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Support vector machine 
and deep‑learning object detection 
for localisation of hard exudates
Veronika Kurilová*, Jozef Goga, Miloš Oravec*, Jarmila Pavlovičová & Slavomír Kajan

Hard exudates are one of the main clinical findings in the retinal images of patients with diabetic 
retinopathy. Detecting them early significantly impacts the treatment of underlying diseases; 
therefore, there is a need for automated systems with high reliability. We propose a novel method 
for identifying and localising hard exudates in retinal images. To achieve fast image pre-scanning, a 
support vector machine (SVM) classifier was combined with a faster region-based convolutional neural 
network (faster R-CNN) object detector for the localisation of exudates. Rapid pre-scanning filtered 
out exudate-free samples using a feature vector extracted from the pre-trained ResNet-50 network. 
Subsequently, the remaining samples were processed using a faster R-CNN detector for detailed 
analysis. When evaluating all the exudates as individual objects, the SVM classifier reduced the false 
positive rate by 29.7% and marginally increased the false negative rate by 16.2%. When evaluating 
all the images, we recorded a 50% reduction in the false positive rate, without any decrease in the 
number of false negatives. The interim results suggested that pre-scanning the samples using the SVM 
prior to implementing the deep-network object detector could simultaneously improve and speed up 
the current hard exudates detection method, especially when there is paucity of training data.

Hard exudates are composed of lipoprotein and lipid-filled macrophages that leak from impaired blood vessels. 
They can be found in the outer plexiform layer of the retina. In fundus photography, they appear as distinct wax 
lesions in the shape of clumps and rings. The presence of hard exudates is one of the main indicators of diabetic 
retinopathy1. The leakage of lipid-filled macrophages and fluid from the microaneurysms form retinal oedema. 
Hence, the presence of hard exudates is associated with retinal oedema2. The distribution of hard exudates and 
their relationship with the centre of the macula are crucial. The location of exudates within 500 μm of the centre 
of the macula is associated with the thickening of the retina. The existence of exudates in this area is part of the 
definition of clinically significant macular oedema1. The worsening of central vision associated with diabetic 
retinopathy is usually owing to diabetic macular oedema. Although the oedema remains largely undetectable 
under standard ophthalmoscopy or retinal fundus photography, identifying hard exudates is not difficult. In 
this work, we focused on creating an algorithm to automatically identify, locate, and segment hard exudates in 
retinal images to screen for diabetic retinopathy and the risk of macular oedema.

There are many methods for detecting or segmenting exudates. The first approach entails using image process-
ing methods, sometimes in combination with machine learning methods, such as morphological operations3, 
fuzzy c-means clustering technique4, Kirsch’s edges5, stationary wavelets5, random forest algorithm6, bag of 
visual words6, and maximum margin SVM classifier7. Later works focused on deep-learning methods, mostly 
for image classification. Convolutional neural networks (CNN) can classify individual pixels as either exudates 
or non-exudates8–10, or classify image patches11–13. Deep neural networks can be based on various architectures 
pre-trained on different datasets12–15 (transfer learning method) or trained from scratch16. We decided to improve 
the effectiveness of the entire process by combining an SVM classifier and transfer learning methods15,17.

In our proposed method of object detection, we applied a CNN with a ResNet-5018 architecture trained on 
the ImageNet19 dataset for feature extraction. Based on the extracted features, the SVM classifier20, through rapid 
pre-scanning, divided the image samples into two categories, depending on the presence of hard exudates. The 
positive samples were then passed to a faster region-based convolutional neural network (faster R-CNN)21 object 
detector for detailed analysis and localisation of hard exudates. We evaluated the influence of SVM pre-scanning 
on the accuracy of hard exudate detection and localisation at two levels, the image and exudate level. We applied 
a five-fold cross-validation, with and without performing contrast augmentation on the training dataset and 
compared the results with those of previously published methods.
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Methods
We propose a method for localising hard exudates on retinal images using a faster R-CNN21 object detector, based 
on the ResNet-5018 architecture in combination with an SVM classifier. To objectify our results, four variants of 
our method were developed: with and without the SVM classifier20 and with and without randomly adjusting 
the contrast of the dataset to augment it. For the variants with the SVM classifier, the input data consisting of 
image patches were pre-scanned using an SVM classifier. Only the patches that were classified as positive were 
further tested using the faster R-CNN object detector with a ResNet-5018 architecture trained on ImageNet19. A 
walkthrough of the schematic is shown in Fig. 1.

Image acquisition.  The number of available datasets of fundus images with manually marked exudates are 
limited. Therefore, for this study, it was important to find an appropriate database of fundus diabetic retinopathy 
images with precisely marked exudates. We chose the e-ophtha-EX22 database, a publicly available dataset with 
considerably heterogeneous images. The ground-truth data were the data manually marked with great precision 
pixel-by-pixel by two ophthalmologists. The training images, selected from this database, with different resolu-
tions (i.e., 2544 × 1696, 2048 × 1360, and 1440 × 960 px), were not resized. Instead, because the inputs for ResNet 
must be 224 × 224 px, we added black columns and/or black rows to obtain resolutions that were divisible by 
224 horizontally and vertically, to be able to split an image into patches. We decided not to change the size of the 
original images to avoid information loss. In addition, we increased data diversity because the training dataset 
contained objects of different sizes. We used all 47 images containing exudates and 35 images of healthy patients 
from the e-ophtha-EX22 dataset. The images containing exudates were randomly divided into five approximately 
equal folds (two folds of ten and three folds of nine images) for cross-validation. The images of the healthy 
patients were split similarly into five folds of seven images each. To facilitate comparison the results with similar 
work by other authors, we used the entire DiaretDB123 and Messidor124 datasets for external held-out testing. 
The DiaretDB123 dataset consists of 89 images and ground-truth data with marked exudates in areas that are 
mostly larger than necessary. We divided this dataset into 38 and 51 images with and without exudates, respec-
tively. In the DiaretDB1 dataset, an image was classified as containing exudates based on the judgement of 75% 
or more (at least, three out of four) of the experts. The Messidor124 dataset consists of 1200 colour fundus images. 
The presence of hard exudates in the dataset has been used to grade the risk of macular oedema, as Risk 1 and 
Risk 2 groups. In this study, we combined both risk groups as a positive image class containing hard exudates. 
Because the exudates were not marked in this dataset, we evaluated whole images based on the occurrence of 
exudates.

Preparing the training dataset for deep neural networks.  The process of creating training data 
patches for deep neural networks is illustrated in Fig. 2. The neural network training dataset consisted of only 
image patches with exudates. We set the rectangle bounds to the exudates in the ground-truth data to obtain 
rectangular coordinates in the form of neural network inputs. Considering the areas of the connected compo-
nents in the binary ground-truth image, we automatically saved the coordinates of the upper left corner and the 
size of each bounding rectangle as one exudate. Each exudate was defined as an object that was not connected to 
the other marked objects. In most of the image patches, more than three exudates were observed. The training 
set consisted of 307 original image patches containing exudates (patches without exudates were not included in 
the training set), 882 shifted image patches, and 3567 mirrored image patches. To obtain a larger training set, 
we automatically created shifted image patches with a stride of 112 pixels, adopting different starting positions, 
namely, the vertical, horizontal, and both directions simultaneously. The borders of the shifted patches in both 
directions are indicated by dashed lines in the second column of Fig. 2. We also created mirrored image patches 
from the original patches by flipping each patch along the axes, similar to the shifted patches. To prevent the 
detectors from being over-trained in the deep network architecture25,26, we introduced random pixel-level trans-
formations to achieve train-time augmentation. To extend the training set, we used random intensity and con-

Figure 1.   Proposed method for localisation of exudates on retinal images using a Resnet-50 object detector.
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trast variations within a range of 0% to 20%, while maintaining the original black background colour through 
thresholding. Examples of patches with adjusted contrasts are shown in Fig. 3. Random contrast adjustment aug-
mentation of the dataset was performed on two variants of our method (with and without the SVM classifier).

Preparing SVM dataset.  Our SVM classifier was trained using all the images from the e-ophtha-EX data-
set, in contrast to neural network training where only the image patches containing exudates were used. The 
images were chosen consistently according to cross-validation groups to train and evaluate five SVM classifiers, 
one for each validation fold. The images were divided into 224 × 224 px image patches using the same methodol-
ogy as in the neural network training dataset. Each training fold contained twice as many non-exudate patches 
as exudate patches generated from the images containing exudates and healthy images by random selection. 
The inclusion of healthy retina patches was important because the appearance of a healthy retina ‘background’ 
(part of the retina without pathological findings) slightly differs from that of a retina ‘background’ with diabetic 
retinopathy. To identify and correctly classify patches with more black pixels, we added four pure black patches 
to the training folds. None of the other patches contained more than 33% of the black pixels and were randomly 
chosen.

Linear SVM classifier.  The SVM classifier is based on structural risk minimisation; it searches for a hyper-
plane in an N-dimensional space that can separate the data of different classes, that is, patches with and without 
exudates in our case. Support vectors are points lying on the hyperplane that support the optimal classification 
surface20. The classifier with a linear kernel function was trained using the features extracted from a Resnet-50 
pre-trained on the ImageNet dataset. The SVM classifier and faster R-CNN detector were trained on the same 
exudate patches to avoid methodological errors. The extracted features from the last AvgPool layer with dimen-
sions of 1 × 1 × 2048 that were obtained by passing training samples through the pre-trained ResNet-50 network 
were the inputs for the SVM classifier. The SVM classifier was trained for a binary classification task using a lin-
ear kernel with the cross-validation methodology similar to the faster R-CNN; training was performed with four 
folds and the classification accuracy was determined based on the percentage of correctly classified patches from 
the validation fold. Implementing this classifier as the first step before object detection served as the screening 
step through which the dataset was efficiently divided into patches with and without exudates. Only those with 
exudates were then referred to the object detector. We performed two experiments using the SVM classifier, with 
and without contrast adjustments.

Faster R‑CNN.  There are three variants of R-CNNs, namely, R-CNN27, fast R-CNN28, and faster R-CNN21, 
which differ in terms of performance. The faster R-CNN is more efficient than previous networks. Instead of 
using edge boxes (an external algorithm used by the R-CNN and fast R-CNN), faster R-CNN features a region 

Figure 2.   Creation of training data patches from retinal images and their ground-truth binary masks.

Figure 3.   Example of random contrast adjustments made to augment the dataset for neural network training. 
The first image is of the original patch, the second and third images are of patches with random contrast and 
brightness adjustments in the range of 0–20% of the original image.
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proposal network (RPN) for generating region proposals directly in the network. The architecture of a standard 
R-CNN consists of feature extraction layers and three classification layers. The last three classification layers of 
the R-CNN are replaced with new layers corresponding to the desired object classes, that is, dataset-specific fea-
tures, a fully connected layer, softmax, and a classification layer. A box regression layer and a region-of-interest 
pooling layer are added to the fast R-CNN and the faster R-CNN contains an RPN21.

In this study, we used the faster R-CNN. The use of this network was inspired by some authors29 who recom-
mended the use of faster R-CNN with the Inception V2 model when the goal is a highly accurate detection. First, 
the regions that might contain exudates (also called region proposals) must be determined. This was done using 
the region proposal function, which searches for subsets of images that may contain an object, for example, an 
exudate. The features from these region proposals were extracted and used for the classification of objects (in 
our case, whether the object is an exudate or background). The RPN uses anchor boxes for object detection. It is 
not necessary to scan the entire image using a sliding window to compute separate predictions for all positions. 
Anchor boxes are predefined bounding boxes of fixed size that are tiled across the image. Their dimensions were 
determined based on the sizes of the detected objects. The network predicts the probability of each anchor box. 
Using anchor boxes speeds up the detection process, enables multiple object detections, and detects overlapping 
objects and objects with different dimensions.

Configuration of our faster R‑CNN.  The faster R-CNN in this study was trained using 4756 full-colour 
224 × 224-px image patches prepared as described at the beginning of this section and their exudate coordinates. 
To determine the number of training epochs necessary, we used the first training set from cross-validation with 
a changed seed for a random number generator. We used the validation set to continuously evaluate the fitness 
function in the training process using an early stop if the error on the validation set worsened five times in a row. 
The validation criteria were met for ten epochs. Subsequently, the training was performed using a fixed number 
of epochs (ten) for both experiments (with and without contrast augmentation) without using an early stop 
while applying the five-fold cross-validation. The stochastic gradient descent with momentum was chosen as 
a solver with a mini-batch size of 2 and a fixed learning rate of 3 × 10−4. The negative and positive overlaps were 
set to [0 0.1] and [0.1 1], respectively. The training was performed using a graphics processing unit on an 8-core 
AMD FX8320 computer with 3.5 GHz, 16-GB RAM, Windows 10, 64-bit, GeForce GTX 1080, 8 GB hard disk, 
and Matlab R2019b.

Evaluation of training and validation results.  The results were evaluated at both the exudate and image 
levels, according to Zhang et al.6. In contrast to the results of Zhang et al.6, the results of our object-detection 
algorithm are rectangular boxes with their coordinates. To measure the accuracy of the pixels in the bounding 
boxes, we filled the rectangles from our neural network findings and compared them to filled rectangles created 
around exudates in the ground-truth data.

We evaluated the results of the four variants of our method: with and without the SVM classifier and with and 
without augmenting the neural network dataset through random contrast adjustments. The evaluation metrics 
were sensitivity, specificity, accuracy, and positive predictive value (PPV) using the standard formula:

To compare the results of our study with others, we evaluated the F1 score, which was computed using the 
following formula:

We computed the false positive and false negative rates to evaluate the contribution of the SVM classifier.

Exudate‑level evaluation.  Counting the correctly and incorrectly classified pixels proved ineffective6. 
Therefore, we evaluated the results by measuring the overlap between the ground-truth data and the objects 
detected by our neural network. The main goal was to correctly classify the exudate based on the overlap between 
the detected object and the ground-truth data. The true positives were the pixels of exudates with an overlap of 
more than 20% between the detected object size and the ground-truth exudate size. The false positives were the 

(1)Sensitivity =
True positives

True positives+False negatives ,

(2)Specificity =
True negatives

True negatives+False positives ,

(3)Positive predictive value =
True positives

True positives+False positives ,

(4)Accuracy =
True positives+True negatives

True positives+True negatives+False positives+False negatives ,

(5)F1score =
2×sensitivity×PPV
sensitivity+PPV .

(6)False positive rate =
False positives

False positives+True negatives ,

(7)False negative rate =
False negatives

False negatives+True positives .
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pixels of exudates with an overlap of 20% or less between the detected object size and the ground-truth exudate 
size. The false negatives were pixels with an overlap of 20% or less between the ground-truth exudate size and 
ground-truth data with no overlap with any of the detected objects. Finally, all the remaining pixels were marked 
as true negatives. Schematic examples of the evaluation of the overlap between the candidate data and ground-
truth data are shown in Fig. 4. This overlap-based evaluation approach at the exudate level was used when the 
detector was tested on the e-ophtha-EX database because it contains precise ground-truth data (each exudate 
is marked pixel-by-pixel). A slightly different approach was taken to evaluating the performance of the faster 
R-CNN detector in the DiaretDB1 dataset because of large areas around exudates in the ground-truth data. The 
large areas marking the exudates in DiaretDB1 are shown in Fig. 5 (second column of the last row). An object 
was counted as an exudate when there was any overlap with these large ground-truth data.

Image‑level evaluation.  The image-level results were based on the values of the image patch probabilities. 
We evaluated the likelihood of an image containing an exudate based on the maximum patch probability score. 
The image was considered positive if at least one patch probability was equal to or higher than 0.9. This approach 
may be more important from a clinical point of view16.

Results
SVM classifier accuracy.  We evaluated the ability of the SVM classifier to correctly classify image patches 
based on the exudate occurrence and recorded a cross-validation accuracy of 84.7%. This value represented the 
average classification accuracy of all the validation folds. The maximum classification accuracy was 92.2% for 
one validation fold. The contribution of the SVM pre-scanning is presented in the following sections.

Figure 4.   Schematic examples of the overlap evaluation (green colour) of candidate (blue colour) and ground 
truth (yellow colour). (a–c) were classified as found exudates. (d,e) were not classified as found exudates.

Figure 5.   Results of the proposed method. First two rows are examples from the e-ophtha-EX dataset; last row 
is from the DiaretDB1 dataset. The first, second, third, and fourth columns show the original images, ground-
truth data, object detection results, and evaluation map, respectively. The true positives, false negatives, and false 
positives are denoted in blue, green, and red, respectively.



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:16045  | https://doi.org/10.1038/s41598-021-95519-0

www.nature.com/scientificreports/

Exudate‑level results.  The results for all the four variants of the proposed method at the exudate-level, 
computed with five-fold cross-validation using the e-ophtha-EX dataset on images with exudates are shown in 
Table 1. The best sensitivity and lowest false negative rate were achieved without the SVM classifier. In contrast, 
the highest F1 score and lowest false positive rate were achieved with the SVM classifier. The variants of the 
proposed method when the neural network training dataset was not augmented through contrast adjustment 
exhibited better performance. In conclusion, the SVM classifier increased the F1 score by reducing the false 
positive rate by 29.7% and 23.4% with and without contrast adjustment, respectively. The SVM classifier also 
caused a slight decrease in the sensitivity owing to a slight increase in the false negative rate by 18% and 16.2% 
for the variants of the proposed method with and without contrast adjustment, respectively. This was notable for 
both variants of the proposed method. The SVM classifier also accelerated the testing process of the images. The 
colour depiction of positive and negative pixels in the validation datasets is shown in the first two rows of Fig. 5.

Image‑level results.  The results for all the four variants of the proposed method at the image-level are 
presented in Table 1. The SVM classifier improved the F1 score, with a reduction in the false positive rate by 
50.00% and 23.07% with and without the contrast adjustment augmentation of the dataset, respectively, without 
any decrease in sensitivity or rise in false negatives. In the evaluation, the results of the SVM classifier at the 
image-level were markedly better, compared with the exudate level. This was more evident for the variant using 
the faster R-CNN with the dataset augmented through contrast adjustment. We also computed the area under 
the receiver operating curve (AUC) using the results of the faster R-CNN with the contrast adjustment variant 
of the proposed method, as shown in Fig. 6.

Comparison with other methods and results of the held‑out test.  Our results on the e-ophtha-EX 
dataset were compared with those of the other methods in Table 2. The article authors are listed in the first col-
umn; the results at the exudate and image levels are summarised in the second column and in the next two col-
umns, respectively. Examples of our results are shown in Fig. 5. We achieved an F1 score of 0.8367 at the exudate 
level using the best validation dataset with contrast adjustment augmentation, outperforming all the aforemen-
tioned methods. For the held-out test, the F1 scores for DiaretDB1 were 0.8898 and 0.881 for the exudate- and 
image-level evaluations, respectively. In addition, the AUC at the image level was 0.9727 for the DiaretDB1. Our 
results for the DiaretDB1 held-out test outperformed all the other methods at both the exudate and image levels. 
Only image-level evaluation was performed on the Messidor1 database, resulting in an AUC of 0.885. The AUC-
ROC curves for all the three datasets are shown in Fig. 6. The AUC-ROC curve for the e-ophtha-EX dataset was 
plotted from the results of the best-performing validation dataset for the neural network variant of the proposed 
method with contrast adjustment augmentation using the SVM classifier.

Discussion
We propose a method for detecting hard exudates using a deep-learning object detector. Four variants of our 
method were evaluated at the exudate and image levels: with and without SVM pre-scanning and with and with-
out random contrast adjustments of the dataset evaluated through fivefold cross-validation. The combination 
of the faster R-CNN detector and the SVM classifier with contrast adjustment augmentation achieved the best 
F1 score of 0.8367 at the exudate-level. The F1 score improved, with a slight decrease in sensitivity. None of the 
other methods achieved an F1 score above 0.83216.

When evaluating the held-out test, we applied a different evaluation approach from the one used by Abbasi-
Sureshjani et al.16. In contrast to their method, where the exudates in the ground-truth data were considered as 
exudates when marked by more than 75% of experts, we considered exudates if they were annotated by 75% of 
experts or more. This means that we considered account markings from at least three out of four experts, rather 

Table 1.   Sensitivity, specificity, accuracy, F1 score, PPV, false positive rate (FPR) and false negative rate (FNR) 
at the exudate and image level of the proposed method are shown in the table. The first column shows the four 
variants of our method: faster R-CNN with or without contrast adjustment augmentation (CA) of the dataset 
and with or without SVM classifier pre-scanning. The values are represented as µ ± σ; µ represents the mean 
and σ represents the standard deviation.

Performance metric Sensitivity Specificity Accuracy F1 score PPV FPR FNR

Exudate-level

Faster RCNN 0.8987 ± 0.0752 0.9953 ± 0.0019 0.9947 ± 0.0017 0.6781 ± 0.0378 0.5984 ± 0.0593 0.0047 ± 0.0019 0.1013 ± 0.0752

Faster RCNN + SVM 0.8805 ± 0.0672 0.9964 ± 0.0012 0.9957 ± 0.0012 0.69262 ± 0.0462 0.6236 ± 0.06208 0.0036 ± 0.0012 0.1195 ± 0.0672

Faster RCNN + CA 0.8575 ± 0.0492 0.9963 ± 0.0016 0.9956 ± 0.0014 0.6577 ± 0.0103 0.6432 ± 0.1023 0.0037 ± 0.0016 0.1425 ± 0.0492

Faster 
RCNN + CA + SVM 0.8344 ± 0.0442 0.9974 ± 0.0009 0.9966 ± 0.0009 0.7069 ± 0.0753 0.6626 ± 0.0982 0.0026 ± 0.0009 0.1656 ± 0.0442

Image-level

Faster RCNN 1 0.6286 ± 0.0782 0.8412 ± 0.0346 0.8786 ± 0.0244 0.7841 ± 0.0392 0.3714 ± 0.07825 0

Faster RCNN + SVM 1 0.7143 ± 0.1010 0.8779 ± 0.0418 0.9044 ± 0.0299 0.8266 ± 0.0508 0.2857 ± 0.1010 0

Faster RCNN + CA 0.9578 ± 0.0579 0.4857 ± 0.2595 0.7566 ± 0.1129 0.8222 ± 0.0713 0.7254 ± 0.1000 0.5143 ± 0.2595 0.0422 ± 0.0579

Faster 
RCNN + CA + SVM 0.9578 ± 0.0579 0.7429 ± 0.1863 0.8669 ± 0.0768 0.8940 ± 0.0550 0.8429 ± 0.0839 0.2571 ± 0.1863 0.0422 ± 0.0579
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than all four experts. This evaluation approach yielded 30 and 38 images with exudates in the work of Abbasi-
Sureshjani16 and in this study, respectively. With this approach, smaller and less notable exudates (marked on 
the ground-truth data) were included among the diagnosed objects. Despite this more stringent specification, 
we obtained better results. Our results on the Messidor1 dataset were similar to those obtained by Giancardo30 
when training on different datasets; however, the dataset only contains the grading of the risk of macular oedema. 
It does not contain marked exudates.

The SVM classifier was beneficial for reducing false positives in both evaluation approaches, with and with-
out contrast adjustments. The SVM classifier based on the extracted features from the pre-trained ResNet-50 
network was effective at reducing false positives arising from various factors, such as images of poor quality, 
artefacts, nerve fibre reflections, lesions after laser therapy, and pigment epithelial changes, although it achieved 
only 84.7% average accuracy. These false positives should be reduced intensively when training more or larger 
datasets with exudates marked pixel-by-pixel, as in the e-ophtha-EX22 dataset. Mild reduction in sensitivity and 
rise in false negatives at the exudate-level evaluation because of the SVM classifier could be acceptable because of 
its huge improvement potential for the image-level evaluation, which tends to be clinically more important and 
noticeable across all the variants of the proposed method. The proposed method outperformed other supervised 
exudate detection or segmentation methods evaluated by Zhang6.

A limitation of this study was that the chosen object detection algorithm was allowed to train on image 
patches with exudates only and no patches of healthy fundus images were included. Although these image patches 
contained exudates and background (non-exudate part of the image patch), the appearance of this background 
slightly differed from those found without exudate patches. There were also significant differences in the back-
ground appearance between diabetic retinopathy and healthy fundus images. To obtain better results and cover 
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Figure 6.   AUC-ROC curve at the image-level of our method on the e-ophtha-EX, DiaretDB1, and Messidor1 
datasets.

Table 2.   Results of the proposed method, compared to other methods. Results of the proposed method are 
highlighted in bold.

Author Exudate-level: F1 Image-level: F1 Image-level: AUC​

e-ophtha-EX dataset

Giancardo, applied by Zhang6 – – 0.87

Zhang6 0.732 – 0.95

Abbasi-Sureshjani16 0.832 0.967 0.994

Our method 0.8367 0.9474 1

DiaretDB1 dataset

Giancardo30 – – 0.93

Zhang6 – – 0.95

Abbasi-Sureshjani16 0.819 0.880 0.965

Our method 0.8898 0.881 0.9727

Messidor dataset

Giancardo30 – – 0.88–0.89

Our method – – 0.885
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the entire colour spectrum of retinal images, we added more image patches by randomly varying the contrast 
for data augmentation. Remarkably, these variants of our method were less sensitive, and we noted a decrease in 
the FPR at the exudate-level. Overall, these variants led to less detection, compared to variants that did not use 
contrast-change dataset augmentation.

It is more complicated to evaluate the results of a deep-learning object detector, than to evaluate the results 
obtained by semantic segmentation neural network, according to Zhang6. In our case, we had to create bounding 
boxes around the ground-truth exudates and compare the area in these bounding boxes with filled bounding 
boxes obtained through a neural network object detector. In contrast to semantic segmentation, this method 
detected every exudate as a separate object bordered by a bounding box and the coordinates of every exudate 
were direct outputs of the object detector.

Analysing images with a deep-learning object detector is time-consuming. The analysis of one retinal image 
in our implementation environment lasted from a few seconds to two minutes, depending on the severity of the 
diabetic retinopathy findings. The duration of this process was reduced by the SVM pre-scanning (scanning of 
the image before object detection). Scanning the patch using an SVM classifier was fast and allowed the exclu-
sion of non-exudate image patches from the detection process. This became evident when testing on a computer 
with lower computational capacity.

Although our method is only an algorithm and not the entire solution, it can be incorporated into several 
clinical applications. It can also be implemented as a part of the diabetic retinopathy screening in telemedicine. 
The use of deep-learning methods to screen for diabetic retinopathy in telemedicine has been found to be as 
effective as when retinal images are examined by a human expert31. Deep-learning methods have made consid-
erable progress in the segmentation of retinal vasculature. However, detecting retinal pathologies using these 
techniques remains underexplored32. The proposed deep-learning hard exudate detection with SVM pre-scanning 
is a method of retinal pathology detection that can enrich current telemedicine solutions with precise quantity, 
size, and localisation of hard exudates. Determining the position of hard exudates can be a part of the diabetic 
macular oedema prediction algorithm. However, screening for diabetic macular oedema alone is currently not 
advised33. The essential parts of diabetic macular oedema examination and follow-up are fluoroangiography and 
ocular computer tomography examinations34. However, these examinations are not affordable for all eye care 
practitioners. In addition to a standard slit lamp examination, in the fundoscopic and panfundoscopic examina-
tions, fundus cameras are an inexpensive solution for common eye care practitioners to follow-up and archive 
the findings of diabetic retinopathy patients. The proposed hard exudate detection and localisation system can 
be a useful part of the solution that estimates, archives, and follows up on the quantity and localisation of hard 
exudates in diabetic retinopathy patients of common eye care practitioners. Assessing every exudate as an object 
during fundus photography can be the first step towards analysing them quantitatively and spatially. The risk of 
developing diabetic macular oedema can be computed based on these data.

Deep-learning exudate detection in fundus images have potential applications also outside ophthalmology. 
Fundus image analysis based on deep-learning techniques can predict cardiovascular risk factors35 or anaemia36. 
The quantity of hard exudates is related to serum lipid levels, and the risk of central localisation of hard exudates 
in patients with higher serum triglyceride levels is higher37. A higher prevalence of diabetic macular oedema has 
also been associated with higher serum cholesterol levels38. Therefore, predicting higher lipid levels based on the 
quantity and localisation of hard exudates can be an interesting future research direction.
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