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Detection and classification 
of unilateral cleft alveolus 
with and without cleft palate 
on panoramic radiographs using 
a deep learning system
Chiaki Kuwada1*, Yoshiko Ariji1, Yoshitaka Kise1, Takuma Funakoshi1, Motoki Fukuda1, 
Tsutomu Kuwada2, Kenichi Gotoh2 & Eiichiro Ariji1

Although panoramic radiography has a role in the examination of patients with cleft alveolus 
(CA), its appearances is sometimes difficult to interpret. The aims of this study were to develop a 
computer-aided diagnosis system for diagnosing the CA status on panoramic radiographs using a deep 
learning object detection technique with and without normal data in the learning process, to verify 
its performance in comparison to human observers, and to clarify some characteristic appearances 
probably related to the performance. The panoramic radiographs of 383 CA patients with cleft palate 
(CA with CP) or without cleft palate (CA only) and 210 patients without CA (normal) were used to 
create two models on the DetectNet. The models 1 and 2 were developed based on the data without 
and with normal subjects, respectively, to detect the CAs and classify them into with or without 
CP. The model 2 reduced the false positive rate (1/30) compared to the model 1 (12/30). The overall 
accuracy of Model 2 was higher than Model 1 and human observers. The model created in this study 
appeared to have the potential to detect and classify CAs on panoramic radiographs, and might be 
useful to assist the human observers.

Cleft lip and palate (CLP) is one of the most common types of congenital maxillofacial  lesions1,2. The frequency 
of babies born with CLP is approximately 1 in 500 in  Japan3. Although various treatment protocols have been 
applied, soft tissue parts such as the lip and mucous membrane covering the hard plate are surgically treated 
within a relatively short period from  birth4. Hard palatoplasty with bony transplant is frequently applied in 
patients with cleft alveolus (CA) to stabilize the maxillary segments, provide bony support for the teeth adjacent 
to the cleft, provide additional support to the lip and nose, and induce the canine  eruption5,6. This surgery is 
usually performed at age 8–10 years, when the maxilla has grown sufficiently for the surgery. Therefore, patients 
need regular follow-up consisting of physical and imaging examinations for a long period. In this regard, pano-
ramic radiography plays an important role in the repeated evaluation of cleft status because of its lower cost 
and radiation exposure levels than other modalities, such as computed tomography (CT) and cone-beam CT 
for dental  use7,8. Focusing on the bony structures, patients with CA are divided into two types: CA with and 
without cleft palate (CP)9.

Cleft status including the classification can be easily identified by physical examination. However, for radi-
ologists who interpret many radiographs and make many reports of their findings as routine work in a hospital 
radiology department, it is difficult to physically examine the patients. Therefore, radiologists have to estimate 
the patients’ status only based on radiographs. In this regard, panoramic radiography plays an essential role. 
However, it is sometimes difficult to interpret the images, especially for inexperienced radiologists, because 
of the overlap of the cervical spine and the narrow panoramic image layer, resulting in misdiagnoses as other 
radiolucent diseases and conditions, such as cysts, tumors, and fossa between the alveolar yokes of the central 
and lateral incisors. Moreover, even for experienced radiologists, it may be difficult to distinguish patients with 
CA with CP from those without CP. Therefore, if a computer-aided detection/diagnosis (CAD) system for the 
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diagnosis of patients with CLP on panoramic radiographs can be established, it could greatly support such 
diagnosis, especially for inexperienced radiologists.

Deep learning (DL) algorithms using convolutional neural networks (CNNs) can detect and classify the 
features of certain objects, and they have been applied to CAD systems for diagnosis based on panoramic 
 radiographs10,11. However, there have been no previous reports on such systems for patients with CLP. Some 
characteristic appearance features other than radiolucent areas directly indicating the CAs, on panoramic radio-
graphs, such as the difference in the inferior line level of the piriform aperture and some findings of the maxillary 
lateral incisors of the affected side have been reported for patients with  CA12–16, and they may be related to DL 
performance. Although a new technique to clarify the areas on which DL models focus has been  introduced17,18, 
the findings contributing to DL performance are generally as unclear as a ‘black box’. Therefore, the above 
appearance features were analyzed in relation to the three groups (CA only, CA with CP and normal groups) 
in the present study.

The aims of the present study were to develop a CAD system for diagnosis of CLP on panoramic radiographs 
using a deep learning object detection technique with and without normal data in the learning process, to verify 
the DL model’s performance, and to clarify some characteristic appearance features probably related to the 
performance. Moreover, the usefulness of DL models was verified by comparing their performances with those 
by human observers.

Material and method
Informed consent was obtained from all patients for being included in the study. This study was approved by 
ethics committee of Aichi Gakuin University (No. 496) and was performed in accordance with the tenets of the 
Declaration of Helsinki.

Patients. The panoramic radiographs of 383 patients (169 female and 214 male) with unilateral CA that were 
acquired between August 2004 and July 2020 were selected from our hospital image database retrospectively. 
All patients were verified as having unilateral CA by medical records and CT or cone-beam CT examinations. 
The mean age of both male and female patients was 9.3 years. Of the 383 patients, 174 had solely CA and were 
assigned as the CA only group, whereas 209 had CA with CP and were designated as the CA with CP group. 
The CA only group was differentiated from the CA with CP group by referring to the patients’ medical records 
and CT images. Cases in which the cleft was limited to the anterior area of the incisive foramen on the most 
inferior axial CT slice, where the foramen was visible, were assigned to the CA only group. Cases in which the 
cleft extended posteriorly beyond the incisive foramen were assigned to the CA with CP group. Patients who 
had received surgical interventions for bony structures around the cleft before the first panoramic examination 
were excluded. In most patients, panoramic examinations were performed several times before bony transplant 
surgery. The panoramic images taken just before the transplant were selected for the present study. As controls, 
210 panoramic radiographs matching the mean age and sex distributions of patients were selected from the same 
database during the same period. These patients, who were assigned as the normal group in the present study, 
were examined for other purposes, such as the evaluation of unerupted permanent teeth and pre-examination 
for orthodontic treatment.

The panoramic radiographs were exposed using an AUTO III NTR unit (Asahi Roentgen Industry, Kyoto, 
Japan), with a tube voltage of 75 kV, tube current of 12 mA and exposure time of 12 s or a Veraview Epocs unit 
(J. Morita Mfg. Corp., Kyoto, Japan), with the tube voltage of 75 kV, tube current of 8 mA and exposure time 
of 16.2 s.

DL architecture. The DL system was created on Ubuntu Linux operating system version 16.04.2. The work-
station had a GeForce 1080Ti GPU with 11GB of memory (NVIDIA, Santa Clara, CA). The deep learning pro-
cess was performed using a customized DetectNet built in the Digits version 5.0 (NVIDIA, Santa Clara, CA; 
https:// devel oper. ndivia. com/ digits) training system. The Adam (adaptive moment estimation) solver was used 
for the training process with 0.0001 as the base learning rate. DetectNet has five main parts: data ingestion and 
augmentation, a fully convolutional network, loss function measurement, bounding box clustering, and mean 
average precision  calculation19.

Development of learning models. Two models (models 1 and 2) were created. The panoramic radio-
graphs were downloaded from the database in JPEG format, and all images were cropped to 900×900 pixels. In 
each group (including the CA only, CA with CP, and normal groups), 30 images were randomly assigned to test 
dataset, and the remaining images, which included the training (approximately 80% of the remaining data) and 
validation datasets, were used to create the learning models (Table 1).

In model 1, only two groups—CA only and CA with CP—comprised the training and validation sets (i.e., the 
normal group was not included). Rectangular regions of interest (ROIs) were set on the training and validation 
images to encompass the area of the CA according to the following methods. The superior margin was set at the 
level of the inferior line of the piriform aperture on the contralateral healthy side, and the inferior margin was 
set at the alveolar ridge. The medial end was set at the alveolar ridge between the central incisors, and the distal 
end was set at the most distal portion of the piriform aperture. The coordinates of the upper left (x1, y1) and 
lower right (x2, y2) corners of the ROIs were labeled using ImageJ (National Institute of Health, Bethesda, MD, 
USA) (Fig. 1a) and converted to text form (Fig. 1b). The CA only group and the CA with CP group were assigned 
as class 1 and class 2, respectively. Model 2 included the normal group’s data in addition to those of the patient 
groups. Only the labels were created for the classifications as class 0 (not the coordinates). In both models, 1000 
epochs of the training process was performed. Inference was then applied to the test data, including all three 
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groups, using the created learning models. When the model detected a CA, the detected area was shown as a 
bounding box. Red and blue boxes were shown for the CA only group and the CA with CP group, respectively.

Comparison with diagnostic performance of human observers. To compare the DL model perfor-
mances with those by human observers, two radiologists, who had more than four years experiences of interpre-
tating panoramic radiographs, classified the same testing data, which were used to verify the DL performances, 
into one of three groups, namely, CA only, CA with CP, or Normal group.

Analysis of image appearance features. To determine the characteristic image appearance features 
that could influence the DL models’ performance, the image datasets used for the training process (i.e., the train-
ing and validation datasets) were analyzed regarding two structures: the inferior line of the piriform aperture 
and the lateral incisor on the affected side. The former was evaluated based on its visibility and relative level 
to the contralateral or unaffected side. The latter was evaluated according to whether the tooth was present 
or absent, and regarding findings of microdontia, un-eruption and medial inclination. These evaluations were 
performed by two radiologists (YA and EA) with more than 20-years experiences of interpreting panoramic 
appearances. The final determinations were reached by consensus after discussion when the evaluations differed 
between the radiologists.

Statistical analysis. The differences in ratios between two groups were tested by chi-square test, with p < 
0.05 established as the threshold of significant difference.

Results
The results showed that no images had two or more bounding boxes on a panoramic image, indicating that only 
one box was detected per image when the model estimated a certain area as a cleft. All detected boxes sufficiently 
included the areas where a cleft was observed or would be in the normal group. Moreover, the boxes’ medial 
limit was not beyond the median line, and the distal limit was located medially to the canine. The superior and 
inferior limits were almost same as those of annotation area (namely, the inferior line of the piriform aperture 
and alveolar ridge). Therefore, we concluded that all test images could be predictively classified by both models 
into one of the three groups (CA only, CA with CP, or normal). Confusion matrix analyses were performed for 
both models (Fig. 2a,b), and the recall, precision, and F-measure values were calculated. The F-measure denotes 
the harmonic mean of recall and precision. Regardless of cleft status (CA only vs. CA with CP group), 53 (88.3%) 
and 51 (85.0%) of the 60 subjects who truly had a cleft could be detected by models 1 and 2, respectively. No 
difference was found between the models (p = 0.7883). Model 1 incorrectly assigned 12 (40%) of the 30 normal 

Table 1.  Summary of datasets (number of panormaic images). CA cleft alveolus, CP cleft palate.

Group

Dataset

Training Validating Testing Total

CA only 115 29 30 174

CA with CP 143 36 30 209

Normal 144 36 30 210

Total 402 101 90 593

Figure 1.  (a) The label including the cleft alveolus is created by setting a rectangular region of interest (ROI). 
The superior distal corner was set at the point including the equivalent level to the contralateral normal line 
of the piriform aperture’s lower limit and the most distal portion of the piriform aperture. The inferior medial 
corner was set at the alveolar ridge between the central incisors. (b) The coordinates of upper left and lower 
right corners of the ROIs were converted to text form.
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Figure 2.  The confusion matrices of (a) model 1, (b) model 2, (c) human observer 1, and (d) human observer 2 
and their calculated performance.
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subjects as having a cleft, whereas only 1 normal subject was incorrectly assigned by model 2. No difference 
was found between models 1 and 2 in terms of the recall in the CA only group (p = 0.7041) or the CA with CP 
group (p = 0.7866), but the recall of the normal group was significantly higher in model 2 (p = 0.0017). Model 
2 showed higher values of all three indices. The overall accuracy was higher in model 2 (82.2%) than model 
1 (71.1%), but no significant difference (p = 0.0780) was found. The recall of the CA with CP group was poor 
(0.667) even in model 2.

Regarding human observers, confusion matrix analyses were also performed (Fig. 2c,d). Two observers 
showed a similar tendency for the performances. The overall accuracy of each human observer was higher than 
Model 1, however, lower than Model 2. The recall of Normal group was high, whereas those of the CA only group 
and the CA with CP group were poor in each human observer.

The findings of the inferior line of the piriform aperture were divided into three types (Table 2, Fig. 3a–c).
First, in 184 images, the lines could be observed clearly on the both right and left sides at an equivalent level 

Figure 2.  (continued)
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and were assigned as “clear and equivalent level”. Second, 149 lines on the affected side were clearly visible but 
located at an inferior level relative to those on the unaffected side. This finding was defined as “clear and inferior 
level”. Third, 170 images were assigned as “obscure or invisible”, as they showed an obscure or invisible line on the 
affected side or on at least one side. The distributions of these three findings were significantly different among 
the three groups (p < 0.001). In the CA only group, most of the lines showed the finding of “clear and inferior 

Table 2.  Findings on the inferior line of the piriform aperture (number of images). a The inferior line of the 
piriform aperture could be observed clearly on the both right and left sides at an equivalent level. b The inferior 
line of the piriform aperture on the affected side was clearly visible but located at an inferior level relative to the 
unaffected side, or the line on a side was located at an inferior level relative to the contralateral side in normal 
subjects.

Group

Finding

Clear and equivalent  levela Clear and inferior  levelb Obscure or invisible Total

CA only 20 (13.9%) 108 (75.0%) 16 (11.1%) 144 (100%)

CA with CP 1 (0.6%) 41 (22.9%) 137 (76.5%) 179 (100%)

Normal 163 (90.6%) 0 (0.0%) 17 (9.4%) 180 (100%)

Figure 3.  The findings of the inferior line of the piriform aperture were divided into three types. (a) is “clear 
and equivalent level”, (b) is “clear and inferior level”, and (c) is “obscure or invisible”.
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level,” whereas the findings of “obscure or invisible” and “clear and equivalent level” were predominantly observed 
in the CA with CP and normal groups, respectively.

The findings of the lateral incisor on the affected side are summarized in Table 3. The distributions of all four 
findings were significantly different among the three groups (p < 0.001). The observation rates of all findings 
were low in the normal group relative to those in the CA only and CA with CP groups.

Examples of model-predicted results are shown in Figs. 4, 5, 6 and 7. Figure 4 shows a result from the CA 
only group with a correctly detected and correctly classified bounding box. The result in Fig. 5 was correctly 
detected as having CA but falsely classified into the CA with CP group. Figure 6 shows a falsely detected area in 
a normal group subject. In Fig. 7, the cleft could not be detected.

Discussion
The detection function of DL systems on panoramic radiographs has been studied for various lesions and 
 conditions20–27. Regarding vertical root  fracture20 and dental  implants21, detection models have been created 
with annotations of only fractured teeth or implant sites. Normal teeth without fractures or replacement by 
implants were not included in the training, validation, or test datasets, probably because many normal teeth were 
included in each panoramic image. Several authors reported relatively high detection sensitivity (recall in the 

Table 3.  Findings of the lateral incisor on the affected side (number of images). *Difference between 
distributions is significant among three groups (p < 0.001).

Group

Appearance

Absence* Microdontia* Unerupted* Medial inclination*

CA only 51/144 (35.4%) 75/144 (52.1%) 68/144 (47.2%) 16/144 (11.1%)

CA with CP 77/179 (43.0%) 81/179 (45.3%) 77/179 (43.0%) 33/179 (18.4%)

Normal 19/180 (10.6%) 0/180 (0.0%) 5/180 (2.8%) 0/180 (0.0%)

Figure 4.  A correctly detected and classified case. In a patient belonging to the CA only group, the left side 
CA was correctly detected and classified into the CA only group, showing a red bounding box. The inferior line 
of the piriform aperture on the affected side is situated at an inferior level relative to that on the contralateral 
normal side. The left lateral incisor shows findings of unerupted microdontia.

Figure 5.  A correctly detected but erroneously classified case. On a panoramic image of a patient with solely 
CA (CA only group), the cleft area was correctly detected but is misclassified into the CA with CP group. The 
lateral incisor shows findings of microdontia with slight medial inclination, but the inferior piriform aperture 
line is obscure on the affected side, and the radiolucency of the cleft area is relatively high.
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present study) for maxillary and mandibular cyst-like  lesions22–25. Ariji et al.22 and Watanabe et al.23 created and 
tested their DetectNet models without annotation of normal subjects’ data. Hyunwoo et al.26 and Odeuk et al.27 
built models using the You Only Look Once system without normal subjects’ data and tested them with datasets 
including normal subjects without cyst-like lesions. In all of those studies, the training and validation processes 
were performed without normal subjects. Therefore, we created a model without normal subjects in addition to 
the model developed with normal subjects’ data, whereas both models’ test datasets included normal subjects. 
Model 1’s results showed that 12 (40%) of the 30 normal subjects in the test set were falsely assigned as having 
a cleft, whereas only one of those subjects was assigned to the CA only group by model 2 (which included the 
normal subjects in the learning process). Although the cause of this discrepancy between cyst-like lesions and 
CAs could not be completely elucidated, the characteristics of the lesions’ appearances might contribute to the 
difference. Cyst-like lesions showed definite borders on radiographs, but cleft areas were frequently represented 
as ill-defined radiolucency because of the superimposition of surrounding structures, such as unerupted per-
manent teeth.

The present results showed relatively high detection sensitivity (recall in the present study) compared with 
the corresponding values of other studies on panoramic  radiographs22,23, regardless of the cleft status for which 
the values were determined (CA only or CA with CP groups). However, even model 2 had a low recall value of 
0.667 for the CA with CP group. This problem should be solved in future investigation and could be accomplished 
by increasing the size of the training dataset.

Regarding human observers, the recall of normal group was high, however, overall accuracy was lower than 
Model 2. This result suggested the deep learning model, which included the normal group for learning process, 
had the potential to assist the human observers as a CAD system.

Although the most important feature for CA detection might be radiolucent area at the maxillary incisor 
region, the frequently reported characteristic appearance other than radiolucent area, such as findings of the lat-
eral incisor on the affected side and of the inferior line of the piriform aperture, were analyzed to clarify potential 
features related to the created models’ performance. Regarding the inferior line of the piriform aperture, Hansen 
et al.12 reported that the line was positioned 2.9 mm lower on the cleft side than on the noncleft side, whereas no 
difference was noted between the right and left sides in the normal group (mean difference: <1 mm). Therefore, 
based on the visibility and the line level, we analyzed the appearance with >2 mm difference defined as abnormal. 

Figure 6.  A falsely detected normal case. In a normal subject (without CA), a red bounding box is shown on 
the right incisor region. The inferior piriform aperture lines on the both sides are obscure and superimposed by 
the radiopaque lines caused by the hard palate. The right lateral incisor is missing (probably congenitally), and 
the canine shows medial inclination, so the space between these teeth is relatively wide. The model probably 
mistakenly recognizes the canine as the lateral incisor.

Figure 7.  An undetected case with CA. The panoramic image of a subject with CA (CA only group) on the 
right side shows no bounding box. The inferior piriform aperture lines are observed at almost equal levels, and 
the right lateral incisor shows no characteristic findings.
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Consequently, the appearance was divided into three types (clear and inferior level, obscure or invisible groups, 
and clear and equivalent level), and the ratios were 75%, 76%, and 90% for the CA only, CA with CP, and normal 
groups, respectively. This result suggests that the findings of the inferior line of the piriform aperture might be 
related to both classification performance and detection performance. Regarding the lateral incisor, microdontia 
were observed in 48% of patients with CA, but not in any patients in the normal group. Therefore, the presence of 
microdontia might be related to the model’s detection performance of CA. Similarly, unerupted lateral incisors 
were observed in 44% of patients with CA but only 2.7% of patients in the normal group, suggesting that this 
factor is also related to the models’ performance.

The present study had several limitations. First, patients with bilateral CA were excluded because it was 
difficult to clearly visualize the inferior line of the piriform aperture in such patients’ panoramic images. This 
would result in failure of the determination of the superior limit of the ROIs for the learning process. Future 
study should be conducted to address these patients. In this regard, it might be effective to test the model created 
in the present study by using the panoramic radiographs of patients with bilateral CAs. Second, the numbers of 
training and test data were so small that the results cannot be generalized although it was difficult to estimate 
an appropriate sample size 28. Future research should be planned with larger datasets obtained from multiple 
hospitals through the use of different panoramic machines. Third, other CNNs and functions, such as semantic 
segmentation, should be used to improve the model’s performance.

Conclusions
The model developed in the present study appears to have the potential to detect CAs and classify them into CA 
only and CA with CP groups on panoramic radiographs, which may be useful as assisting the performance of 
human observers. Additionally, some performance-related differences between three experimental groups (CA 
only, Ca with CP and normal groups) were clarified.
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