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Bioconvective Reiner–Rivlin 
nanofluid flow over a rotating 
disk with Cattaneo–Christov flow 
heat flux and entropy generation 
analysis
Yu‑Pei Lv1, Hina Gul2, Muhammad Ramzan2*, Jae Dong Chung3 & Muhammad Bilal4

The non-Newtonian fluids possess captivating heat transfer applications in comparison to the 
Newtonian fluids. Here, a new type of non-Newtonian fluid named Reiner–Rivlin nanofluid flow over 
a rough rotating disk with Cattaneo–Christov (C–C) heat flux is studied in a permeable media. The 
stability of the nanoparticles is augmented by adding the gyrotactic microorganisms in the nanofluid. 
The concept of the envisaged model is improved by considering the influences of Arrhenius activation 
energy, chemical reaction, slip, and convective conditions at the boundary of the surface. The 
entropy generation is evaluated by employing the second law of thermodynamics. The succor of the 
Shooting scheme combined with the bvp4c MATLAB software is adapted for the solution of extremely 
nonlinear system of equations. The noteworthy impacts of the evolving parameters versus engaged 
fields are inspected through graphical illustrations. The outcomes show that for a strong material 
parameter of Reiner–Rivlin, temperature, and concentration profiles are enhanced. The behavior of 
Skin friction coefficients, local Nusselt number, Sherwood number, and local density number of motile 
microorganisms against the different estimates of emerging parameters are represented in tabular 
form. The authenticity of the intended model is tested by comparing the presented results in limiting 
form to an already published paper. A proper correlation between the two results is attained.

List of symbols
Cf 	� Drag force
B2	� Convection diffusion parameter
(u, v,w)	� Velocity components
Ea	� Activation energy coefficient
Kr	� Chemical reaction rate constant
cp	� Capacity of specific heat
Sc	� Schmidt number
K	� Fluid parameter
DB	� Coefficient of Brownian diffusion
Shx	� Sherwood number
Tw	� Temperature on wall
Br	� Brinkman number
Wc	� Constant speed of cell swimming
C∞	� Concentration in the free stream
uw	� Axial route having a velocity
L	� Diffusion parameter
Re	� Reynolds number
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Nux	� Local density number
q∗	� Non uniform heat source/sink
Cs	� Solid surface heat capacity
Pe	� Peclet number
κ	� Thermal conductivity
T	� Fluid temperature
Nb	� Brownian motion parameter
NG	� Entropy rate
DT	� Coefficient of thermophoretic diffusion
E	� Activation energy parameter
T∞	� Diffusive temperature
hf 	� Convective heat transfer coefficient
hs	� Mass transfer coefficient
Pr	� Prandtl number
Nt	� Thermophoresis parameter
A,B	� Space and temperature-dependent heat generation and absorption parameters
Dm	� Microorganism’s diffusivity
C	� Fluid concentration
Lb	� Lewis number
B1	� Biot number
Sc	� Schmidt number
L, L1	� Diffusion parameters
A∗,B∗	� Source, sink coefficients
Br	� Brinkman number
N∞	� Ambient motile density

Greek letters
γ	� Thermal relaxation time
�	� Angular velocity
ρ	� Density of fluid
σ1, σ2, σ3	� Temperature, concentration and motile ratio parameter
ν	� Kinematic viscosity
�	� Permeability parameter
µ	� Liquid dynamic viscosity
β1,β2	� Radial and azimuthal slip parameters
α1,α2	� Radial and azimuthal slip coefficients
�2	� Thermal relaxation factor
δ	� Ratio of the diffusion coefficient
τw	� Shear stress ( kg/ms2)

Fluids that do not abide by the Newtonian constitutive relations like large molecular weight polymers are com-
monly used in lubricants, nylon, blood, clay, detergents, and paints, etc. are named as non-Newtonian fluids. 
The stress within the viscoelastic fluids remained alive up to some extent upon the removal of stress forces 
owing to the strong binding of intermolecular trussing. This inimitable feature is characterized as the memory 
effect. Reiner1 and Rivlin2 introduced a new kind of non-Newtonian fluid that adequately forecast the flow 
behavior of numerous biological, geological materials together with polymers and various food products. Later, 
Kosterin3 disclosed that Reiner–Rivlin rheological relation is inappropriate in articulating the influences of 
normal stresses. The flow of Reiner–Rivlin fluid past rectangular ducts is analyzed numerically by Gao and 
Hartnett4. The interesting outcome of this study revealed that the heat transfer increases substantially in attend-
ance of the second normal stresses. Attia5 obtained a numerical solution of the unsteady flow of Reiner–Rivlin 
fluid past a rotating permeable disk with impacts of suction/injection. The major conclusion of this study is that 
the heat transfer effect is more significant in the presence of suction in comparison to the injection. In another 
study Attia6 discussed the flow of the Reiner–Rivlin liquid with Ion slip and Hall current impacts past a rotat-
ing disk. An interesting result of this investigation points out that the effect of the Ion slip on the axial velocity 
is more obvious for Reiner–Rivlin fluid as compared to any Newtonian liquid. The numerical solution of the 
Reiner–Rivlin fluid flow with partial slip owing to a rotating disk is deliberated by Tabassum and Mustafa7. This 
research disclosed that higher values of the torque and slip parameter are needed to keep the steady rotation 
of the disk. The study of7 is extended by Naqvi et al.8 discussing the numerical solution of the Reiner–Rivlin 
liquid flow due to a rotating disk with multiple slips. A decline in the radially outward flow is perceived owing 
to an upsurge in the Reiner–Rivlin liquid parameter is a key outcome of this study. In a recent study, Rashid and 
Mustafa9 discussed the heat transfer with entropy generation analysis of Von Karman flow owing to a rotating 
disk of the Reiner–Rivlin liquid. The salient result of this study is that in the case of the Reiner–Rivlin fluid the 
moment coefficient is significantly decreased.

The bacteria and the microalgae possess high density in comparison to the water and because of this fact 
they move in an upward direction opposite to gravity. Owing to this phenomenon the top layer becomes thicker 
than the bottom one and creates an unhinged situation as far as density distribution is concerned. Following 
the physics of the problem, convective patterns are formed because of the convective instability in this case. 
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Such random instantaneous pattern activity of microorganisms is termed as the bioconvection. Bioconvection 
is categorized as geotactic10, 11, gyrotactic12, 13, and chemotactic14. Bioconvection applications may be found in 
numerous industrial, ecological, and commercial products including fertilizers, ethanol, ecological fuels, and fuel 
cells. Waqas et al.15 studied numerically the flow of Oldroyd-B nanoliquid with motile microorganism impact 
past a rotating disk. The numerical solution of the transient flow of the rate type thin film nanofluid flow over 
a rotating disk with bioconvection, activation energy, and Ohmic heating is studied by Abdelmalek et al.16. It is 
inferred from this study that axial and tangential velocities are reduced when the buoyancy ratio parameter is 
boosted. Ramzan et al.17 uncovered a numerical solution of the nanofluid flow containing carbon nanotubes with 
dust particles over an inclined rotating disk. It is witnessed in this exploration that the thermal field is stronger 
in the case of the nanofluid phase in comparison to the dust phase and this effect becomes stronger when the 
impact of the thermal radiation is augmented. Some recent explorations featuring flow over the rotating disk 
may be found in18–21.

In a system and its surroundings, entropy tests the rate of disorder. It is a physical occurrence of heat transfer 
in the form of energy. Because of any friction or dislocation of particles, the movement of heat induces a dif-
ference in potential energy and kinetic energy etc. Bejan22 was a initiator, who studied the entropy generation 
analysis during heat losing procedure of fluid motion. Ijaz et al.23 deliberated the Sisko nanofluid with activation 
energy and entropy generation in non-linear radiative heat flow. It is noticed that entropy generation is increased 
for mounting values of the Brinkman number. Wakeel et al.24 examined the Hall effects in second-grade fluid 
flow with C–C heat flux and entropy generation over a rotating stretchable disk. The flow of Marangoni Maxwell 
fluid past a rotating disk accompanying the thermal radiation and activation energy is examined numerically by 
Devi and Mabood25. The salient outcome highlighting the entropy generation impact is that the higher estimates 
of the Bejan number and the fluid parameter weaken the entropy generation rate. Abbas et al.26 discussed the 
numerical solution of the MHD nanofluid flow over a rotating disk with second-order velocity slip and activation 
energy with entropy minimization optimization. The main finding of the envisioned model is that the entropy 
generation is influenced by the magnetic field. Some latest publications focusing on the impact of entropy may 
be found in27–29.

It is a learned phenomenon that the transfer of heat arises due to temperature differences amongst two dif-
ferent objects or within a similar body. Fourier law (heat conduction) possesses a drawback that any disturbance 
instigated in the beginning will carry out throughout the process. To resolve this issue, Cattaneo introduced 
thermal relaxation time for Fourier’s law (heat conduction) which allows the transport of heat by waves propa-
gating with controlled speed30. Later, Christov developed the relation proposed by Cattaneo through frame-
indifferent change with the Oldroyd upper-convected derivative. Such relation is entitled as C–C flux model. 
Shehzad et al.31 studied MHD incompressible Maxwell bioconvection fluid flow over a rotating isolated disk in 
the presence of C–C heat flux. The flow of Oldroyd-B fluid with C–C heat flux over a rotating disk is studied by 
utilizing the BVP Midrich numerical technique. It is noticed in this exploration that the fluid velocity is affected 
by the thermal relaxation parameter. Hayat et al.32 using Homotopy Analytic scheme found an analytical solution 
of the Newtonian fluid over a rotating disk having variable thickness with C–C heat flux. The key observation 
revealed that the surface drag coefficient is affected when the thickness of the disk is increased. Recent studies 
focusing on the impact of C–C heat flux may be found in33–35.

The aforementioned studies disclosed that abundant researches are available in the literature discussing the 
flow of fluid over a rotating disk. Nevertheless, restricted literature may be found that deliberates the Reiner–Riv-
lin nanofluid flow over a rotating disk. But no study so far is not attempted that ponders the flow of Reiner–Rivlin 
nanofluid over a rotating disk with bioconvection, Arrhenius activation energy, C–C heat flux, and entropy 
generation analysis. The numerical result to the model is found. The abundant applications related to nanofluids 
may be found in the engineering and industrial processes including electronics applications, transportation, 
Nanofluids-based microbial fuel cell, industrial cooling applications, Energy storage, Heating buildings and 
reducing pollution, Space and defense, Magnetic sealing, Antibacterial activity, Nanodrug delivery, Intensify 
microreactors, Nuclear systems cooling, Mass transfer enhancement, Solar absorption, Mechanical applications, 
Friction reduction, Nanofluids as vehicular brake fluids, and nanofluids with unique optical properties. The inimi-
tability of the current model as portrayed in Table 1 by associating the present model with the published studies.

Mathematical modeling
Consider a steady axial symmetric three-dimensional incompressible Reiner–Rivlin nanofluid flow rotating with 
the angular velocity ω with z > 0, over a rotating disk coinciding with the plane z = 0, (Fig. 1). Let u, v and w be 
the velocity components along the directions of growing r,ϕ and z respectively. Because of the axial symmetry, 
the velocity components are assumed to be independent of the azimuthal coordinate ϕ7. The slip and convective 

Table 1.   Literature survey for novelty of the envisioned model.

Authors
Reiner–Rivlin flow 
model

Nanofluid flow over a 
rotating disk

Cattaneo–Christov flow 
heat flux

Impact of 
Bioconvection

Entropy generation 
analysis

Arrhenius activation 
energy, chemical 
reaction

Tabassum et al.7 Yes No No No No No

Naqvi et al.8 Yes Yes No No No No

Rashid et al.9 Yes No Yes No Yes No

Present Yes Yes Yes Yes Yes Yes
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boundary conditions are applied. The impact of activation energy, gyrotactic microorganism, and C–C heat flux 
in a porous medium are also considered. Entropy generation is also a part of this model.

Following Reiner1 and Rivlin2, we have the following stress tensor for the flow field:

Here µc is the coefficient of cross-viscosity, δij is the Kronecker delta, eij is the tensor of deformation rate and 
p is the pressure. The governing boundary layer equations under the impact of C–C heat flux are represented as:

(1)τij = −pδij + µeij + µceikekj; ejj = 0.
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Figure 1.   Flow geometry.
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The associated boundary conditions are given as:

Components of deformation rate tensors2 are:

and the components of the stress tensor is given by7:

Transformations are:

Using Eq. (17), Eqs. (3), (4), and (6)–(9) become:

The quantities in the above equations are defined as:
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Drag force coefficient, the rates of heat, mass, and the local motile microorganisms’ flux are defined by:

The dimensionless Skin friction coefficient, rate of heat, and mass fluxes and are the local motile microorgan-
isms’ flux are given as:

Entropy generation analysis.  Following the volumetric entropy generation is presented in22:

The entropy generation in the dimensionless form can be derived as:

where

Graphical and tabulated outcomes with discussion
This sector (Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21) is dedicated to examining the 
influence of varied evolving parameters on the flow model involved profiles. The ranges of the parameters are 
defined as:

The behavior of Reiner–Rivlin fluid parameter K on the axial, radial, and tangential velocities, and tempera-
ture profile is revealed in Figs. 2, 3, 4 and 5 for the uniform wall roughness. It is noticed from Figs. 2 and 3 that 
the axial and radial velocities are dwindled near the disk and augmented when striding far afield from it. As the 
fluid move in the direction of the axis of rotation, the centrifugal forces along with viscoelastic effects generates 
a wake flow in the radial direction and a lesser amount of liquid is seen along an axial path. That is why the axial 
velocity profile attains its maximum near the disk and diminishes away from the disk. However, contrary to axial 
and radial profiles, the azimuthal velocity profile attains an opposite trend (Fig. 4). Similarly, in Fig. 5 the fluid 
temperature is enhanced for growing estimates of K. Here, the thermal boundary layer thickness expands when 
the comparatively cold water is taken along the axial direction. Figures 6 and 7 represent the outcomes of the 
wall slip parameters α1,α2 versus the radial and tangential velocity components when K = 1. Here, it is further 
assumed that estimates of both α1,α2 are equal. It is noticed that the radial velocity is more away from the disk 
for large values of α1,α2 and an opposing trend is seen near it. The azimuthal velocity component possesses a 
reverse impact for the estimates of α1,α2. This is because of the disk’s rotational impact that is partly transferred 
to the adjacent boundary layer. The impact of the permeability parameter � versus radial and azimuthal distribu-
tions is shown in Figs. 8 and 9. It is noticed that both velocity profiles dwindle for large values of � . Physically, 
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0.0 ≤ K ≤ 0.7, 0.5 ≤ α1,α2 ≤ 2.0, 0.1 ≤ � ≤ 0.7, 0.4 ≤ B1 ≤ 0.7, 0.5 ≤ γ ≤ 2.0,−0.9 ≤ A ≤ 0.9,−0.4 ≤ B ≤ 0.4,

0.1 ≤ δ ≤ 1.3, 0.0 ≤ n ≤ 3.0, 0.1 ≤ E ≤ 0.7, 0.4 ≤ Lb ≤ 0.7, 1.0 ≤ Br ≤ 5.0, 0.5 ≤ �2 ≤ 0.8, 0.5 ≤ Re ≤ 3.0.
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the movement of the liquid is hindered due to the occurrence of permeable media, and as a result, a falloff in 
the fluid velocities is seen.

The behavior of the conjugate parameter B1 on temperature distribution is studied in Fig. 10. It is noticed that 
temperature and thermal boundary layer thickness are boosted for large estimates of B1 . Here, the increment in 
B1 instigating the heat transfer that pushes extra heat from the surface. In this way, the temperature is enhanced. 
Figure 11 is illustrated to show the influence of the thermal relaxation parameter γ on the temperature profile. 
It is noted that the fluid temperature is decreased for large values of the γ . Large values of the γ points out the 
strong characteristics of the insulating material which are responsible for the drop in the fluid temperature. The 
influence of A and B (heat source and sink) on the temperature distribution is analyzed in Figs. 12 and 13. It is 
perceived that the temperature profile is rising when the values of both A,B are increased. Since the occurrence 
of heat source parameter produces more heat within the nanofluid flow field which leads to an increment in the 
boundary layer thickness. Hence, more heat in the nanofluid enhances the fluid temperature. Figures 14 and 15 
are drawn to witness the impact of temperature difference parameters δ and n on the concentration distribution 
profile. It is witnessed that concentration distribution is a diminishing function for both δ and n . This shows that 
the concentration boundary layer thickness growing when the difference between ambient and wall temperatures 
is increased. The influence of the chemical reaction parameter K1 and the activation energy parameter E against 

Figure 2.   Variations of K to f (η).

Figure 3.   Variations of K to f ′ (η).
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the concentration profile is portrayed in Fig. 16. It is seen that the concentration of the fluid weakens once the 
estimates of K1 are augmented. Large values of K1 are associated with the destructive chemical reaction and this 
eventually dissolves the fluid species. That is why the liquid concentration is reduced and an opposite behavior 
is noticed for E. Here, the generative case is strengthened for large estimates of E. As a result concentration is 
enhanced. The variation of bioconvection Lewis number Lb, and Peclet number Pe, on the fluid motile density 
is revealed in Fig. 17. It is detected that the motile density profile decreases for large values of the Peclet number. 
For the higher Pe, fluid motile density is decreased due to the decline in the diffusivity of microorganisms. It 
is also observed for mounting estimations of Lb, causes falloffs of microorganisms hence the profile of motile 
density also drops in this case.

Figures 18, 19, 20 and 21 display the vital role of volumetric entropy generation for varied estimations of 
Br,�2, Re and K . For greater Br,�2 and Re entropy generation is increases. For large values of Br viscous dis-
sipation generates less transfer rate and thus augments entropy generation rises. For Br = 0, viscous dissipative 
irreversibility disappears and only heat transfer irreversibility produce. The effect of Re on entropy generation 
is expressed in Fig. 20. For large estimates of the Reynolds number, the substantial motion of the fluid mol-
ecules is witnessed. Thus, escalating the entropy generation rate. Figure 21 reveals that for higher values of the 
Reiner–Rivlin parameter K entropy generation is declined.

Figure 4.   Variations of K to g (η).

Figure 5.   Variations of K to θ (η).
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Table 2 represents the numerical outcomes for skin friction coefficient, azimuthal velocity, entrainment veloc-
ity, and radial velocity for varied estimates of the slip and the Reiner–Rivlin parameters. Here, f (∞) helps in 
finding the volumetric flow rate of the von-Karman problem. The driving torque or the disk’s torque is gauged 
through g ′(0). The viscoelastic impacts affect the torque in the Von Karman flow. The surface drag force coef-
ficient and the resisting torque are enhanced for growing values of the radial and the tangential velocity com-
ponents. It is comprehended that high torque at the disk shaft is enhanced for elevated values of the tangential 
slip parameter. It is also inferred from the tabulated values that skin friction coefficient and driving torque 
possess an increasing tendency for the Reiner–Rivlin parameter. However, an opposing trend is seen in the 
case of the volumetric flow rate. Table 3 portrays different variations of the rate of mass flux for different values 
of K ,Nt ,Nb, Pr and Sc. It is seen that for the large values of K ,Nb and Pr Sherwood number decreases and the 
opposing effects are seen for Nt and Sc. Table 4 portrays different estimations in local density profile for various 
values of B1 , K , Pe and Lb . It is observed that for large estimates of B1 , Lb and Pe the local density number of 
microorganisms increases while falls off for greater parameter. Table 5 computes the numerical values of f (∞) 
for the increasing wall roughness parameter and Reiner–Rivlin parameter. The results obtained by using bvp4c 
are compared with Naqvi et al.8. An excellent harmony among both results is achieved.

Final remarks
In this study, the flow of the Reiner–Rivlin nanofluid generated by a rotating disk in the presence C–C heat flux 
and the gyrotactic microorganisms is deliberated. The flow is also accompanied by the effects of the heat source/
sink, chemical reaction with activation energy with slip, and convective boundary conditions. The problem is 
solved numerically. The noteworthy observations of the model are appended as below:

Figure 6.   Variations of α1, α2 to f ′ (η).

Figure 7.   Variations of α1, α2 to g (η).
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•	 The radial and axial velocity components are diminishing functions for the Reiner–Rivlin parameter. How-
ever, an adverse impact is witnessed in the case of azimuthal velocity, and temperature profile.

•	 A diminishing impact of the slip parameters is perceived for both the radial and azimuthal velocity compo-
nents.

•	 The permeability parameter shows dwindling influence versus the radial and tangential velocity components.
•	 Higher estimations of the thermal relaxation parameter cause reduction in the temperature profile.
•	 The fluid temperature is escalated for mounting estimates of the non-uniform heat source/sink parameter.
•	 The chemical reaction and the activation energy parameters possess an opposing impact on the concentration 

profile.
•	 The motile density profile diminishes for large values of the Peclet and the bioconvective Lewis numbers.
•	 The Brinkman and Reynolds numbers show opposing trends versus volumetric entropy generation.

Figure 8.   Variations of � to f ′ (η).

Figure 9.   Variations of � to g (η).
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Figure 10.   Variations of B1 to θ (η).

Figure 11.   Variations of γ to θ (η).

Figure 12.   Variations of A to θ (η).
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Figure 13.   Variations of B to θ (η).

Figure 14.   Variations of δ to φ (η).
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Figure 15.   Variations of n to φ (η).

Figure 16.   Variations of K1 and E to φ (η).



14

Vol:.(1234567890)

Scientific Reports |        (2021) 11:15859  | https://doi.org/10.1038/s41598-021-95448-y

www.nature.com/scientificreports/

Figure 17.   Variations of Pe and Lb to ζ (η).

Figure 18.   Variations of Br to NG.
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Figure 19.   Variations of �2 to NG.

Figure 20.   Variations of Re to NG.

Figure 21.   Variations of K to NG.
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Table 2.   The tabulation of numerical results for Drag force  CFRe
1/2
x  against the various values of α1,α2,K , 

parameters.

α1 α2 K
√

(f ′′(0))2 + (g ′(0))2 g ′(0) f (∞) f ′′(0)

1 2 0.2 0.3101282 − 0.30858225 0.058277735 0.030927356

1.5 2 0.3111269 − 0.31012459 0.063644215 0.024953560

2 2 0.3749075 − 0.31115555 0.067213467 0.020913603

2 2 0.3749075 − 0.31115555 0.067213467 0.020913603

2 3 0.2353182 − 0.23494064 0.044550026 0.013326333

2 4 0.1895022 − 0.18927773 0.031514276 0.009220524

2 2 0.3 0.3126156 − 0.31199346 0.063018309 0.019713295

0.7 0.3131332 − 0.31279718 0.045216515 0.014503586

1 0.3139463 − 0.31364883 0.031017367 0.010366372

Table 3.   Numerical results for ShxRe−0.5 against the various values of the K , Nt , Nb , Pr , Sc , and β parameters.

K Nt Nb Pr Sc −ϕ′(0)

0.2 0.1 0.6 3 4 0.37790968

0.7 0.36797258

1 0.36235873

0.3 0.42296784

0.4 0.44798048

0.5 0.47456857

0.15 0.42183083

0.2 0.40723295

0.3 0.39261496

4 0.3945757

6 0.38030306

8 0.36270411

1 0.3945757

3 0.49663337

5 0.55345741

0.39615661

0.3945757

0.39407366

Table 4.   The tabulation of numerical results for NuxRe−0.5 against the various values of the K , Pe, and Lb 
parameters.

B1 K Pe Lb −ξ ′(0)

0.2 0.2 0.2 1 0.17235092

0.3 0.23692559

0.4 0.29148902

0.2 0.42313856

0.7 0.39628911

1 0.37841022

0.3 0.34334759

0.4 0.36772149

0.5 0.39067931

1.5 0.32953031

2 0.34081314

2.5 0.35143172
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