to gain behavioral 
insights into correlations between eye movements and  behavior13,17,18. In particular, one promising biomarker 
for ADHD in humans is pupil-size dynamics—the ways in which the pupil responds to certain visual  stimuli9. 
Pupil-size dynamics have been shown to be associated with the brain norepinephrine system, an area which con-
trols executive  functioning19 and is impaired by ADHD. In accordance with this, Wainstein et al. showed in an 
experimental study that pupil-size dynamics were strong differentiators between ADHD positive and negative 
subjects after performing statistical analysis; moreover pupil-size was also shown to be strongly correlated with 
attentional performance in  subjects9. Geng et al. showed that pupil size reflects uncertainty in users who com-
pleted a visuospatial working memory  task20. Wahn et al. additionally showed that pupil-size dynamics can be 
utilized as a reliable metric to assess attentional load in  patients21. Given the vast literature highlighting associa-
tions between pupil-size dynamics and attentional performance in neurobehavioral disorders, we hypothesized 
that pupillometric features could be utilized as objective biomarkers to effectively characterize ADHD using a 
machine learning based and time series analysis methodology.

Applications of Machine Learning. Babiker et al. developed a machine learning model to predict a user’s 
emotional state using pupillometrics, engineering a set of features based on pupil-size dilation velocity and 
acceleration; their method achieved overall 96.5% accuracy, 97.93% sensitivity, and 98%  specificity22. Similarly, 
Qian et al. devised a machine learning-based model to classify visual responses based on  pupillometrics23. Bal-
taci et al. also incorporated a machine learning-based model to to classify user’s stress response and mental state 
based on pupillometrics, extracting a variety of statistical features based on pupillary  movement24.

As such, we sought to develop a machine learning-based framework to analyze pupillometric variation in 
subjects, hypothesizing that it would accurately discriminate between ADHD positive patients and control sub-
jects. Using the engineered features, we also sought to extract valuable oculometric patterns to advance current 
understandings of pupillometry regarding the presence of ADHD using various feature visualization techniques 
and statistical validation.

Dataset
The preprocessed time series dataset evaluated in this study was released by Wainstein et al., conducted under 
Universidad Católica de  Chile25,26. The subjects were elementary school children aged 10–12, recruited from local 
schools in  Chile25. Three specific groups of subjects are included: Off-ADHD, On-ADHD and Ctrl9. Off-ADHD 
corresponds to positively diagnosed subjects not taking any medication, while On-ADHD corresponds to those 
taking medication. Ctrl represents a control group of healthy subjects. The 28 Off-ADHD subjects consisted of 4 
girls, 24 boys, and the 22 Ctrl subjects consisted of 4 girls, 18  boys25. The medication administered was methyl-
phenidate. The Eyelink 1000 device was used to record oculometrics at a sampling frequency of 1  kHz25. More 
specific experiment details are outlined extensively in Wainstein et al.’s  publication25.

We assess model performance for binary classification by considering the ADHD Positive Group with only 
Off-ADHD ground truth labels included. We note that the inclusion of on- and off-medication subjects introduces 
a bias in the ADHD Positive class through a confounding variable of receiving medication; this bias would not 
accurately reflect the population of patients with ADHD, as medication regulates the symptoms of ADHD and 
potentially impacts pupillometric patterns. This would degrade the validity of the machine learning algorithms 
if they were to be trained and tested on biased data. As such, the ADHD Positive class comprised of only Off-
ADHD subjects, amounting to a full dataset of 50 instances.

Experiment Details. A group of 50 subjects participated in the study. 28 subjects were patients diagnosed 
with ADHD, and 22 were healthy control patients. A subgroup of 17 ADHD patients performed the task twice, 
on and off medication, denoted as On-ADHD and Off-ADHD subjects,  respectively25.

All subjects were required to complete a visuospatial working memory task, which consisted of multiple 8 s 
trials, during which pupil-sizes were measured. In the first five seconds, three dot arrays were presented, followed 
by a distractor image. In the last three seconds, subjects were presented with a random dot array and asked to 
determine if the dot had been presented to them  before25.

Methods
Feature Engineering. Due to the high dimensional nature of the time-series data—each patient consisted 
of 160 trials, each containing 8000 timestamps of data—in order to reduce computational costs and ensure time-
efficient analysis for feature extraction, for each trial, the time-series data was reduced to 500 timestamps by 
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taking a moving average window of size 16ms and concatenating the results. We found that the overall structure 
of the time-series data was retained from the average sliding window approach. A side-by-side figure of original 
and reduced time series is provided in the Supplementary Information.

A total of 783 features were engineered using time series analysis software—we engineered 22 custom fea-
tures using garnered intuition on the pupillometric data. Engineered features obtained from software include 
aggregated linear trends, fourier transform metrics, energy spectral density, approximate entropy, as well as 
standard statistical values such as the mean, median, standard deviation, and variance of pupil-sizes during 
various intervals across the time-series. Features were calculated per-trial and then averaged across all trials, 
grouped by patient ID, in order to provide a thorough and encompassing feature space for each patient. Missing 
values were estimated using cubic spline interpolation prior to analysis, and trials with more than 80% of the 
data missing were excluded from analysis.

For custom feature extraction, further building off of Wainstein et al.’s original visualizations, pupil-sizes for 
each group were averaged and visualized in Fig. 1 in order to extract novel and informative features. Patterns 
were visually observed and validated using statistical significance tests. Pupil-size dilation velocity and accelera-
tion, two of the engineered features, were visualized per group as shown in Figs. 2 and 3, calculated from Fig. 1.

Pupil Size Dilation Metrics. We engineered custom features based on pupil-size dilation velocity and accel-
eration using garnered intuition on pupil-size dynamics between ADHD Positive and Negative groups. Let PS 
denote the the presentation of a probe at the 5000 ms mark, and let PT1−T2 denote the time interval from time T1 
to T2 in ms, as shown in Table 1. Given a starting timestamp T0 and pupil size P0 , the pupil size dilation velocity 
Vi at any given timestamp Ti with pupil size Pi is given by:

The acceleration Ai is given by:

The accumulated pupil-size dilation velocity AVi is the sum of: V0 + V1 + · · · + Vi.

Machine Learning Framework. Classification Algorithms. The following binary classification algo-
rithms were trained using the engineered features: Logistic Regression, KNN Neighbors, Naive Bayes, Decision 
Tree Classifier, and a Random Forest Classifier. Since over-complex algorithms tend to overfit on small datasets, 
evaluation was limited to the aforementioned classifiers.

Model Evaluation. A comprehensive evaluation of each algorithm was conducted: due to the small dataset size, 
training and evaluating using a holdout set would not accurately reflect the generalization ability of a model and 
unnecessarily degrade predictive power by reducing training set size. As such, nested ten-fold cross-validation 

(1)Vi =
Pi − P0

Ti − T0

.

(2)Ai =
Vi − V0

Ti − T0

.

Figure 1.  Time-series visualization of the mean pupil diameter averaged across multiple trials, grouped by 
ADHD diagnosis.
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Figure 2.  Pupil size dilation velocity following the presentation of a stimulus.

Figure 3.  Pupil size dilation acceleration following the presentation of a stimulus.
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(CV) was employed to assess the performance of the models. Nested CV provides a robust and approximately 
unbiased estimate of test error: it addresses problems in traditional K-fold CV and leave-one-out CV, which 
have been shown to yield overly optimistic and biased test error  estimates27,28. Nested CV is a reliable alternative 
to K-fold CV when estimates of the underlying hyperparameter search is desired—for the nested CV pipeline, 
an inner CV loop is used to tune hyperparameters for various models; the optimized model is then applied to 
a separate outer CV loop that assesses model performance without producing overly optimistic estimates. For 
feature selection per-fold, 9 optimal features were filtered using a standard univariate correlation-based one-way 
ANOVA F-test for feature ranking, which analyzes numerical input in conjunction with class labels. Since an 
excess of features can cause overfitting, especially for small datasets, a fixed value of 9 was arbitrarily established 
for selecting features in each fold for nested CV. Features were selected using only the train data in each fold in 
order to prevent overfitting and leaking of information into the test set. The nested CV procedure was repeated 
for a total of 30–50 times for each model, enabling the construction of confidence intervals for binary classifica-
tion metrics.

Standard medical diagnostic metrics—sensitivity (true positive rate), specificity (true negative rate), area 
under the receiver operating characteristic (AUROC), as well as accuracy— were taken into account for analysis 
of model performance based on nested CV.

Feature Intuition. In order to garner intuition on discriminative pupillometric characteristics for ADHD Posi-
tive and Negative subjects, a number of features were ranked using a nonparametric Mann–Whitney U  Test29. 
The top 15 out of the 783 ranking features were selected and visualized in order to examine their strengths in 
differentiating between ADHD positive and negative subjects. We present class separability visualizations using 
the RadViz multivariate visualization algorithm, which projects a feature space onto a 2D plane in order to 
observe class separability among various features, grouped by ADHD  diagnosis30. Features are placed uniformly 
around the circumference of a circle, with data points placed in the interior of the circle—the position of a given 
data point gravitates proportionally in the direction towards the corresponding features based on its values, as 
shown in Figs. 4 and 5; data points that gravitate or cluster towards a certain feature can provide insights into 
discriminative pupillometric characteristics that are unique to each class. RadViz, thus, is primarily used by data 
scientists to examine class separability among features between classes. 15 optimal features, as well as statistically 
significant custom features, were separately visualized. The features visualized through RadViz were not features 
selected for use in machine learning model evaluation, as this would severely overfit the training data and leak 
information from the test sets in the Nested CV folds if features were to be filtered from the entire dataset—
rather, features were selected separately on the train data during each fold.

Statistical Tests. For each engineered feature, a nonparametric Mann–Whitney U test was used to to quan-
titatively assess how effective the generated features were in differentiating between ADHD positive and negative 
groups, where ADHD positive represents only Off-ADHD ground truth labels. We present a list of p-values and 
feature names in a supplemental file.

Table 1.  Custom pupillometric feature extraction per trial.

1 Local maxima during P5000−7000

2 Local maxima during P1−5000

3 Local minima during P6500−8000

4 Mean pupil size during P5500−7000

5 Pupil size standard deviation

6 Pupil size kurtosis

7 Pupil size skew

8 Median pupil size

9 Mean pupil size

10 Mean pupil size dilation velocity before PS
11 Mean pupil size dilation velocity after PS
12 Max pupil size dilation velocity (MaxPSDV) before PS
13 MaxPSDV after PS
14 Max accumulated pupil size dilation velocity (MaxAPSDV) before PS
15 MaxAPSDV after PS
16 MaxAPSDV after PS − MaxAPSDV before PS
17 MaxPSDV after PS − MaxAPSDV before PS
18 Mean pupil size dilation PS − MaxAPSDV before PS
19 MaxPSDV after PS − MaxASPDV before PS
20 Max pupil size acceleration during P5000−7000

21 Min pupil size acceleration during P5000−7000

22 Mean pupil size acceleration during P5000−7000
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Implementation Details. All the machine learning algorithms were implemented in Scikit-learn 0.22.231. 
Feature extraction was implemented using the tsfresh 0.16.0  library32.

Results
Feature Visualization. Line Plots. Figures 1, 2, and 3 illustrate time-series line plots for the mean pupil 
size diameter, as well as pupil size dilation velocity and acceleration, grouped by diagnosis of ADHD. As can 
be visually observed, control subjects exhibit greater dilation velocity and acceleration, and overall variation in 

Figure 4.  RadViz visualization of filtered features.

Figure 5.  RadViz visualization of statistically significant custom features.
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pupil-size. Moreover, the maximum pupil size after the presentation of a probe is noticeably larger for control 
subjects. The minimum pupil size from the 7s mark is noticeably smaller for control subjects.

Box and Violin Plots. Figures  6 and 7 illustrate box and violin plots for pupil-size standard deviation, one 
statistically significant engineered feature ( p < 0.001 ) that was validated statistically after visual observations. 
The exact p-value is shown in the figure. The distribution of standard deviation in pupil-size for control subjects 
overlaps with that of ADHD positive subjects, but the middle 50% of data and median values differ substantially. 
The distribution of values per-class illustrates that variation in pupillometrics strongly differs between ADHD 
Positive and Negative groups, with healthy subjects exhibiting greater standard deviation and mobility.

RadViz Class Separability. Figure 4 shows strong class separability between ADHD Positive and Negative sub-
jects, with a slight overlap between the two classes using the 15 ranked features. Visually, the ADHD Positive 
and Negative classes are attracted to opposite spectrums of the RadViz plot, with very little overlap between the 
classes. The ADHD Positive data points orient themselves more toward the bottom, while ADHD Negative data 
points are predominantly drawn toward the top, indicating that these filtered features do enable strong separabil-
ity. More importantly, the strong class separability shows that applying efficient and accurate machine learning 
using features derived from the encompassing set is possible using binary classification algorithms.

In Fig. 5, for the custom features, the ADHD Positive Class predominantly forms a cluster of its own—how-
ever, the overlap between the two classes is more apparent, and the ADHD Negative class does not separate as 
much from the Positive Class as in Fig. 4.

Significant Features. Among the custom engineered features, the mean velocity after the presentation 
of a stimulus, max accumulated velocity before the stimulus, and the difference in max velocities before and 
after probe presentation had p-values of 4.2e−02, 4.2e−02, and 4.9e−02, respectively. The additional significant 
features are listed in the RadViz visualization in Fig. 5. Median aggregated values for each feature, grouped by 
ADHD diagnosis, are shown in Table 2. The mean velocity following probe presentation is larger for healthy 
subjects, as well as the overall difference in maximum velocity attained. ADHD Positive subjects on average, 
however, show a larger maximum accumulated velocity before the presentation of a probe.

For the rest of the engineered features, we present names of features and p-values in a supplemental file, and 
report a select few of the filtered features that were statistically significant, which are showed in Table 3. Standard 
deviation, real values of Fourier coefficients, the sum of squares of a series (absolute energy), variation in consecu-
tive pupil-size changes during quantiles 0.4–0.8, approximate entropy of the time series with comparative lengths 
of 2 timestamps, and the number of peaks relative to 10 neighboring timestamps, yielded p-values of 1.8e−04, 
1.8e−04, 7.2e−05, 1.8e−04, 8.5e−04, 9.1e−04, and 2.6e−04, respectively. We aggregated these features per-group 
based on median values for each statistic, presented in Table 3. For the Fourier coefficients, denoted by FFT 

Figure 6.  Box plot of pupil-size standard deviation.
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(Fast Fourier Transform), the first value in parentheses corresponds to the type of value extracted, followed by a 
number which corresponds to the ith coefficient. The quantile change is recorded from quantile 0.4–0.8, where 
the variance of absolute changes in pupil-size at consecutive intervals was calculated. The number of peaks is 
calculated by counting the number of occurrences in which a given pupil-size is greater than its 10 neighboring 
values on the left and right side.

As shown in Table 3, ADHD Positive subjects exhibit lower standard deviation, absolute energy, and standard 
error for regression coefficients. They exhibit greater approximate entropy, quantile changes, as well as overall 
peak numbers throughout the time-series.

Classifier Results. Binary Classification Metrics. State-of-the-art machine learning algorithms were 
evaluated based on three key medical diagnostic classification metrics: sensitivity, specificity, and AUROC. An 
evaluation of the models is shown in Table 4. The Naive Bayes classifier achieved the highest AUROC and speci-
ficity, but exhibited low sensitivity metrics. The Logistic Regression classifier yielded the highest sensitivity, cou-
pled with a moderate balance with specificity and a strong AUROC. Furthermore, the support vector machine 
achieved an excellent AUROC, with a strong balance in sensitivity and specificity.

Figure 7.  Violin plot of pupil-size standard deviation.

Table 2.  Pupil-size statistics for significant custom features.

Group Mean Velocity After Max Accumulated Velocity Before
Max Velocity 
Difference

0 0.0162 0.188 0.0397

1 0.0128 0.208 0.0351

Table 3.  Pupil-size statistics for significant features.

Group σ Absolute Energy
Standard Error of 
Linear Trend

FFT Coeff (Real, 
2)

Quantile Change 
(0.4–0.8)

Approximate 
Entropy

Peak Number 
(n = 10)

0 0.633 3110.85 0.000937 − 1579.08 0.000002 0.001782 41

1 0.432 1927.64 0.000706 − 1058.30 0.000004 0.002417 71
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ROC Analysis. Figure 8 illustrates the ROC curves for all binary machine learning classifiers tested using ten-
fold nested CV.

Discussion
Machine Learning Robustness. This study utilized a small dataset of 50 instances for machine learning 
model evaluation—for this reason, ten-fold nested CV was applied to the data to best assess how well each of the 
models could generalize to unseen data. Bayesian methods and simple classifiers like Logistic Regression tend to 
perform well on small datasets, which is reflected in our results. The support vector machine classifier, howeover, 
seems most promising given the strong balance in sensitivity and specificity, as well as an excellent AUROC of 
0.856 (± 0.16). We note that the small dataset size significantly skews the sensitivity and specificity metrics, but 
the overall excellent AUROC metrics indicate that the classifiers are robust in detecting ADHD—as such, with 
additional clinical data, sensitivity and specificity metrics can be substantially augmented, enabling high-accu-

Table 4.  Binary classifier nested ten-fold CV metrics.

Model Sensitivity (TPR) Specificity (TNR) AUROC Accuracy

Logistic Regression 0.794 (± 0.020) 0.715 (± 0.028) 0.867 (± 0.015) 0.759 (± 0.015)

Support Vector Machine 0.773 (± 0.022) 0.753 (± 0.027) 0.856 (± 0.016) 0.762 (± 0.015)

Decision Tree 0.787 (± 0.022) 0.641 (± 0.029) 0.758 (± 0.018) 0.725 (± 0.016)

Naive Bayes 0.656 (± 0.025) 0.863 (± 0.020) 0.871 (± 0.015) 0.749 (± 0.015)

KNN Neighbors 0.830 (± 0.017) 0.752 (± 0.026) 0.830 (± 0.017) 0.724 (± 0.016)

Random Forest Classifier 0.786 (± 0.021) 0.701 (± 0.027) 0.832 (± 0.017) 0.750 (± 0.016)

Figure 8.  Nested CV ROC analysis of binary classifiers.
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racy and efficient detection of ADHD. In small datasets, AUROC can assist in providing a more comprehensive 
assessment of binary classification ability by measuring accuracy at varying thresholds and taking into account 
probabilistic scores rather than class label predictions. The excellent AUROC values of the classifiers presented 
improve upon the reported misdiagnosis rate to be approximately 80% in 2010—approximately 20 percent of 4.5 
million children using stimulant prescription medication were found to be misdiagnosed from a research  study7. 
Additional data, however, is needed to adequately assess sensitivity, specificity, and accuracy using a holdout test 
dataset. Overall, howeover, the strong AUROC values indicate the potential to achieve very strong metrics for 
the detection of ADHD with additional data, and provide a proof-of-concept that highlights the potential to use 
pupillometrics to effectively differentiate between ADHD Positive and Negative subjects.

Moreover, the statistically significant features provide a strong foundation for the binary classifiers and a new 
lens to view relationships in pupil-size dynamics and the presence of ADHD, reflected in our statistical valida-
tion and class separability visualizations. The features overall exhibited strong class separability between ADHD 
Positive and Negative groups, which is reflected in the AUROC values of the classifiers.

We note that one drawback of our study lies in the small sample size, which can reasonably be only generalized 
to the encompassing city in Chile from which the data was collected. Additional data would help in creating a 
sample representative of the true population.

New Behavioral Understandings. Insights into the pupil-size dynamics of ADHD positive and negative 
subjects were uncovered. In particular, variation, specifically standard deviation, in pupil-size dilation velocity, 
previously not studied within the scope of ADHD, were found to be strong discriminators between ADHD 
positive and negative subjects. Control subjects visually exhibited greater pupil dilation velocity and acceleration 
compared to ADHD positive subjects, indicative of heightened neural activity and decision making. ADHD 
positive subjects exhibit lower dilation speeds and pupil sizes most likely because of uncertainty and inatten-
tiveness—Van de Brink et al. highlighted that smaller relative pupil size linearly correlates with greater lapses 
in attention, while greater pupil sizes correlate with increased attentional  effort33. The statistical significance of 
the engineered features in this study further illustrate its validity and strength in differentiating between ADHD 
positive and negative groups. Our results also show that local maxima and minima in pupil-size are also strong 
differentiators between positive and negative subjects. Moreover, standard deviation in pupil-size across a time-
series was found to be a strong discriminator between the two groups, with control subjects exhibiting greater 
variation in pupil-size, indicating that ADHD positive subjects potentially suffer from lack of overall mobility in 
pupillary responses, which could further inform the use of pupillometrics as a biomarker to characterize ADHD.

Additionally, absolute energy values, consecutive quantile changes, approximate entropy metrics, and peak 
numbers provide informative metrics for potentially differentiating between ADHD Positive and Negative sub-
jects. Healthy subjects exhibit greater overall energy, or sum of squares, across a time-series, which indicates 
that they generally exhibit greater pupil-sizes across a trial than ADHD positive subjects, which concurs with 
the notion that larger pupil-sizes represent increased attentional  effort33. ADHD Positive subjects, however, 
exhibit greater variance in consecutive changes in pupil-size, measured in absolute value, from quantile 0.4 to 
0.8, which includes the presentation of a stimulus. This suggests that their pupillometric patterns are more erratic 
when measured at consecutive timestamps, especially during the presentation of a probe, as opposed to more 
fluid changes in pupil-size exhibited by control subjects at consecutive timestamps. In accordance with this, 
approximate entropy, which measures regularity and unpredictability across a time-series34, is higher for ADHD 
positive subjects, further suggesting that their pupillary movements are more erratic than healthy subjects. The 
larger number of peak sizes also concurs this observation among ADHD Positive subjects.

Applications and Potential. Our machine learning based framework offers a novel and reliable techni-
cal approach to diagnose ADHD that is time-efficient and reliant on an objective biomarker, rather than inac-
curate, subjective clinical evaluations. Evaluations currently last multiple hours and rely on loose qualitative 
 observations6. Our findings can streamline clinical diagnosis and serve as a novel lens to view associations 
between pupillometrics and the presence of ADHD using machine learning. Moreover, they can enable medical 
professionals to make more informed decisions for diagnosing ADHD accurately. We provide a proof-of-con-
cept, showing that pupillometrics can be used to effectively differentiate between ADHD Positive and Negative 
groups using machine learning. Future work to increase model performance and robustness revolve around 
attaining additional clinical and data and potentially integrating eye gaze directions with pupillometrics to pro-
vide a comprehensive and more accurate risk score of having ADHD. In conjunction with this, deep learning 
based models could enable more scalable and powerful analysis of this oculometric data for ADHD detection 
in the future with additional data. Moreover, potentially employing a multi-classification model that takes into 
account On-ADHD, Off-ADHD, and Ctrl subjects could enable a more robust framework.

Received: 12 August 2020; Accepted: 16 June 2021
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