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Prediction of radiation pneumonitis 
after definitive radiotherapy 
for locally advanced non‑small 
cell lung cancer using multi‑region 
radiomics analysis
Daisuke Kawahara1,7*, Nobuki Imano1,7, Riku Nishioka2, Kouta Ogawa3, Tomoki Kimura4, 
Taku Nakashima5, Hiroshi Iwamoto5, Kazunori Fujitaka5, Noboru Hattori5 & 
Yasushi Nagata1,6

To predict grade ≥ 2 radiation pneumonitis (RP) in patients with locally advanced non‑small cell 
lung cancer (NSCLC) using multi‑region radiomics analysis. Data from 77 patients with NSCLC 
who underwent definitive radiotherapy between 2008 and 2018 were analyzed. Radiomic feature 
extraction from the whole lung (whole‑lung radiomics analysis) and imaging‑ and dosimetric‑based 
segmentation (multi‑region radiomics analysis) were performed. Patients with RP grade ≥ 2 or < 2 
were classified. Predictors were selected with least absolute shrinkage and selection operator logistic 
regression and the model was built with neural network classifiers. A total of 49,383 radiomics 
features per patient image were extracted from the radiotherapy planning computed tomography. We 
identified 4 features and 13 radiomics features in the whole‑lung and multi‑region radiomics analysis 
for classification, respectively. The accuracy and area under the curve (AUC) without the synthetic 
minority over‑sampling technique (SMOTE) were 60.8%, and 0.62 for whole‑lung and 80.1%, and 
0.84 for multi‑region radiomics analysis. These were improved 1.7% for whole‑lung and 2.1% for 
multi‑region radiomics analysis with the SMOTE. The developed multi‑region radiomics analysis can 
help predict grade ≥ 2 RP. The radiomics features in the median‑ and high‑dose regions, and the local 
intensity roughness and variation were important factors in predicting grade ≥ 2 RP.

Chemoradiotherapy (CRT) is the standard treatment for unresectable locally advanced non-small cell lung cancer 
(NSCLC). However, CRT for NSCLC carries the risk of radiation pneumonitis (RP)1. Although the develop-
ment of immunotherapy has been shown to significantly improve survival after CRT 2, immunotherapy cannot 
be continued when RP develops. Previous studies have developed many indicators for predicting grade 3 RP as 
a serious adverse  event3–7. However, it is extremely important to predict grade ≥ 2 RP because immunotherapy 
cannot be continued if it occurs.

Various indicators have been shown to predict grade 2 and 3 RP by CRT for NSCLC, including sex, smoking 
status, tumor location, age, and pulmonary  comorbidity8,9. These patient backgrounds should be carefully con-
sidered when predicting RP. Another approach for predicting RP is dosimetric predictors. The mean lung dose 
or the volume of the lung receiving > 20 Gy (V20) has been reported as the best correlated predictor of  RP8,9. We 
previously reported the importance of reducing the high-dose area by analyzing NSCLC patients who received 
three-dimensional conformal radiotherapy (3D-CRT) or intensity-modulated radiotherapy (IMRT)10. These 
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dose-volume histogram (DVH) parameters have been considered individually; however, these factors need to 
be considered comprehensively. In addition, there are individual differences in the risk of developing RP among 
patients with the same dosimetric predictors, probably because of differences in patient backgrounds. Therefore, 
predictive indicators that consider both individual patient background factors and all types of dosimetric factors 
are needed.

Recently, radiomics has been proposed to explore the correlation between medical images, underlying genetic 
information, and other  characteristics11. It has been used to classify patients and evaluate their risk in order to tai-
lor and customize prescribed oncological treatments. Texture features from computed tomography (CT) images 
are useful for differentiating lung phenotypes resulting from patients’ lung  backgrounds12. Krafft et al. proposed 
a predictive model for RP toxicity after radiotherapy using pretreatment CT-based radiomics features extracted 
from the whole-lung  volume13. They proposed a predictive model with CT-based radiomics features extracted 
from only the whole-lung region, which reflects patients’ lung background but not dosimetric factors. We hypoth-
esized that radiomics analysis can be improved by increasing the region of interest (ROI), which reflects all kinds 
of dosimetric factors. Previous studies have reported the usability of increasing the radiomics features by adding 
the ROI in the outer region of the tumor to improve prediction  accuracy14,15. These approaches showed that the 
imaging features from multi-region radiomics analysis were useful for predicting treatment outcomes; however, 
these ROIs did not reflect dosimetric factors, and no report has utilized this method to predict RP.

In the current study, we proposed a method of multi-region radiomics analysis that can reflect both patients’ 
lung background and all kinds of imaging and dosimetric factors in the imaging and dosimetric-based segmen-
tations to predict grade ≥ 2 RP in locally advanced NSCLC.

Materials and methods
Patients. The eligibility criteria for this study were as follows: histologically confirmed NSCLC; clinical 
stage II, IIIA, IIIB, or IVA according to the 8th TNM staging system of the International Union Against Cancer 
(UICC); no distant organ metastasis diagnosed by CT, magnetic resonance imaging (MRI), or positron emission 
tomography CT (PET-CT); had been irradiated using three-dimensional conformal radiotherapy (3D-CRT); 
had been followed until the onset of RP of grade 2 or higher, or for more than 6 months after the completion of 
treatment; had no previous history of radiotherapy to the chest; RP grade was evaluated by a radiation oncolo-
gist; and digital imaging and communications in medicine (DICOM) data were available. The Hiroshima Uni-
versity Review Board approved this retrospective study (E-1656). The need for informed consent was waived 
owing to the retrospective nature of the study by Hiroshima University Review Board. The methods were per-
formed according to relevant guidelines and regulations.

Image acquisition. Figure  1 shows the workflow of this study. CT imaging was performed during free 
breathing using a CT scanner (Lightspeed RT16, GE Healthcare; Little Chalfont, UK). The slice thickness and 
slice interval were 2.5 mm.

Radiotherapy treatment. Radiotherapy was performed with 3D radiotherapy treatment planning for all 
patients. The gross tumor volume (GTV) included primary tumor and lymph node (LN) metastasis. The clini-
cal target volume (CTV) for the primary lesion and LNs was defined as the GTV with a 3–5 mm and 0–3 mm 
margin in all directions, respectively. Margins of 5–10 mm were added to the CTV to determine the planning 
target volume (PTV). Elective nodal irradiation was omitted in all patients. Target delineation was confirmed by 
the same radiation oncologist according to the same treatment protocol for all patients. A total irradiation dose 
of 60–74 Gy was administered to the PTV. The dose calculation algorithm used was a collapsed cone convolu-

Figure 1.  Process of the radiomics analysis and creation of the prediction model.
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tion superposition/convolution algorithm (CCCS), which is available in Pinnacle3 (Philips Radiation Oncology 
Systems, Fitchburg, WI).

Follow‑up. Patients were followed up every month after treatment completion until 6 months, and every 
3 months thereafter. Patients received a chest X-ray every month and chest-to-pelvis CT at 1-, 3-, and 6-month 
follow-up visits and every 3–6 months thereafter. RP was evaluated using the Common Terminology Criteria for 
Adverse Events (CTCAE) version 5.016. More specifically, we defined grade 2 RP as the use of any drug for RP 
symptoms within 12 months of the end of radiotherapy.

Radiomics analysis. First, normalization (z-score transformation) of image intensity was performed on the 
whole image to transform arbitrary CT values into standardized intensity ranges, thereby avoiding heterogeneity 
bias. Then, the entire CT imaging dataset was analyzed to extract textural features from the segmentations of the 
radiotherapy plans and dose distribution.

The current study proposed two radiomics analyses: one was the whole-lung radiomics analysis proposed 
by Krafft et al. in which radiomics features are extracted only in the whole-lung  region13, and the other was 
multi-region radiomics analysis in which radiomics features are extracted in the imaging- and dosimetric-based 
segmentation. CT image segmentation was defined as imaging-based segmentation, as shown in Table 1. In addi-
tion to the GTV, CTV, and PTV radiomics features that were used in treatment planning, the shell radiomics 
features of the region around the GTV, CTV, and PTV, and inner radiomics features of the region that excluded 
the tumor boundaries, were extracted.

RP occurs outside the tumor, and lungs that receive low doses (5 or 20 Gy) are associated with  RP17,18. Thus, 
the radiomics features of the lungs overlapping with the outside of the GTV and PTV were analyzed. Moreover, 
the target received a higher dose, and normal lungs or whole lungs that received lower to higher doses were 
added to the analysis as dosimetric-based segmentation, as shown in Table 2.

Feature extraction was performed using Pyradiomics, an open-source package in  Python19. A detailed list of 
radiomics features is provided in Table S1 and Table S2.

A list of 50 quantitative features, including 21 first-order features, 13 shape features, and 93 texture analysis 
features (such as gray-level size zone matrix [GLSZM] features and gray-level run length matrix [GLRLM] 
features) were extracted. Moreover, the CT images leave the image unchanged as the original image, and these 
are preprocessed with a wavelet imaging filter. The wavelet filter has low-pass (L) and high-pass (H) filters. The 
decompositions are constructed in the x-, y-, and z-directions. For example, HLL is then interpreted as the 

Table 1.  Imaging-based segmentation list in multi-region radiomics analysis. “ROI-Xmm” indicates the inner 
tumor region of ROI minus X mm of the outer edge. ROI is the region of interest, which represents the GTV, 
CTV, PTV, or whole lung in the current study. “ROI + Xmm” indicates the expanded region from the ROI. 
“(ROI + Xmm)-ROI” indicates the shell region within X mm around the ROI. GTV gross tumor volume, CTV, 
clinical target volume, PTV planning target volume.

Imaging-based segmentation list

GTV
GTV-2 mm GTV + 5 mm GTV + 10 mm

(GTV + 5 mm)-GTV (GTV + 10 mm)-GTV

CTV CTV-GTV

PTV

PTV + 5 mm PTV + 10 mm PTV + 20 mm

PTV-GTV

(PTV + 5 mm)-PTV (PTV + 10 mm)-PTV (PTV + 20 mm)-(PTV + 5 mm)

Lung

Lung-GTV Lung-PTV

Lung-(GTV + 5 mm)

Lung-(PTV + 5 mm) Lung-(PTV + 10 mm) Lung-(PTV + 20 mm)

Table 2.  Dosimetric-based segmentation list in multi-region radiomics analysis. “ROI ∩ XX Gy” indicated the 
ROI received XX Gy or higher. GTV gross tumor volume, CTV clinical target volume, PTV planning target 
volume.

Dosimetric-based segmentation list

Lung received 5–60 Gy or higher : Lung ∩ 5–60 Gy

(Lung-GTV) received 5–60 Gy or higher: Lung-GTV ∩ 5–60 Gy

Lung-PTV received 5–60 Gy or higher: Lung-PTV ∩ 5–60 Gy

PTV received 40–60 Gy or higher: PTV ∩ 40–60 Gy

(PTV + 5 mm) received 30–60 Gy or higher: PTV + 5 mm ∩ 30–60 Gy

(PTV + 10 mm) received 20–60 Gy or higher: PTV + 10 mm ∩ 20–60 Gy

(PTV + 20 mm) received 10–60 Gy or higher: PTV + 20 mm ∩ 10–60 Gy
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high-pass sub-band, resulting from the directional filtering of X with a high-pass filter in the x-direction, a low-
pass filter in the y-direction, and a low-pass filter in the z-direction. In the current study, eight wavelet decom-
positions (HLL, LHL, LHH, LLH, HLH, HHH, HHL, and LLL) were performed. Each feature was computed 
separately for each preprocessing step. A total of 837 features were analyzed for each segmentation in this study.

Feature selection. Interactions between radiomics features were evaluated using variance inflation factor 
(VIF) analysis. We used the VIF to remove factors of VIF > 10. Next, the least absolute shrinkage and selection 
operator (LASSO) regression model, which is suitable for the regression of high-dimensional data for whole-
lung radiomics analysis and multi-region radiomics analysis, was used with MATLAB code (MathWorks; Natick, 
MA)20,21. LASSO performs feature selection during model construction by penalizing the respective regression 
coefficients. As this penalty is increased, more regression coefficients shrink to zero, resulting in a more regular-
ized model. The most significant predictive features were selected from among all the candidate features in the 
training set with tenfold cross-validation.

Subsampling. There were 45 and 32 patients with grade ≥ 2 and ≤ 1 RP, respectively. To prevent overfit-
ting by the unbalanced ratio, the current study used the synthetic minority over-sampling technique (SMOTE), 
which is an enhanced sampling method. It interpolates data based on the Euclidean distance for variables. Thus, 
SMOTE increases the representation of the minority group in the resulting dataset while reflecting the structure 
of the original  dataset22. The robustness of a variety of classifiers using SMOTE analysis has been introduced in 
previous  studies23. In the current study, SMOTE was used for constructing the prediction model on the selected 
training dataset before LASSO analysis.

Prediction model. The objective of this study was to stratify patients into two classes using different 
machine learning (ML) classifiers. In this regard, patients with RP grade ≥ 2 were labeled as 1, and patients with 
RP grade < 2 were labeled as 0. This was repeated to classify patients according to their stage. The ML-based clas-
sification was performed using a neural network. As shown in Fig. S1, all patients were randomly partitioned 
into a training/validation set (70% of patients), or testing set (30% of patients). The training/validation set was 
increased to 78 from 54 patients by the SMOTE. The ratio of RP labels was the same for the training and test 
datasets. We tested different combinations of feature selection and classification methods to find the best predic-
tive models for these classifications. Classifiers were trained using the fivefold cross-validation method, and their 
predictive performance was evaluated using the area under the receiver operator characteristic (ROC) curve 
(AUC). As shown in Fig. S1, the training-validation-testing processes were repeated five times for the fivefold 
cross-validation. The predictive performance of all models was compared based on the mean AUC.

Results
A flowchart of the study population is shown in Fig. 2. A total of 77 patients were included in the radiomics 
analysis in this study. The characteristics of the patients and their tumors are shown in Table S3. Table S4 shows 
the characteristics of the patients for training/validation and test dataset. In total, 32 of 77 patients (42%) devel-
oped grade ≥ 2 RP.

From the radiomics analysis, a total of 49,383 features were extracted from the CT images. By VIF-based fea-
ture reduction, the number of radiomic features was reduced from 49,383 to 32,541. In the whole-lung radiomics 
analysis, four features were selected using the LASSO regression model, as shown in Table 3 and Fig. S2. These 
features included the minimum and median CT numbers and the magnitude of the fineness and coarseness of 

Figure 2.  Enrollment characteristics of the study participants. NSCLC non-small cell lung cancer, RT 
radiotherapy, 3D-CRT  three-dimensional conformal radiotherapy, VMAT volumetric-modulated arc therapy, RP 
radiation pneumonitis, DICOM Digital imaging and communications in medicine.
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the texture. All radiomics features used a wavelet filter. Features with non-uniformity, local intensity roughness, 
and a higher ratio of regions with high pixel numbers were selected.

In the multi-region radiomics method, 13 features were selected using the LASSO regression model, as shown 
in Table 4 and Fig. S3. Out of 13 features, 5 features were selected from the shape analysis of the dosimetric 
segmentation, 3 features were selected from the statistical analysis, and 5 features were selected from the texture 
analysis. From the shape analysis, five shape features from the median-dose (20–30 Gy) and high-dose (60 Gy) 
regions from the overlapping region of dosimetric segmentation and lung were selected. For the statistical and 
texture analysis, four features were selected from the whole lung and normal-lung regions, two features were 
selected from the dosimetric segmentation, and two features were selected from the overlapping region of dosi-
metric segmentation and lung.

Figure 3a shows the validation of the performance of the predictive model without SMOTE according to 
ROC metrics with fivefold cross validation in the whole-lung radiomics analysis. Table 5 shows the results of the 
accuracy, sensitivity, specificity, and AUC of the prediction model in the whole-lung radiomics analysis for the 
training and testing data. The average accuracy of the five models was 66.8% for the training data. The average 
accuracy, sensitivity, and specificity of the test data were 66.6%, 50.8%, and 59.0%, respectively. The AUC was 
0.60 for the first model, 0.67 for the second model, 0.668 for the third model, 0.56 for the fourth model, and 0.65 
for the fifth model. The average AUC with fivefold cross validation was 0.62 ± 0.04.

Next, we applied multi-region radiomics analysis to improve the accuracy of RP prediction. Figure 3b shows 
that the performance of the predictive model without SMOTE was validated according to the ROC metrics with 
fivefold cross validation in the multi-region radiomics analysis. Table 6 shows the results of the accuracy, sensi-
tivity, specificity, and AUC of the prediction model in the whole-lung radiomics analysis and the multi-region 
radiomics analysis for the training and testing data. The average accuracy of the five models was 78.0% for the 
training data. The average accuracy, sensitivity, and specificity of the test data were 82.7%, 78.4%, and 77.4%, 
respectively. The average accuracy, sensitivity, specificity, and AUC in the multi-region radiomics analysis were 
improved compared to those in the whole-lung radiomics analysis.

Figure 4 shows the performance of the predictive model with SMOTE according to ROC metrics with fivefold 
cross validation in whole-lung radiomics analysis and multi-region radiomics analysis. Tables 7 and 8 show the 
results of the accuracy, sensitivity, specificity, and AUC of the prediction model with SMOTE in the whole-lung 
radiomics analysis and the multi-region radiomics analysis for the training and testing data. The differences in 
the accuracy between the prediction model with and without SMOTE were 1.7% and 0.03, respectively, in the 
whole-lung radiomics analysis and 2.1% and 0.03, respectively, in the multi-region radiomics analysis.

Table 3.  Selected features by least absolute shrinkage and selection operator regression in the whole-lung-
region radiomics analysis.

ROI Imaging filter Feature

Lung Wavelet-LLH firstorder Minimum

Lung Wavelet-HHL firstorder Median

Lung Wavelet-HHH glcm Correlation

Lung Wavelet-HHL glcm Correlation

Table 4.  Selected features by least absolute shrinkage and selection operator regression in the multi-region 
radiomics analysis.

ROI Imaging filter Feature

Lung-GTV Wavelet-LLH glcm JointAverage

Lung-GTV Wavelet-LLH firstorder Minimum

Lung-GTV Wavelet-HHL gldm Small Dependence Low Gray Level Emphasis

Lung-PTVad20 Wavelet-LLH ngtdm Strength

5.00 Gy Wavelet-LHL firstorder Skewness

20.00 Gy Wavelet-LHL firstorder Skewness

30 Gy ∩ Lung-GTV Wavelet-HLL gldm Gray Level Non-Uniformity

50 Gy ∩ Lung-GTV wavelet-LHL glszm Large Area High Gray Level Emphasis

60 Gy ∩ Lung-GTV Original Shape MajorAxis

60 Gy ∩ Lung-GTV Original Shape Flatness

20 Gy ∩ Lung Original Shape MinorAxis

30 Gy ∩ Lung Original Shape MajorAxis

60 Gy ∩ Lung-PTV Original Shape Maximum 3D Diameter
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Discussion
RP is a very important adverse event in radiotherapy for NSCLC, and if it can be predicted, it will be useful 
information for deciding the treatment policy, such as prescription dose and follow-up interval.

Previously, grade 3 RP was defined to serious adverse event. Dang et al. reported that grade 2 and grade 3 
RP have different  predictors24. Therefore, predictors of grade ≥ 2 RP require an original approach. Since immu-
notherapy has revolutionized the treatment of lung  cancer2, it is very important to predict grade ≥ 2 RP because 
it prevents the continuation of immunotherapy. In the current study, we focused on finding a new method for 
predicting grade ≥ 2 RP. A previous report showed that background factors such as sex, smoking status, tumor 
location, age, and pulmonary comorbidity have been identified as potential  risks8,9. Dosimetric factors, such as 
mean lung dose or V20, and several other DVH parameters have also been reported as the best correlated predic-
tors of RP. Therefore, it is necessary to develop predictors that consider both types of factors.

Currently, radiomics approaches have been used to improve diagnostic quality or to predict treatment out-
comes using medical images that have only been used for radiation diagnosis, treatment planning, and follow-up 
after treatment. Krafft et al. combined radiomics features extracted from whole-lung images with clinical and 
dosimetric features and significantly improved the RP model for grade 3  RP13. The cross-validated AUC for the 
model was 0.68. The current study compared the prediction model using the whole-lung radiomics analysis per-
formed by Krafft et al. and multi-region radiomics analysis, which was proposed as a new method in the current 
study. We were able to reproduce the same degree of accuracy by using a method similar to that of Krafft et al., 

Figure 3.  The performance of the predictive model without the synthetic minority over-sampling technique 
was validated according to the receiver operating characteristic metrics with fivefold cross validation in the 
whole-lung-region radiomics (a) and multi-region radiomics analysis (b).

Table 5.  Assessment of the predictive performance of the predictive model for training and testing data in the 
whole-lung radiomics analysis without the synthetic minority over-sampling technique. AUC, area under the 
curve.

Training (%) Test (%)

Sensitivity 78.4 (76.9–80.0) 66.6 (58.3–77.8)

Specificity 54.6 (47.1–65.0) 50.8 (40.0–57.1)

Accuracy 66.8 (65.2–71.7) 59.0 (57.9–64.9)

AUC – 0.62 (0.56–0.67)

Table 6.  Assessment of the predictive performance of the predictive model for training and testing data in 
multi-region radiomics analysis without the synthetic minority over-sampling technique. AUC  area under the 
curve.

Training (%) Test (%)

Sensitivity 82.6 (77.8–91.3) 82.7 (66.7–89.2)

Specificity 71.6 (63.2–88.2) 78.4 (66.7–90.0)

Accuracy 78.0 (73.6–83.3) 77.4 (73.9–82.6)

AUC – 0.84 (0.81–0.88)
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as though we predicted grade 2 RP rather than grade 3 for both the prediction model with and without SMOTE. 
Furthermore, we could improve the quality by using multi-region radiomics, which had superior accuracy, 
sensitivity, specificity, and AUC compared to whole-lung radiomics analysis for both prediction models with 
and without SMOTE.

In the multi-region radiomics analysis, the radiomics features of local intensity roughness and variation 
were selected from the CT images. A previous study showed that an increase in radiologic density within the 
irradiated lung was a predictor of RP. Thus, RP can occur due to local intensity roughness, and variation can 
increase the density on the CT image, which is an important factor in predicting RP. Moreover, the shape features 
were extracted from dosimetric-based segmentation, which reflects the dose-volume histogram metrics. Thus, 
dosimetric parameters are essential for predicting RP grade. For radiomics features in the dosimetric-based seg-
mentation, the regions of the normal lung that received 60 Gy were selected as an important predictor in addition 
to the region of the normal lung that received 20 and 30 Gy. Although many reports emphasize the importance 
of the  median8, the correlation between a high dose and RP has not been fully analyzed. We previously reported 
the importance of reducing high doses by analyzing NSCLC patients who received 3D-CRT or  IMRT10. The 
current study supports the importance of a higher dose, as well as the median dose. We should reduce not only 
low and middle doses, but also higher doses to prevent RP. Although more features were selected in the multi-
region radiomics analysis than in the whole-lung radiomics analysis, these features were based on evidence from 
a previous study. Thus, multi-region radiomics analysis can extract more effective predictors of grade ≥ 2 RP.

Figure 4.  The performance of the predictive model with the synthetic minority over-sampling technique was 
validated according to the receiver operating characteristic metrics with fivefold cross validation in the whole-
lung-region radiomics (a) and multi-region radiomics analysis (b).

Table 7.  Assessment of the predictive performance of the predictive model for training and testing data in 
the whole-lung radiomics analysis with the synthetic minority over-sampling technique. AUC  area under the 
curve.

Training (%) Test (%)

Sensitivity 65.8 (60.7–76.0) 59.7 (50.0–66.7)

Specificity 72.8 (60.6–80.8) 64.0 (57.1–71.4)

Accuracy 69.7 (66.7–78.4) 61.7 (54.2–66.7)

AUC – 0.63 (0.59–0.70)

Table 8.  Assessment of the predictive performance of the predictive model for training and testing data in 
multi-region radiomics analysis with the synthetic minority over-sampling technique. AUC  area under the 
curve.

Training (%) Test (%)

Sensitivity 86.5 (72.2–98.4) 84.8 (82.4–86.7)

Specificity 90.8 (84.1–97.7) 75.9 (74.0–80.0)

Accuracy 89.7 (82.7–98.1) 81.7 (79.2–83.3)

AUC – 0.85 (0.80–0.90)
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The problem with the previous radiomics analysis is that it is calculated from one value in the segmented 
region. RP mostly occurs in locally irradiated lungs. Multi-region analysis can extract radiomics features from 
the locally irradiated region, in addition to the whole lung. Hao et al. proposed a predictive model for distant 
failure using shell analysis. Shell analysis extracts features in the boundaries of the tumor, which allows us to 
detect its association with metastases within the  microenvironment14. The current study also demonstrated that 
the radiomics features extracted in the multi-locally segmented region could be an important predictor of the 
classification of above and under grade 2 RP.

For feature selection with LASSO regression, all radiomics features extracted by texture analysis were used 
with a wavelet filter. Nie et al. reported that radiomics features with high-order filters and wavelets were sig-
nificant predictors for differentiating focal nodular hyperplasia from hepatocellular carcinoma in the  liver25. 
In the current study, all radiomics features with wavelet filters that were selected using LASSO regression were 
important predictors for the prediction of RP grade. The imaging filter can denoise, smoothen, or enhance edges 
and extract or eliminate a constant frequency. This leads to the elimination of redundant and effective factors 
for the prediction.

There are some limitations to the current study. Dosiomics and clinical factors such as smoking history, 
age, and chemotherapy could be integrated into the model to improve its prediction ability and robustness. 
Liang et al. proposed a prediction model for the RP grade using dosiomics analysis from the dose distribution 
for radiotherapy response  prediction26. Although multi-region radiomics analysis has improved the prediction 
ability compared to dosiomics analysis, dosiomics analysis can extract spatial features such as local intensity 
variation of the dose distribution and the ratio of the low-dose region. Future studies will be performed using 
a combination of multi-region radiomics and dosiomics. Another limitation was that the current study used 
a dataset from a single institution of patients who underwent 3D-CRT. Feature selection was performed with 
LASSO regression via tenfold cross validation to prevent model simplification and overfitting and to select the 
optimal λ for the data. Moreover, we used SMOTE to balance the sample numbers after feature selection. SMOTE 
is a method of undersampling the majority class and oversampling the minority  class27,28. The difference in the 
performance of the prediction model with and without SMOTE was significantly small, further enhancing the 
reliability of the results. In the future, we will conduct a larger multicenter study using both 3D-CRT and IMRT 
data to construct a highly versatile predictive model. Ambiguity in the definition of grade 2 RP may be another 
limitation, as in a previous report. In previous reports, the incidence of grade 2 RP varied considerably, and one 
of the causes may be that the definition differed between studies. In this study, the definition of grade 2 RP was 
based on CTCAE v.5.0. We tried to minimize subjective judgment by defining it as RP that requires treatment. 
Nevertheless, we successfully combined both individual patient background factors and dosimetric factors by 
analyzing RP with our new radiomics methods. Based on the prediction method developed in this study, it may 
be possible to reexamine the treatment plan by analyzing the images of the treatment plan and predicting the 
risk of grade 2 RP before the start of treatment.

Conclusion
The developed multi-region radiomics analysis can help predict grade ≥ 2 RP for NSCLC after definitive radio-
therapy. The radiomics features in the median- and high-dose regions and that of local intensity roughness and 
variation were important factors in predicting grade ≥ 2 RP.
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