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A real‑world demonstration 
of machine learning 
generalizability in the detection 
of intracranial hemorrhage on head 
computerized tomography
Hojjat Salehinejad1,2, Jumpei Kitamura3, Noah Ditkofsky4,5, Amy Lin4,5, 
Aditya Bharatha1,4,5, Suradech Suthiphosuwan4,5, Hui‑Ming Lin1, Jefferson R. Wilson1,5,6, 
Muhammad Mamdani1,5,7,8 & Errol Colak1,4,5*

Machine learning (ML) holds great promise in transforming healthcare. While published studies 
have shown the utility of ML models in interpreting medical imaging examinations, these are often 
evaluated under laboratory settings. The importance of real world evaluation is best illustrated by case 
studies that have documented successes and failures in the translation of these models into clinical 
environments. A key prerequisite for the clinical adoption of these technologies is demonstrating 
generalizable ML model performance under real world circumstances. The purpose of this study was 
to demonstrate that ML model generalizability is achievable in medical imaging with the detection 
of intracranial hemorrhage (ICH) on non-contrast computed tomography (CT) scans serving as the 
use case. An ML model was trained using 21,784 scans from the RSNA Intracranial Hemorrhage CT 
dataset while generalizability was evaluated using an external validation dataset obtained from 
our busy trauma and neurosurgical center. This real world external validation dataset consisted of 
every unenhanced head CT scan (n = 5965) performed in our emergency department in 2019 without 
exclusion. The model demonstrated an AUC of 98.4%, sensitivity of 98.8%, and specificity of 98.0%, 
on the test dataset. On external validation, the model demonstrated an AUC of 95.4%, sensitivity 
of 91.3%, and specificity of 94.1%. Evaluating the ML model using a real world external validation 
dataset that is temporally and geographically distinct from the training dataset indicates that ML 
generalizability is achievable in medical imaging applications.

Intracranial hemorrhage (ICH) is a source of significant morbidity and mortality1,2. It is a frequently encountered 
clinical problem with an overall incidence of 24.6 per 100,000 person-years3. A non-contrast computed tomog-
raphy (CT) scan of the head is the most common method used to diagnose ICH as it is fast, accurate, and widely 
available. Since nearly half of ICH related mortality occurs within the first 24 h4, rapid and accurate diagnosis is 
critical if interventions that can improve patient outcomes are to be successful5–8.

In high volume clinical radiology settings with complex patients and frequent interruptions, significant delays 
between patient imaging and imaging interpretation are often unavoidable. Inevitably, this delay will impact 
the time required to identify patients with critical or life-threatening findings9. Machine learning (ML) models 
have been proposed as an approach to automatically triage and prioritize medical imaging studies10. Multiple 
investigators have demonstrated the accuracy of ML models in detecting ICH on non-contrast CT scans11–15. 
However, many previously published investigations have not evaluated performance of these ML models in 
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real world, high volume clinical environments. The importance of real world evaluation is best demonstrated 
by case studies which have shown failures in translation from laboratory to clinical settings due to a variety of 
sociotechnical factors16. Another limitation of many of these studies is a common source of the training, valida-
tion, and test datasets.

A demonstration of generalizable ML model performance on real world data is necessary prior to the adop-
tion of these tools. In this paper, we developed an ML model for ICH detection in non-contrast CTs of the head 
and examined generalization performance in the real world setting of a major neurosurgical and trauma center. 
To our knowledge, this is the first study to both develop and assess generalization performance of an ML model 
for ICH detection.

Methods
The following methods were carried out in accordance with relevant institutional guidelines and regulations. 
This retrospective study was approved by the St. Michael’s Hospital Research Ethics Review Board. Due to retro-
spective nature of this study, informed consent was waived and approved by the St. Michael’s Hospital Research 
Ethics Review Board.

Training dataset.  The Radiological Society of North America (RSNA) Intracranial Hemorrhage CT 
dataset17 was used for ML model training. This multi-institutional and multi-national dataset is composed 
of head CTs and annotations of the five types of intracranial hemorrhage. Each CT image in this dataset was 
annotated by a neuroradiologist for the presence or absence of epidural (EDH), subdural (SDH), subarach-
noid (SAH), intraventricular (IVH), and intraparenchymal (IPH) hemorrhage. This dataset consists of 874,035 
images with class imbalance amongst the types of ICH (Table 1).

Model development.  An overview of the ML model is presented in Fig. 1. The main steps are as follows:

1.	 Adjustment of the window center and width of each CT image;
2.	 Feature extraction from each image;
3.	 Incorporation of spatial dependencies between images along the craniocaudally axis;
4.	 Thresholding inference results to generate a binary decision and a probability distribution over the 5 types 

of ICH.

A CT scan of the head is represented as S = (S1,…,SN) where N is the total number of images in the scan. Each 
image Sn is passed through three window center and width adjustment filters to enhance differences between 
blood, brain parenchyma, cerebrospinal fluid, soft tissues, and bone18 as presented in Fig. 1. The three enhanced 
images are then stacked and passed to two deep convolutional neural networks (DCNN) with three input chan-
nels which are SE-ResNeXt-50 and SE-ResNeXt-101, pre-trained on ImageNet19. Each DCNN model produces a 
probability distribution over the target data classes for each Sn and their average is defined as the vector pn = (pn

(1), 
pn

(2), pn
(3), pn

(4), pn
(5)), where indexes 1 to 5 refer to the EDH, SDH, SAH, IVH, and IPH classes, respectively. An 

ensemble of the probability distributions generated by the DCNNs was used to reduce the variance of predictions. 
In order to incorporate spatial dependency between axial images, a sliding window module takes the probability 
vectors of ΔS images from each side of image Sn as Pn = (pn−ΔS, pn−ΔS+1, …, pn, pn+1, … pn+ΔS). The prediction Pn is 
then enhanced by incorporating inter-slice dependencies using an ensemble of the LightGBM, CatBoost, and 
XGBoost gradient boosting models20. These models work on structured data and generally their ensemble is used 
to generate more robust solutions. Unlike the ResNeXt models which are utilized for image-level classification, 
these models focus on a series of images. The core idea is that the neighboring images of a given image within 
a series, can be useful to enhance the predictions of that particular image. As an example, the likelihood of an 
image Sn being SDH is higher, if the adjacent images Sn−1 and Sn+1 are inferred as SDH. Each boosting model 
generates a probability distribution over hemorrhage types per image by incorporating the probability vec-
tors of neighboring images with a sliding window size of 9 (ΔS = 4). Hence, the average of the ensemble model 
produces a probability distribution over the 5 hemorrhage types for the slice Sn. This distribution is passed to a 

Table 1.   Distribution of examination labels in the training, test, and external validation datasets according to 
hemorrhage types. The number of labels exceeds the actual number of examinations as more than one label 
may have been applied to each CT scan.

Training Test External

Any hemorrhage type 8889 1243 674

Epidural 354 23 25

Subdural 3814 503 367

Subarachnoid 3936 528 288

Intraventricular 3692 616 128

Intraparenchymal 5324 758 287

No hemorrhage 12,895 2285 5291
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set of thresholds where if at least the predicted probability of one hemorrhage type is more than or equal to its 
corresponding threshold, the output label will be positive for ICH.

A Bayesian optimizer21 was used to determine the probability thresholds (TEDH = 0.47, TSDH = 0.37, TSAH = 0.45, 
TIVH = 0.37, and TIPH = 0.20) that maximize the AUC score when generating binary (positive/negative) decisions. 
Bayesian optimization constructs a posterior distribution of functions that best describes an objective function 
to maximize AUC of the model. The input dimensions of the optimization landscape are hemorrhage types and 
the objective value is the AUC value. In this approach, the optimizer searches for a combination of parameters 
(thresholds) that are close to the optimal combination, which maximizes the AUC value on the validation dataset. 
We have used the Bayesian Optimization Python library for this aim, where the search interval of each parameter 
was [0, 1], the dimensionality of the optimization landscape was 5 (corresponding to 5 hemorrhage types), the 
number of initial search points was 20, and the number of search iterations was 500. Visualization of predicted 
areas of ICH was performed using feature maps from layer 4, the layer before adaptive average pooling, in the 
SE-ResNeXt-50 (32 × 4d) model using GradCAM and GradCAM++ methods22 (Fig. 2). This visualization is used 
to confirm that the ML model is capable of detecting areas of hemorrhage without performing any geometrical 
prepossessing (e.g. image registration, noise removal) on the input head CT images even in the presence of 
suboptimal patient positioning or other artifacts.

Model training and evaluation.  The training portion of the RSNA Intracranial Hemorrhage CT dataset 
of 752,803 images (21,784 examinations) was used to train the DCNNs and divided into 8 stratified folds. Images 
from the same patient were grouped into the same fold by using the patient identifier embedded in DICOM 
metadata. This prevents a potential information leak during cross-validation as neighboring images within a CT 
scan may resemble each other and are more likely to share the same class labels. Each DCNN model was trained 
and cross-validated on these 8 folds. The training hyper-parameters of the DCNNs were set to a mini-batch size 
of 32, training epoch of 4, and adaptive learning rate with initial rate of 1 × 10–4 with an Adam optimizer23. The 
checkpoints from the 3rd and 4th epochs were used to make out-of-fold predictions and were then averaged. 

Figure 1.   Architecture of the ML model.
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Figure 2.   Visualization of feature maps from layer 4 (the layer before adaptive averaging pooling) in 
SE-ResNeXt-50 (32 × 4d). Left: Input head CT image; Middle left: GradCAM heat map; Middle: GradCAM++ 
heat map; Middle right: GradCAM result superimposed on CT image; Right: GradCAM++ result superimposed 
on CT image.
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These out-of-fold predictions were used as meta features for training gradient boosting models. Cross-validation 
was performed on the same 8 folds.

The model was evaluated on the 3528 examinations that compose the test set of the RSNA Intracranial Hemor-
rhage CT dataset. Log loss performance during training and validation was determined for SE-ResNeXt50-32 × 4d 
and SE-ResNeXt101-32 × 4d for each fold and epoch (Supplementary Information). In addition, log loss was 
determined for LightGBM, Catboost, and XGB, as well as their average as an ensemble, for each hemorrhage type. 
A confusion matrix was constructed by comparing the ground truth of each CT scan to the ML model prediction.

Evaluation of model generalizability.  The demonstration of generalizability of model performance 
requires external validation using data which is ideally both temporarily and geographically distinct from that 
used to train a model24. As a busy neurosurgical and trauma center in one of the world’s most diverse cities, the 
data from our institution is well suited for the purposes of external validation. In order to capture a real-world 
distribution of patients, we included every unenhanced head CT performed on emergency department patients 
over the course of 1 year without any exclusion criteria.

External validation dataset.  The hospital’s radiology information system (syngo, Siemens Medical Solutions 
USA, Inc., Malvern, PA) was searched using Nuance mPower (Nuance Communications, Burlington, MA) for 
emergency patients that underwent a non-contrast CT scan of the head between January 1 and December 31, 
2019. Every CT which included non-contrast imaging of the head acquired at 2.5 or 5.0 mm slice thickness was 
included in this study. All examinations were performed on a 64 row multi-detector CT scanner (Revolution, 
LightSpeed 64, or Optima 64, General Electric Medical Systems, Milwaukee, WI, U.S.).

The ground truth was established by having each CT scan labeled as positive or negative for ICH by a trained 
research assistant who reviewed the associated radiology report. A total of 5965 (674 positive, 5291 negative) head 
CT examinations from 5536 patients (2600 female, 3365 male; age range 13–101 years; mean age 58.2 ± 20.4 years) 
were included in this study.

Scans that were positive for ICH were further classified for the presence of the 5 types of ICH using the same 
radiology report. A random sample of 600 reports and CT scans (64 positive and 536 negative) were reviewed 
by a radiologist to validate the report labeling process. All positive and negative scans were correctly classified 
by the research assistant at the patient level. For the positive scans, 314 of 320 (98.1%) labels detailing the types 
of ICH were correctly labeled. A total of 103 of 105 ICH subtype positive labels were correct, 2 were reclassified, 
and 5 were added after radiologist review.

Evaluation.  ML model predictions were compared to the ground truth for each scan at the patient level and 
for each type of ICH. A three member panel reviewed each CT scan where the ground truth label based on the 
clinical radiology report was discrepant with the ML model prediction. This review allowed us to identify cases 
where a radiologist missed ICH that was correctly detected by the ML model and cases of “over-calling” by a 
radiologist. All panel reviewers were fellowship trained in neuroradiology with 10 (A.B.), 5 (A.L.), and 2 (S.S.) 
years of experience following fellowship training. Cases were reviewed on a Picture Archiving and Communica-
tions System workstation (Carestream PACS, Carestream Health, Rochester, New York) which provided panel 
members with access to radiology reports, prior imaging examinations, and if available, follow-up imaging. A 
majority vote served as consensus for the review of these cases. CT scans that were deemed equivocal for ICH by 
the panel despite the availability of prior and follow-up imaging were treated as positive cases in evaluating ML 
model performance. The rationale for this decision is that equivocal cases should be flagged by a triaging system 
for urgent review by a radiologist.

There is a substantial difference in prevalence between the test (35.2%) and external validation (11.3%) 
datasets. In order to compare performance of the models at an equivalent ICH prevalence, a bootstrap approach 
was used to sample negative scans from the external validation dataset to simulate a prevalence of 35.2% (679 
positive + 1241 negative cases). A total of 1000 independent samplings were performed.

From a probability theory perspective, we can model each CT scan as an independent event with respect to 
a hemorrhage type, that is either is positive (success) or negative (failure). For a one-year sample of data, this 
set of events can be modeled as a Bernoulli process25. A binomial distribution for a large number of samples 
can be approximated by a Gaussian distribution using the Central Limit Theorem25,26 and be confidently used 
to calculate the confidence intervals (CI).

In order to visually illustrate the performance of the ML model compared to the ground-truth per scan at 
different scan intervals, cumulative positive case versus ground truth plots were generated at the patient level 
and for each type of ICH. If a CT scan is positive for a hemorrhage type, one is added to the cumulative value 
and if it is negative, zero is added. More divergence of the curves means less agreement between the ML model 
and the ground-truth. The difference at the last index is the number of scans where the ML model has made 
errors. If overall, the prediction curve is above the ground-truth curve, it means the ML model has over-called 
and if the prediction curve is below the ground-truth curve, the ML model has failed to diagnose cases with that 
specific type of hemorrhage.

Results
Evaluation of ML model performance on the test dataset revealed an AUC of 98.4%, a balanced accuracy of 
98.4%, an imbalanced accuracy of 98.3%, sensitivity of 98.8%, specificity of 98.0%, positive predictive value of 
96.5% and negative predictive value of 99.3% for ICH detection (Table 2).

ML model performance was then evaluated on the external validation dataset which revealed an AUC of 
95.4%, a balanced accuracy of 92.7%, an imbalanced accuracy of 93.8%, sensitivity of 91.3%, specificity of 94.1%, 
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positive predictive value of 66.3% and negative predictive value of 98.8% for ICH detection (Table 3). The 95% 
CI with respect to the balanced accuracy score for each hemorrhage class is as follows: EDH (± 1.22%), SDH 
(± 0.63%), SAH (± 0.72%), IVH (± 0.64%), IPH (± 0.65%), and ICH (± 0.66%) (Fig. 3). The 95% CIs of EDH show 
a 35.58% difference between the CI of the accuracy and balanced accuracy scores. This indicates high generaliza-
tion performance of the ML model for all types of ICH except EDH. Receiver operating characteristic (ROC) 
curves were created using the external dataset by generated probabilities per ICH type (Fig. 4a) and generated 
decisions after applying thresholds (Fig. 4b). A higher positive predictive value, accuracy, Matthews correlation 
coefficient, and F1 score were demonstrated with matched prevalence between the test and external validation 
datasets (Table 4).   

Figure 5 shows the distribution of predicted hemorrhage probability by the ML model for the external valida-
tion dataset at the patient level. This figure shows that the probability distribution of prediction for both negative 
and positive EDH cases is very similar. Figure 6 shows the cumulative positive cases between the ML model 

Table 2.   ML performance in detecting ICH on the test set. TP true positive, FN false negative, TN true 
negative, FP false positive, SEN sensitivity, SPEC specificity, PPV positive predictive value, NPV negative 
predictive value, AUC​ area under the receiver operating curve, Acc accuracy, BAcc balanced accuracy, MCC 
Matthews correlation coefficient, F1 F1 score. All the values except TP, FN, TN, and FP are in percent.

Hemorrhage TP FN TN FP SEN SPEC PPV NPV AUC​ Acc BAcc MCC F1

EDH 5 18 3493 2 21.5 99.9 71.4 99.5 60.8 99.4 60.8 39.2 33.3

SDH 424 79 2969 46 84.3 98.5 90.2 97.4 91.4 96.5 91.4 85.2 87.2

SAH 406 122 2952 38 76.9 98.7 91.4 96.0 87.8 95.5 87.8 81.3 83.5

IVH 574 42 2869 33 93.2 98.9 94.6 98.6 96.0 97.9 96.0 92.6 93.9

IPH 713 45 2713 47 94.1 98.3 93.8 98.4 96.2 97.4 96.2 92.3 93.9

Any 1228 15 2230 45 98.8 98.0 96.5 99.3 98.4 98.3 98.4 96.3 97.6

Table 3.   ML performance in detecting ICH on the external validation set. TP true positive, FN false negative, 
TN true negative, FP false positive, SEN sensitivity, SPEC specificity, PPV positive predictive value, NPV 
negative predictive value, AUC​ area under the receiver operating curve, Acc accuracy, BAcc balanced accuracy, 
MCC Matthews correlation coefficient, F1 F1 score. All the values except TP, FN, TN, and FP are in percent.

Hemorrhage TP FN TN FP SEN SPEC PPV NPV AUC​ Acc BAcc MCC F1

EDH 7 18 5926 14 28.0 99.8 33.3 99.7 84.7 99.5 63.9 30.3 30.4

SDH 329 38 5429 169 89.7 97.0 66.1 99.3 98.0 96.5 93.3 75.3 76.1

SAH 246 42 5508 169 85.4 97.0 59.3 99.2 97.4 96.5 91.2 69.5 70.0

IVH 112 16 5769 68 87.5 98.8 62.2 99.7 99.2 98.6 93.2 73.1 72.7

IPH 256 31 5489 189 89.2 96.7 57.5 99.4 97.9 96.3 92.9 69.9 70.0

Any 615 59 4978 313 91.3 94.1 66.3 98.8 95.4 93.8 92.7 74.5 76.8

Figure 3.   Probability estimates and 95% confidence intervals of hemorrhage types with respect to the accuracy 
and balanced accuracy measures.
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prediction and ground-truth. The ML model has under-called (i.e. missed) cases of EDH while over-calling SAH, 
IVH, and IPH. For SDH, the two curves are more aligned than the other hemorrhage types and represents the 
highest agreement between the ML model and ground-truth. The accuracy results in Table 3 express a similar 
conclusion.

Figure 4.   Receiver operating characteristic (ROC) curves using the external set by (a) generated probabilities 
per ICH type and (b) generated decisions after applying thresholds.

Table 4.   ML performance in detecting ICH on the external validation set with a simulated equal prevalence 
as the test dataset. TP true positive, FN false negative, TN true negative, FP false positive, SEN sensitivity, 
SPEC specificity, PPV positive predictive value, NPV negative predictive value, AUC​ area under the receiver 
operating curve, Acc accuracy, BAcc balanced accuracy, MCC Matthews correlation coefficient, F1 F1 score. All 
the values except TP, FN, TN, and FP are in percent.

Hemorrhage TP FN TN FP SEN SPEC PPV NPV AUC​ Acc BAcc MCC F1

EDH 7 18 1238.1 ± 1.503 2.9 ± 1.503 28.0 ± 0.000 99.8 ± 0.001 72.5 ± 0.110 98.6 ± 0.000 84.7 ± 0.002 98.4 ± 0.001 63.9 ± 0.001 44.3 ± 0.035 40.2 ± 0.017

SDH 329 38 1203.4 ± 5.376 37.6 ± 5.376 89.6 ± 0.000 97.0 ± 0.004 89.8 ± 0.131 96.9 ± 0.000 97.9 ± 0.001 95.3 ± 0.003 93.3 ± 0.002 86.7 ± 0.009 89.7 ± 0.007

SAH 246 42 1204.1 ± 5.178 36.9 ± 5.178 85.4 ± 0.000 97.0 ± 0.004 86.9 ± 0.016 96.6 ± 0.000 97.4 ± 0.001 94.8 ± 0.003 91.2 ± 0.002 83.0 ± 0.010 86.2 ± 0.008

IVH 112 16 1226.7 ± 3.250 14.3 ± 3.250 87.5 ± 0.000 98.8 ± 0.003 88.7 ± 0.023 98.7 ± 0.000 99.2 ± 0.001 97.8 ± 0.002 93.2 ± 0.001 86.9 ± 0.013 88.1 ± 0.011

IPH 256 31 1199.6 ± 5.867 41.4 ± 5.867 89.2 ± 0.000 96.7 ± 0.005 86.1 ± 0.017 97.5 ± 0.000 97.9 ± 0.001 95.3 ± 0.004 92.9 ± 0.002 84.7 ± 0.011 87.6 ± 0.009

Any 615 59 1167.5 ± 6.905 73.5 ± 6.905 91.2 ± 0.000 94.1 ± 0.006 89.3 ± 0.009 95.2 ± 0.000 96.7 ± 0.001 93.1 ± 0.004 92.7 ± 0.003 84.9 ± 0.008 90.3 ± 0.005

Figure 5.   Probability distribution of the predicted labels for ground truth negative and positive cases. The 
central red line indicates the median, the bottom and top edges of the box indicate the 25th and 75th percentiles, 
respectively, and the whiskers extend to the most extreme data points not considered outliers. The outliers are 
plotted individually using the red “+’’ symbol and the found threshold by Bayesian optimizer is plotted using 
the black “*” symbol. Cases with a probability higher than the threshold are counted toward the corresponding 
positive and negative label.
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A panel of neuroradiologists reviewed the CT scans of patients which were classified as false negative and 
false positive. Following this review, 17 of the 59 false negative and 16 of the 313 false positive predictions by the 
ML model were considered equivocal despite the availability of prior and follow-up imaging. Two cases of ICH 
were correctly detected by the ML model but missed when reported by a radiologist (Fig. 7).

Discussion
In this study, we have shown that an ML model is able to demonstrate high generalizable performance in the 
detection of ICH. While many studies on ICH detection report high accuracy, a deeper examination shows that 
many of these studies suffer from limitations that may impede translation of ML models into real world clinical 
environments. For example, data from a common institution is often used for ML model training, validation, and 
testing. Many prior studies evaluate model performance on curated datasets that may not reflect the prevalence 
and variety of ICH encountered in clinical practice. Furthermore, investigators often do not specify the method 
used to curate such datasets. When ML models are tested in real world environments, the sample size and evalu-
ation period is often limited while the inclusion and exclusion criteria may not be clearly defined. After initial 
studies showing great performance, follow-up studies have shown that some ML models display lower accuracy 

Figure 6.   Cumulative value of positive hemorrhage cases.
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and higher false positive rates in different clinical environments27,28. The RSNA and the American College of 
Radiology have recently expressed concern that many commercially available ML algorithms have failed to 
demonstrate comprehensive generalizability in heterogeneous patient populations, radiologic equipment, and 
imaging protocols29.

We believe that we help address some of these concerns by demonstrating high model performance in a large 
heterogeneous dataset of head CTs performed over the course of one year in a busy neurosurgical and trauma 
centre in one of the world’s most diverse cities30. This dataset did not exclude any emergency department patients 
irrespective of image quality and the presence of artifacts (e.g. motion, streak, etc.). Furthermore, the data used to 
train the ML model was distinct from our institutional dataset which shows that ML model generalizability can 
be achieved. The level of accuracy demonstrated by the ML model supports its use as a triage system, a second 
reader, or as part of a quality assurance system.

We considered equivocal cases for ICH as positive as we believe these cases should be flagged for urgent 
radiologist review. This decision had the impact of decreasing the reported performance of the ML model and 
an increase in the number of false negative classifications. In terms of false negative cases, a substantial number 
were thin subdural hematomas. The clinical significance of not detecting these hematomas is not certain but 
prior studies have suggested that a large proportion of small extra-axial collections do not require intervention31. 
The false positive rate we encountered translates into less than one case per day which is a trivial increase in 
radiologist workload and would not have a significant impact in delaying the review of other imaging studies. In 
fact, many of these false positive cases included mimickers of ICH such as brain neoplasms and diffuse hypoxic 
ischemic injury that represent significant pathology.

The ML model detected ICH on two scans which were missed by the interpreting radiologist in our sub-
specialty academic radiology practice environment. With “real-world” error rates in the interpretation of head 
CTs ranging between 0.8 and 2.0%32,33, ML tools may have an important role to play in quality assurance or as 
a second reader. This could be particularly important in clinical environments with limited access to neurora-
diology expertise.

We have shown that the probability distribution of prediction for both negative and positive EDH cases is 
very similar. This can be justified by the threshold found by the Bayesian optimizer where the threshold is very 
close to 0.5 (i.e. that is 50% chance of being EDH). This observation shows the bias of the ML model toward other 
hemorrhage types due to the limited number of training samples, which is a common problem in training ML 
models on medical images34. Potential solutions in addressing limited training data include image augmentation 
through geometrical transformations35 and image synthesis36.

This study has several limitations. The model was trained on the RSNA Intracranial Hemorrhage CT dataset. 
Images with EDH represent only a tiny fraction of this dataset which is reflected in the poorer performance of 
our model in detecting EDH. This issue could be mitigated by augmenting the amount of EDH training data 
through computer mediated techniques such as synthetic data34 or by pooling data from a larger numbers of 
sites. In addition, the expert labelers of the RSNA dataset annotated cases with post-operative collections as 
positive for ICH which accounts for the number of false positive cases with post-operative changes in our study. 

Figure 7.   (a,b) Two examples of SDH that were missed by a radiologist but detected by the ML model. 
Visualization of feature maps from layer 4 (the layer before adaptive averaging pooling) in SE-ResNeXt-50 
(32 × 4d). Left: Input head CT image; Middle left: GradCAM heat map; Middle: GradCAM++ heat map; Middle 
right: GradCAM result superimposed on CT image; Right: GradCAM++ result superimposed on CT image. The 
arrows indicate the SDH.
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Adding a post-operative label to the training dataset would likely help reduce the number of false positives. 
ML model training and validation were performed on 5 mm slice thickness images and our clinical test dataset 
was composed of 2.5 and 5 mm slice thickness images. The model’s performance may be further improved by 
incorporating prior imaging studies, taking into account the natural evolution of ICH, and refining model train-
ing continuously. The ML model was evaluated on historical data rather than on a prospective basis. Ideally, 
the ML model would be evaluated as part of a prospective controlled trial at multiple institutions with different 
CT scanners and imaging protocols. If incorporated as part of a triaging system, such a study could help evalu-
ate the impact on report turn-around time and patient outcomes. Traditionally studies have evaluated model 
performance on the basis of a confusion matrix, accuracy, sensitivity, and specificity which fails to take into 
account the impact of incorrect classification on patient outcomes particularly since the impact of false negative 
and positive predictions can be quite asymmetric. We hope this study can help lay the foundation for future 
investigators to examine these issues.

Data availability
The publicly available RSNA Intracranial Hemorrhage CT dataset used for model training is available at https://​
www.​kaggle.​com/c/​rsna-​intra​crani​al-​hemor​rhage-​detec​tion/​data. The external validation dataset is not publicly 
available. Model output and ground truth labels are available upon reasonable request by contacting the cor-
responding author.

Code availability
The source code used in this project can be made available on reasonable request by contacting the correspond-
ing author.
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