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Entanglement protection 
of classically driven qubits in a lossy 
cavity
Alireza Nourmandipour1,2*, Azar Vafafard2, Ali Mortezapour3 & Roberto Franzosi2

Quantum technologies able to manipulating single quantum systems, are presently developing. 
Among the dowries of the quantum realm, entanglement is one of the basic resources for the 
novel quantum revolution. Within this context, one is faced with the problem of protecting the 
entanglement when a system state is manipulated. In this paper, we investigate the effect of the 
classical driving field on the generation entanglement between two qubits interacting with a bosonic 
environment. We discuss the effect of the classical field on the generation of entanglement between 
two (different) qubits and the conditions under which it has a constructive role in protecting the initial-
state entanglement from decay induced by its environment. In particular, in the case of similar qubits, 
we locate a stationary sub-space of the system Hilbert space, characterized by states non depending 
on the environment properties as well as on the classical driving-field. Thus, we are able to determine 
the conditions to achieve maximally entangled stationary states after a transient interaction with 
the environment. We show that, overall, the classical driving field has a constructive role for the 
entanglement protection in the strong coupling regime. Also, we illustrate that a factorable initial-
state can be driven in an entangled state and, even, in an entangled steady-state after the interaction 
with the environment.

The rapid experimental progress on quantum control is pushing forward the second quantum revolution in 
which quantum technologies able to manipulating single quantum systems are applied. Entanglement is an 
essential resource in many fields of application for quantum technologies, for instance in quantum cryptography 
and computation, in teleportation, in the frequency standard improvement problem, and metrology based on 
quantum phase  estimation1. In the light of the key role of entanglement, the problem of its protection during the 
interaction of a system with the surrounding environment represents a basic task to be addressed. The unavoid-
able coupling of a quantum system with the surrounding environment brings to the deterioration of the quality 
of the entanglement or (very often) to its fast destruction.

Despite its key role, entanglement remains elusive and a satisfactory characterization and quantification of it, 
is still an open  problem2,3. Different approaches have been developed to classify the entanglement of the variety of 
states available in the quantum  regime4. von Neumann entropy is uniquely accepted as an entanglement measure 
for pure states of bipartite  systems5. For mixed states of bipartite systems entanglement of  formation6, entangle-
ment  distillation7,8, and relative entanglement  entropy9 are largely acknowledged as faithful measures. In a recent 
 work10, it has been proposed a measure of entanglement based on a distance deriving from an adapted application 
of the Fubini-Study metric, which can be computed for either pure or mixed states of an M-qudit hybrid system.

Besides mathematical proposals for faithful and satisfactory definitions of a multipartite entanglement meas-
ure, they have been proposed several schemes for dynamical evolutions of quantum states, able to preserving 
entanglement from its degrading. These schemes, often, take advantage of phenomena sole preserve of the 
quantum realm. This is the case, for instance, of schemes with weak  measurements11,12 or that use quantum Zeno 
 effect13–15, quantum error  correction16,17, Stark  shift18. Among various proposed quantum systems for practical 
implementations, the two-level systems (qubits) have been attracted much great attention duo to their ability of 
implementation in  laboratories19–22.

On the other hand, the problem of open quantum systems is great of importance due to the presence of 
dissipation in real systems. This requires new mathematical techniques to model open quantum systems and 
also to propose new methods to preserve and maybe control the entanglement from deterioration of the sur-
rounding environment. Due to the nonunitary evolution arisen from the interaction of the system with its 
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surrounding environment, modeling open quantum systems seems challenging. For instance, an input-output 
 method23 has been proved to be useful to model such systems. This model is based on the leakage of photons 
from the non-perfect mirrors of the cavity and leads to a Lorentzian spectral density. This prohibits a definition 
of a controlling process.

In this work, we propose a scheme where the dynamics cavity-based for two spins, with different transition 
frequencies, are driven by an external classical field. The two spins (qubits) interact with the quantized modes 
of a high-Q cavity and, also, are coupled with an external classical field. We discuss the effect of the classical 
field on the generation of entanglement between the two spins, and we explore the conditions under which the 
classical driving field has a constructive role in protecting the initial-state entanglement from decay induced 
by its environment. In our analysis, the entanglement between the qubits has been quantified with the new 
multipartite entanglement measure derived  in10. We have compared the entanglement plot achieved with this 
measure with the one derived by resorting to the concurrence definition, which is appropriate just for bipartite 
 systems6, obtaining a blatant agreement.

We first consider the case of qubits with the same transition frequency and we show the existence of a sta-
tionary sub-space of the Hilbert space of the system. Surprisingly, the stationary states do not depend on the 
environmental properties as well as on the classical driving field. Base on this fact, we determine the situation 
in which a maximally entangled stationary state can be obtained even after interaction with the environment.

Besides, for two similar qubits, we investigate the impact of the classical driving field on the entanglement 
dynamics. We will illustrate that in the absence of detuning and for any initially entangled state, the entanglement 
decays in time. However, in the strong coupling regime, we observe oscillatory behavior of the entanglement 
due to the memory depth of the environment. We show that the classical driving field, by suppressing such 
oscillatory behaviors, has a constructive role for entanglement protection in the strong coupling regime. We also 
illustrate that an initially factorable state can be entangled and its entanglement can even persist at a steady state 
via interaction with the common environment. Also, this stationary value of entanglement can be exceeded in 
the presence of the classical driving field, for instance, in the strong coupling regime and for sufficiently large 
values of the amplitude of the classical driving field, a high degree of entanglement can be achieved from an 
initially disentangled state. Finally, the role of detuning on the survival of initial entanglement in both weak 
and strong coupling regimes is investigated and we find that overall the detuning has a constructive role in the 
preservation of entanglement.

The model
We consider a system in which two qubits with (different) transition frequencies ωj ( j = 1 and 2) are driven by 
an external classical field. We also assume that the qubits are also interacting with a common zero-temperature 
environment formed by the quantized modes of a high-Q cavity, as illustrated in Fig. 1. The Hamiltonian describ-
ing the whole system in the dipole and rotating wave approximations is written as (we assume � = 1)

where σ̂ (j)
z = |e�j�e| −
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of the interactions of the qubits with the classical driving field and the cavity modes, respectively. Furthermore, 
αj is a dimensionless parameter which measures the interaction of the jth qubit with its surrounding environ-
ment. We assume that � is a real number and to be small compared to the atomic and laser frequencies 
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kâk +

2
∑

j=1

(

∑

k

αjgkâkσ̂
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Figure 1.  Schematic illustration of a setup in which the two-qubit system is driving by a classical field inside a 
leaky cavity.
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A unitary transformation does not change either the eigenvalues of the system and the degree of 
 entanglement24. Therefore, we consider the unitary transformation U = e−iωL(σ̂

(1)
z +σ̂

(2)
z )t/2 , under which, the 

Hamiltonian of the system in the rotating reference frame can be written as

in which �j = ωj − ωL denotes the detuning between the qubit and the classical driving field. A glance at Eq. 
(2) reveals that the Hamiltonian ĤI can be written as ĤI = Ĥ

(1)
I + Ĥ

(2)
I  in which Ĥ(j)

I = �j

2
σ̂
(j)
z +�σ̂

(j)
x  , with 

j = 1 and 2. Each term can be diagonalized by introducing the dressed bases

which are the eigenstates of Ĥ(j)
I  , since it results Ĥ(j)

I = χj
2
ˆ̺ (j)z  in which ˆ̺ (j)z = |E�j�E| − |G�j�G| and 

χj =
√

�2
j + 4�2 . In the above relation, ηj = Arctan[2�/�j] . In this regard, the effective Hamiltonian can be 

re-written as

Here ˆ̺ (j)+ = |E�j�G| ( ̺̂ (j)
− = |G�j�E| ) represents the new lowering (raising) operator. It should be noted that 

during the derivation of the effective Hamiltonian (4), the non-conservation energy terms have been neglected 
according to the rotating-wave  approximation25,26. It should be noted that the counter-rotating terms arising 
from the unitary transformation have been neglected.

In what follows, it will be proven that it may be useful introducing the collective coupling constant 
αT = (α2

1 + α2
2)

1/2 and the relative parameters rj = αj/αT . There is no need to prove that r21 + r22 = 1 , therefore, 
only one parameter, let us say r1 , can be taken as an independent variable. Moreover, the weak and strong coupling 
regimes are explored by varying αT.

Now we are in a position to examine the effect of the classical field on the entanglement dynamics of the two-
qubit system. In the new dressed states, we assume that the initial state of the whole system is

in which |0�R = âk
∣

∣1k
′
〉

δkk′ is the multi-mode vacuum state, where |1k� is the multi-mode state representing one 
photon at frequency k and vacuum state in all other modes. The initial state (5) evolves into the following state

After tracing over the reservoir degrees of freedom, the quantum state of the two-qubit system in the basis 
|E�|E� , |E�|G� , |G�|E� and |G�|G� is obtained as

Substituting Eq. (6) into the Schrödinger equation 
(

i ˙|ψ� = Ĥ|ψ�
)

 we obtain the following integro-differential 
equations for amplitudes for C1(t) , C2(t) and Ck(t)

By substituting into Eq. (8a) the integration of Eq. (8b), we get the following two integro-differential equa-
tions for C1(t) and C2(t)

(2)
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 in which the kernel G(t − t ′) , is the correlation function defined in terms of continuous limits of the environ-
ment frequency as

where J(ω) = W2
�/π[(ω − ωc)

2 + �
2] is the Lorentzian spectral density. Here, W is proportional to the vacuum 

Rabi frequency ( R = αTW ) and � describes the cavity losses (the rate at which the photons escape the cavity). 
In the above relations, ωc is the fundamental frequency of the cavity, ξj = χj − ωc and ξ21 = χ2 − χ1.

In principle, the above set of coupled differential equations can be solved analytically using, for instance, the 
Laplace transformation method. However, as will be clarified, only for the special case ω1 = ω2 a simple analytical 
solution can be derived for the amplitude coefficients.

Similar qubits
In this section, we consider a special case in which two qubits have the same transition frequency, i.e., 
ω1 = ω2 ≡ ω0 , therefore, χ1 = χ2 ≡ χ , �1 = �2 ≡ � , η1 = η2 ≡ η and ξ1 = ξ2 ≡ ξ . In this situation, the set 
of equations (9) reduces to

in which F(t − t ′) = G(t − t ′)eiξ(t−t′) .

Before considering the dynamical behaviour of the entanglement, it is interesting to first search for a station-
ary solution of the set of equations (11), i.e., Cj(t → ∞) . This can be done by setting Ċj = 0 in (11) which leads 
to the following long-living decoherence-free (or sub-radiant) state (after normalization)

As it is seen, the existence of the subradiant state does not depend on the classical driving field, the form of 
the spectral density and neither on the resonance/off-resonance condition. It is clear that for ω1  = ω2 there is no 
decoherence-free state. It is also worth mentioning that if qubits were illuminated with different classical laser 
fields, there would not exist a sub-radiant state. The initial state of the system of qubits consists of two parts: the 
sub-radiation state and its orthogonal state, i.e., super-radiant state |ψ+� , which on the contrary to the sub-radiant 
state, evolves in time with the survival amplitude G(t) with the following equation of motion

Let us assume for a while that the analytical expression for G(t) is obtained. Then, it is straightforward to 
show that the amplitudes Ci(t)  result23

where we have introduced the definition β± ≡ �ψ± |ψ(0)�.

Stationary states. It should be noticed that the amplitude G(t) tends to zero at sufficiently long times. 
This can be realized because it represents the part of the wave function which decays in time. More specifically, 
according to Eq. (13), at sufficiently long times, we have Ġ(t) = 0 , which in turns implies G(t → ∞) �→ 0 . In 
this situation, the amplitudes (14) become

According to the above relations and the density matrix (7), the stationary solution depends only on the 
parameters β−, r1 and r2 . It does not depend on the classical driving field as well as the environmental parameters. 
This can be explained as follows: First of all, the two qubits are dissipating into a global (common) environ-
ment. This global dissipation searches for the excitations of the qubits (one or two) in the symmetric subspace, 
which is then followed by a decay with a fixed rate. The global dissipation leaves the state |ψ−� fixed. The decay 
process can be represented by a Markov link |E�|E� → |ψ+� → |G�|G� . It is worth noticing that our model is 
much more general than the case in which two qubits are symmetrically coupled to the global environment 
without any driving field (i.e., r1 = r2)27. Also, we have shown that the stationary state does not depend on the 
Markovianity of the process.

In order to quantify the degree of entanglement between the two qubits, we use the entanglement measure 
proposed by one of us very recently  in10. It has the advantage of being able to quantify the entanglement of a 
M-qudit hybrid system. It is defined as

(9b)
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(11)Ċi(t) = − cos4(η/2)

∫ t

0

dt′F(t − t ′)
(

α2
i Ci(t

′)+ αiαjCj(t
′)
)

, j �= i

(12)|ψ−� = r2|E�|G� − r1|G�|E� .
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(15)C1(∞) = r2β−, C2(∞) = −r1β−.
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in which M is the number of the subsystems and dµ is the dimension of the Hilbert space of µ th subsystem. 
Here M = 2 and d0 = d1 = 2 . Usually it is convenient to normalize this measure with respect to the number 
of subsystems, i.e., E(ρ(t))/M . In this regard, 0 ≤ E(ρ(t))/M ≤ 1 . The more value of this parameter, the more 
amount of entanglement.

For steady state, the entanglement measure (16) becomes

A first glance at the above relation reveals an interesting result. It is straightforward to observe that the sta-
tionary entanglement is always at its maximum value for symmetric coupling i.e., r1 = r2 = 1√

2
 and |β−|2 = 1 . 

This situation corresponds to the case that the initial state for the qubits is |ψ(0)� = |ψ−� = 1√
2
(|E�|G� − |G�|E�) , 

in this case, there is only the sub-radiant state into the initial state, which does not decay in time. Therefore, a 
maximally entangled state as the stationary state is expected.

In Fig. 2 we have compared the stationary entanglement based on Eq. (16) and  concurrence6. The great 
agreement between these two measures allows us to use the measure defined in Eq. (16) in the rest of the paper. 
We have plotted the two measures as functions of r1 and θ for two values of φ . First of all, it is evident that the 
maximum value of entanglement is 1 for φ = π whereas it is in the vicinity of 0.41 for φ = 0.

It is evident that the region {r1, θ} for which the stationary entanglement is near its maximum value, i.e., 
E(ρ(∞))/M = 1 is obtained for φ = π . This is due to the fact that for φ = π most part of the initial state lays in 
the sub-radiant state with maximum degree of entanglement. For φ = 0 and 2π , this region shrinks and the 
maxima are lower, as can be readily observed from Fig. 3. According to Fig. 3, the optimal value of the stationary 
entanglement depends on the relative phase φ . For φ = 0 and/or 2π , the maximum value of the stationary 

(16)E(ρ(t)) :=
M−1
�

µ=0





2(dµ − 1)

dµ
−

d2µ−1
�

k=1

Tr
�

σ
µ
k ρ(t)

�2



,

(17)E(ρ(∞))/M = 4(r1r2)
2|β−|4.

Figure 2.  Stationary entanglement quantified by concurrence (left panels) and entanglement measure (16) 
(right panels) versus r1 and θ for φ = π (top panels) and φ = 0 (bottom panels).
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entanglement, i.e., Emax(ρ(∞))/M ≃ 0.41 , is obtained at r1 ≃ 0.57 and at r1 ≃ 0.87 . Our further numerical 
calculations reveal that the value of θ for which the stationary entanglement is optimal, is θ = 0 at r1 ≃ 0.57 , 
while it is θ = π at r1 ≃ 0.87 . We point out that both cases resemble initially separable states. It is also possible 
to illustrate that the optimal stationary entanglement has a local minimum at r1 ≃ 0.71 ≃ 1√

2
 , i.e., when the 

qubits are equally coupled to the environment.
For φ = π , the maximum amount of the stationary entanglement is obtained at r1 = r2 = 1√

2
 . Our numerical 

calculations show that the optimal value of θ (i.e., the value of θ at which the stationary entanglement is optimal) 
is θ = π

2
 . This corresponds to the initial state |ψ(0)� = 1√

2
(|E�|G� − |G�|E�).

Dynamics of entanglement. Now, we are in a position to investigate the dynamics of entanglement for 
the case in which the two qubits have the same transition frequency. According to Eq. (14), the dynamics of the 
qubit system depends on the amplitude G(t) . First, we note that using relation (10), the correlation function 
F(t − t ′) may be obtained as

in which �L = ωL − ωc denotes the detuning between the classical driving field ωL and central frequency of 
the cavity ωc.

Then in order to derive G(t) , we take a Laplace transform, ( f (s) ≡
∫∞
0

f (t)e−stdt ) to both sides of Eq. 
(13). This converts the integro-differential equation into an algebraic one, which can be easily solved to obtain 
the Laplace transformation of G(t) . Then, by taking an inverse Laplace transformation, this parameter can be 
obtained as

in which M = �− i(χ +�L) and F =
√

M2 − α2
T
W2(1+ cos η)2 . Before considering the dynamics of entan-

glement, we define the dimensionless parameter R = R
�

 to explore both strong and weak coupling regimes 
corresponding to R ≫ 1 and R ≪ 1 , accordingly.

The entanglement measure (16) for quantum state (7) takes the following analytical expression

Resonance scenario. In this subsection, we consider the resonance scenario, i.e., � = �L = 0 . Figure 4 illus-
trates the effect of the classical driving field on the entanglement dynamics for an initially entangled state. In 
these plots, we have set r1 = 1√

2
 . First of all, it should emphasised that in the absence of the classical driving field, 

the results are quite analogue of the results presented  in13,23, where the measure  concurrence6 has been used to 
quantify the degree of entanglement. This supports our results quantified with the new measure (16). In this 
scenario, a decaying behaviour of entanglement is observed for both strong and weak coupling regimes. How-
ever, in the strong coupling regime, the oscillatory behaviour for entanglement is clearly seen due to the long 
memory of the environment, a phenomenon declaring the non-Markovian process. As is observed, the initial 
maximum value of entanglement is finally washed out at sufficiently long times for all values of the parameter r1
.

(18)F(t − t ′) = W2e−�(t−t′)ei(χ+�L)(t−t′) ,

(19)G(t) = e−Mt/2

(

cosh(F t/2)+ M

F
sinh(F t/2)

)

,

(20)E(ρ(t))/M = 4|C1(t)|2|C2(t)|2.

Figure 3.  The maximum value of the stationary entanglement E(ρ(∞))/M as a function of r1 over parameter θ 
for φ = 0 (dasshed line) and φ = π (solid line). We point out that the these results are completely independent 
of environmental variables as well as the classical driving field.
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In the presence of classical driving field, a different behaviour is clearly observed in both coupling regimes. For 
instance, in the weak coupling regime, the classical driving makes the decay of entanglement slower. However, 
the entanglement vanishes at sufficiently long times. In the strong coupling regime, the entanglement sudden 
death is clearly gone due to the influence of the classical driving field. According to the presented plots, the posi-
tive role of the classical driving field on the preservation of entanglement is clearly observed: the larger the Rabi 
frequency, the better preservation of the initial entanglement.

So far, we have explored the role of the classical driving field on the preservation of the initial entanglement 
between the two qubits. It is also interesting to examine the influence of the classical driving field on the entangle-
ment when the two qubits are initially separable. Figure 5 illustrates the entanglement dynamics for an initially 
separable state under the influence of the classical driving field. It is interesting to notice the effect of the classical 
driving field in the strong coupling regime. In the absence of the classical driving field, the entanglement never 
exceeds its stationary value. However, the classical driving field makes the entanglement even greater than its 
stationary value with a maximum of around 0.8 for � = 10� . The inset in Fig. 5a shows that it is also possible to 
exceed the stationary value of entanglement for the weak coupling regime. Again, from these plots, it is evident 
that the stationary entanglement is completely independent of environmental variables as well as the classical 
driving field which is completely in agreement with Fig. 3.

Off‑resonance scenario. In this subsection we discuss the off-resonance scenario. We begin by considering the 
case in which the detuning between the classical driving field and the central frequency of the cavity is zero, i.e., 
�L = 0.

As is observed from Fig. 4, the initial entanglement is washed out at sufficiently long (scaled) times. There-
fore, to investigate the role of detuning parameter, we have plotted the entanglement measure versus � and the 
detuning parameter � at a certain value for scaled time, i.e., �t = 400 for weak coupling regime and �t = 4 for 

Figure 4.  Dynamics of entanglement in the presence of classical driving field for an initially entangled state for 
(a) weak coupling regime, i.e., R = 0.1 and (b) strong coupling regime, i.e., R = 10 . In these plots, we have 
considered a symmetric coupling, i.e., r1 = 1√

2
 and we have set � = �L = 0.

Figure 5.  Dynamics of entanglement in the presence of classical driving field for an initially separable state for 
(a) weak coupling regime, i.e., R = 0.1 and (b) strong coupling regime, i.e., R = 10 . In these plots, we have 
considered a symmetric coupling, i.e., r1 = 1√

2
 and we have set � = �L = 0.
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strong coupling regime, at which, the initial entanglement has already been disappeared (in the absence of clas-
sical driving field as well as the detuning parameter). First of all, it is evident that for small values of detuning, 
the behaviour of entanglement is similar to the case of the resonance. However, for larger values of detuning, the 
entanglement shows a monotonic increase toward its maximum value. According to the effective Hamiltonian 
(4), increasing the value of � enhances the effective transition frequency (energy) of the qubits under the driving 
field. This makes qubits to be robust against the influence of the environment.

In Fig. 7 we have assumed non-zero values for the detuning between the classical driving field and the central 
frequency of the cavity (i.e., �L  = 0 ) when the system is in the weak coupling regime. Other parameters are 
similar to Fig. 6. It is evident the constructive role of detuning parameter �L on the preservation of the initial 
entanglement. Specially, for large values of �L , even for small values of � and driving filed, the entanglement 
survives much better. Our other numerical calculations illustrate that the same behaviour is observed for large 
values of �L . The same behaviour can be observed for strong coupling regime.

Improvement of the preservation of entanglement. As is observed in the previous subsection, the 
initial amount of entanglement between two qubits tends to zero at sufficient long times. Although the classical 
driving field has a constructive role in preserving the initial entanglement, it does not completely preserve the 
initial entanglement. Here we intend to examine the possible role of an interaction term among the two qubits on 
the entanglement  dynamics28. To this end, we consider the following extra Hamiltonian in relation (4)

Figure 6.  Entanglement versus the driving field � and the detuning parameter � for an initially entangled state 
at scaled time (a) �t = 400 for weak coupling regime, i.e., R = 0.1 and (b) �t = 4 for strong coupling regime, 
i.e., R = 10 . Here we have set �L = 0.

Figure 7.  Entanglement versus the driving field � and the detuning parameter � for an initially entangled state 
in the weak coupling regime, i.e., R = 0.1 at scaled time �t = 400 with (a) �L = 1.5� and (b) �L = 3�.
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in which J is the coupling constant.
We again assume an initial state of the form (5). Consequently, the quantum state of the entire 

system+environment is

The procedure for solving the Schrödinger equation is exactly the same approach pre-
sented before. It is quite straightforward to show that the kernel function (18) now takes the form 
FJ (t − t ′) = W2e−�(t−t′)ei(χ+�L−4J)(t−t′) . In this case, the new survival amplitude of the super-radiant state 
is obtained as

in which MJ = �− i(χ +�L − 4J) and FJ =
√

MJ
2 − α2

T
W2(1+ cos η)2 . Finally, the amplitudes CJ

i (t) result

in which β− and β+ have been defined before.
Figure 8 illustrates the entanglement in the presence of both classical driving filed and the interaction Ham-

iltonian between the two qubits. It is evident the positive effect of the parameter J on the entanglement preserva-
tion. According to these plots, its protecting role is even more efficient that the classical driving field.

Dissimilar qubits
Now we pay attention to a different scenario in which the two qubits do not have similar transition frequencies, 
i.e., ω1  = ω2 . In this scenario, no subradiant (decoherence-free) state exists. In order to find the analytical solu-
tion, we first take the Laplace transformation from both sides of equations (9) to arrive at the following algebraic 
equations for C̃1(s) and C̃2(s) : 

Then, by solving the above set of equations we get

in which,

Here

(21)Ĥint = 2J ˆ̺ (1)z ˆ̺ (2)z

(22)|ψ(t)� = CJ
1(t)e

2iJt |E�|G�|0�R + CJ
2(t)e

2iJt |G�|E�|0�R +
∑

k

CJ
k(t)e

−2iJt e−i(ωk−χ)t |G�|G�|1k� .

(23)GJ (t) = e−MJ t/2

(

cosh(FJ t/2)+ MJ

FJ

sinh(FJ t/2)

)

,

(24)CJ
1(t) = r2β− + r1GJ (t)β+ and CJ

2(t) = −r1β− + r2GJ (t)β+

(25a)sC̃1(s)− C1(0) =−
[

α2
1cos

4(η1/2)C̃1(s)+ α1α2cos
2(η1/2)cos

2(η2/2)C̃2(s + iξ21)
]

G̃(s − iξ1) ,

(25b)sC̃2(s)− C2(0) =−
[

α1α2cos
2(η1/2)cos

2(η2/2)C̃1(s − iξ21)+ α2
2cos

4(η2/2)C̃2(s)
]

G̃(s − iξ2) .

(26)C̃j(s) = G̃j1(s, r1)C1(0)+ G̃j2(s, r1)C2(0) , (j = 1, 2)

(27)
G̃jj(s, r1) =

s2 + ajs + bj

s3 + Ajs2 + Bjs + Cj
, and

G̃ji(s, r1) =
cj

s3 + Ajs2 + Bjs + Cj
, j �= i .

Figure 8.  Dynamics of entanglement in the presence of classical driving field and an interaction term for an 
initially entangled state for (a) weak coupling regime, i.e., R = 0.1 and (b) strong coupling regime, i.e., R = 10 . 
In these plots, we have considered a symmetric coupling, i.e., r1 = 1√

2
 and we have set � = �L = 0.
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Then, we take the inverse Laplace transformation of (26) to obtain the following analytical solution for the 
amplitude coefficients

in which, the functions Gij(t, r1) are inverse Laplace transformed of (27) given as

and

In the above relations, sj1 , sj2 and sj3 are the roots of the following cubic equation

We first notice that since the general cubic equation (32) can be solved analytically, it is always possible to 
obtain the analytical expressions of sj1 , sj2 and sj3 and consequently find the analytical expression for amplitude 
coefficients. However, these expressions are too long to be presented here. Furthermore, for the special case 
ω1 = ω2 (corresponding to the sub-radiant scenario), it is straightforward to illustrate that this rather complicated 
analytical solution reduces to the simple expression (14).

In Fig. 9 we have plotted the entanglement in the weak coupling regime at scaled time τ = 400 versus the 
detuning �L achieved starting from a maximally entangled initial-state and for various values of detuning 
parameters. According to the information supplied, �L must take positive values to have a constructive role in 
the preservation of entanglement. This means that the frequency of the classical driving field must be greater 
than the center frequency of the cavity. However, for the case in which �1 is close to �2 , for large negative values 
of �L , we observe a positive role in the preservation of entanglement. The same behavior is seen in the case of 
the strong coupling regime (see Fig. 10).

(28)

a1,2 = �− i(2χ1,2 − χ2,1 +�L) ,

b1,2 = (χ2,1 − χ1,2)(i�+ χ1,2 +�L)+R
2r22,1 cos

4(η2,1/2) ,

c1,2 = −R
2r1r2 cos

2(η1/2) cos
2(η2/2) ,

A1,2 = �− i(2χ1,2 − χ2,1 +�L) ,

B1,2 = (χ2,1 − χ1,2)(i�+ χ1,2 +�L)+R
2(r21 cos

4(η1/2)+ r22 cos
4(η2/2)) ,

C1,2 = −iR2r21,2(χ1,2 − χ2,1) cos
4(η1,2/2) .

(29)
C1(t) = G11(t, r1)C1(0)+ G12(t, r1)C2(0) ,

C2(t) = G21(t, r1)C1(0)+ G22(t, r1)C2(0) ,

(30)Gjj(t, r1) =
s2j1 + ajsj1 + bj

(sj1 − sj2)(sj1 − sj3)
esj1t −

s2j2 + ajsj2 + bj

(sj1 − sj2)(sj2 − sj3)
esj2t +

s2j3 + ajsj3 + bj

(sj1 − sj3)(sj2 − sj3)
esj3t ,

(31)Gji(t, r1) =
cj

(sj1 − sj2)(sj1 − sj3)(sj2 − sj3)

[

(sj2 − sj3)e
sj1t − (sj1 − sj3)e

sj2t + (sj1 − sj2)e
sj3t

]

.

(32)s3 + Ajs
2 + Bjs + Cj = 0 (j = 1, 2).

Figure 9.  Entanglement versus the driving field � and the detuning parameter �L for an initially entangled 
state in the weak coupling regime, i.e., R = 0.1 at scaled time τ = 400 with (a) �1 = 0 , �2 = � and (b) 
�2 = −�1 = �.
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Conclusions
To sum up, we have investigated the analytical dynamics of entanglement for two qubits dissipating into a com-
mon environment. The two qubits can have different transition frequencies and are driven by a classical driving 
field. We have investigated the dynamics of entanglement without restricting ourselves to the Born-Markov 
approximation. We have used the new entanglement measure defined  in10 rather than concurrence which is 
usually used for two-qubit systems. The availability of the new entanglement measure enables us to investigate 
the entanglement dynamics for an arbitrary number of  qubits29 in a common environment.

We first considered the case in which the qubits have the same transition frequency. In this case, we illustrated 
in detail that there exists a sub-space that does not evolve in time. Then, it is possible to find the stationary state 
of entanglement at sufficiently long times. The surprising aspect here is that the stationary state does not depend 
on the environment properties as well as the classical driving field. Base on this fact, we investigated the station-
ary state of entanglement as a function of the coupling rate of r1 and the initial state. Particularly, we determined 
the situation in which a maximally entangled state can be obtained even after interaction with the environment.

Then we investigated the impact of the classical driving field on the dynamics of entanglement for two similar 
qubits. In the absence of any detuning and for an initially entangled state, the entanglement has a decaying behav-
iour as time goes on. However, oscillatory behaviour is seen in the strong coupling regime due to the memory 
depth of the environment. The constructive role of the classical driving field is clearly seen in Fig. 4. Especially, 
in the strong coupling regime and for large values of � , the oscillatory behaviour disappears. On the other hand, 
we illustrated that an initially factorable state can be entangled and even persists at a steady state via interaction 
with the common environment. As is stated before, the stationary entanglement does not depend on the classical 
driving field. However, our results illustrate that this stationary value of entanglement can be exceeded in the 
presence of the classical driving field. Particularly, in the strong coupling regime and for sufficiently large values 
of the amplitude of the classical driving field, a high degree of entanglement (i.e., E(ρ(∞))/M = 0.8 ) can be 
achieved from an initially disentangled state (see Fig. 5b). Furthermore, we have investigated the role of detuning 
on the survival of initial entanglement in both weak and strong coupling regimes. Overall, the detuning has a 
constructive role in the preservation of entanglement. First, in the absence of detuning between the frequency of 
the classical driving field and the central frequency of the cavity, i.e., ( �L = 0 ), the detuning parameter � can play 
a constructive role. More surprisingly, for nonzero values of �L , we observe a much better performance of pres-
ervation. We also illustrated that an interaction term between the two qubits can boost the preservation process.

We should state that the new technologies in the quantum era compel us to miniature the physical devices 
as much as possible, regardless of the presence or absence of direct subsystem  interactions30. This requires gen-
erating, control, and even enhance the entanglement in those systems in which the environmental effects can 
not be ignored. Therefore, we expect the presented analytical results would be the first step towards that goal. 
Especially, the introduced controlling method (utilizing the classical driving field) can be easily implemented in 
nowadays experiments. Whereas, there are difficulties in using other entanglement protection methods from the 
practical point of view. For instance, in the quantum Zeno effect, it is hard to perform the non-selective measure-
ments to freeze the state of the system in a frozen subspace. Furthermore, in some situations, these non-selective 
measurements not only do not protect the entanglement but also speed up its decay, a phenomenon called the 
anti-quantum Zeno  effect15.

Furthermore, this model can be generated to an array of qubits with an arbitrary number of qubits driven 
by a classical field in a lossy cavity. Therefore, the new multi-partite entanglement measure paves the way for 
quantifying multi-partite entanglement analytically. This allows us to investigate the quantum synchronization 
between two clusters of qubits not only in the Markovian  regime31 but also in the non-Markovian regime. On 
the other hand, by considering an interaction among the qubits (for instance an Ising model), the new entangle-
ment measure can be used to investigate dynamical quantum phase transition. This will shed light on the relation 

Figure 10.  Entanglement versus the driving field � and the detuning parameter �L for an initially entangled 
state in the strong coupling regime, i.e., R = 10 at scaled time τ = 4 with (a) �1 = 0 , �2 = 10� and (b) 
�2 = −�1 = 10�.
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between quantum phase transition and quantum entanglement in multi-partite systems. Also, we should point 
out that in a multi-partite system, by ignoring the condition � << ωj ,ωL , the introduced unitary transforma-
tion leads to nonlinear terms which enable one to generate spin squeezing in the presence of dissipation. Then, 
the introduced measure determines the relation between entanglement and spin squeezing. These are left for 
future works. Finally, from a practical point of view, the trapped ions coupled to the bath of vacuum modes of 
the radiation field could be a suitable candidate as an experimental  implementation32.
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