
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:16449  | https://doi.org/10.1038/s41598-021-95414-8

www.nature.com/scientificreports

Direct numerical simulations 
of three‑dimensional surface 
instability patterns in thin 
film‑compliant substrate structures
Siavash Nikravesh1, Donghyeon Ryu2 & Yu‑Lin Shen1*

A comprehensive numerical study of three‑dimensional surface instability patterns is presented. 
The formation of wrinkles is a consequence of deformation instability when a thin film, bonded to 
a compliant substrate, is subject to in‑plane compressive loading. We apply a recently developed 
computational approach to directly simulate complex surface wrinkling from pre‑instability to 
post‑instability in a straightforward manner, covering the entire biaxial loading spectrum from 
pure uniaxial to pure equi‑biaxial compression. The simulations use embedded imperfections with 
perturbed material properties at the film‑substrate interface. This approach not only triggers the 
first bifurcation mode but also activates subsequent post‑buckling states, thus capable of predicting 
the temporal evolution of wrinkle patterns in one simulation run. The state of biaxiality is found to 
influence the surface pattern significantly, and each bifurcation mode can be traced back to certain 
abrupt changes in the overall load–displacement response. Our systematic study reveals how the 
loading condition dictates the formation of various instability modes including one‑dimensional (1D) 
sinusoidal wrinkles, herringbone, labyrinth, and checkerboard.

When a thin film is bonded to a thick compliant substrate, parallel or more complex forms of wrinkles may 
develop if the thin film is under compression beyond a critical level. It is a form of mechanical instability, and 
has received significant attention due to its ubiquity in nature as well as in many modern flexible devices in 
use or under development. Based on experimental observations various surface wrinkling patterns induced by 
mechanical load, temperature and structural change have been  recognized1–12. Analytical treatments have been 
reported addressing the simple one-dimensional (1D) sinusoidal wrinkle  pattern2,13–16 and the more complex 
two-dimensional (2D) surface  patterns17–23. Computational modeling of wrinkle formation using the finite ele-
ment technique is laborious. A common practice is to undertake a pre-instability linear modal analysis, followed 
by a separate post-instability analysis involving perturbations in geometry, boundary condition or  mesh15,24–28. In 
these approaches, the simulation process frequently involved prescribing a small wave pattern in the model, thus 
actually dictating subsequent evolution of wrinkle morphologies. Other numerical schemes such as those based 
on the applied dummy/fictitious load have been  developed29–32, which are still a multi-step process. Dynamic 
numerical analyses have also been  employed33,34, but verification of the numerical results may be difficult due 
to the lack of reliable closed-form solutions to surface instability problems with the inertial effect. In this work 
we employ a recently developed numerical approach to directly simulate complex surface wrinkling from pre-
instability to post-instability in a seamless manner, covering the entire biaxial loading spectrum from pure 
uniaxial compression to pure equi-biaxial compression. The numerical predictions also provide mechanistic 
rationale for uncertainties seen from past theoretical and experimental considerations.

The simulations are accomplished by incorporating pre-existing material defects in the numerical model. 
Embedded imperfections are regular finite elements at the film-substrate interface but with perturbed material 
properties, to trigger the instability states. In this study we show that the embedded imperfections not only 
can initiate the first bifurcation mode, but can also activate any subsequent post-bifurcation instability states 
and therefore lead to continuous evolution of surface instability patterns. Surface wrinkling can be captured 
without the need of any tedious or multi-step numerical treatments. This approach was first developed for 1D 
sinusoidal wrinkling  simulations35–37, and was recently extended to simple forms of 3D surface  wrinkles38. The 
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current paper presents our first comprehensive study on surface patterns encompassing the full range of in-
plane compressive loading. Instead of treating surface patterns discretely under specific assumptions, we aim to 
provide a full picture by applying our numerical approach to directly simulate any possible forms of wrinkling 
instabilities and their transition.

It is worth mentioning that the terms “direct numerical simulations” and “instability” used in this paper 
should not be mistaken as similar terminologies in the fluid mechanics literature. Here the use of direct numeri-
cal simulations is to distinguish between the common multi-step approaches in the solid mechanics literature 
and our embedded imperfection technique which only requires a single-step analysis. Furthermore, instability 
in solid structures under compression is frequently referred to as the onset of buckling, as opposed to its defini-
tion in fluid mechanics as the onset of development of turbulence. Nevertheless, apparent similarities exist and 
one may draw analogies between the present surface instability analysis in solid materials and the studies of 
 receptivity39 or non-modal disturbance  growth40 in fluid mechanics.

Brief overview of theories
Various theoretical formulations of surface instability are available in the literature. Here we include representa-
tive analytical solutions, some of which are used for numerical model verifications in the current study. Detailed 
discussion of the theories is given in the Supplementary Information of this paper. For surface wrinkling of a 
thin film on top of a compliant substrate, one may categorize available analytical techniques into generic groups 
of  1D2,13–16 and 2D buckling  formulations17–23,41. The 1D solutions, based on the plane strain assumption, focus 
on the classical sinusoidal wrinkles (also termed 1D wrinkles). The 2D analytical solutions allow for in-plane 
biaxial loading.

Consider the thin film-substrate structure shown in Fig. 1. Under uniaxial compression, 1D sinusoidal wrin-
kling commences once the critical point for instability is reached. Assuming that the substrate is semi-infinite, 
film and substrate are fully bonded at the interface, and both layers are linear-elastic and isotropic, the wavelength 
of the wrinkles at the onset of bifurcation (primary instability) follows 

where �cr is the critical wavelength of the 1D mode, and tf , Ef  , and νf  are, respectively, thickness, Young’s modu-
lus, and Poisson’s ratio of the film layer. The parameter Es = Es/
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s

)

 , where νs and Es are Poisson’s ratio and 
Young’s modulus, respectively, of the substrate. An alternative expression for the parameter Es is  given17,19,23 as 
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 . However, the difference between the two forms of Es is negligible for 
near-incompressible cases; for a fully-incompressible substrate ( υs = 0.5), 
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= 1.
The critical wrinkling stress , σcr , corresponding to �cr was also derived  as13,18,42

assuming that the stress state is uniform in the film layer (with the cross-section area of tf · wz as shown in Fig. 1). 
The critical strain for 1D wrinkling, ecr , was reported  as13,18,23,
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Figure 1.  (a–c) Schematics of the problem domain, boundary conditions, and the directions of applied 
displacement.
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Note that it is equivalent to the critical stress in Eq. (2) divided by the plane-strain modulus of the film, 
Ef /

(

1− υ2
f

)

 .  
For a film-substrate structure subjected to pure equi-biaxial compression, the square-checkerboard pattern has 
been shown to possess the lowest energy in the buckled  state17,19. The wavelength of square-checkerboard was 
 derived17,18,20 as

It was also postulated that the critical stress introduced in Eq. (2) not only applies to 1D wrinkles but also applies 
to any possible biaxial wrinkling mode. The critical strain for the square-checkerboard mode, (ecr)CB , is appar-
ently  derived17,18,20 by dividing σcr by the biaxial modulus of the film, Ef /

(

1− υf
)

,

In addition, the amplitude of the surface wrinkles, A , can be written in a general form as

where the parameter � is a function of Poisson’s ratio and thickness of the film layer, with � = tf  for the sinusoidal 
1D mode and � = tf ·

√

8/[
(

3− υf
)(

1+ υf
)

] for the square-checkerboard  mode17,20, and e/ecr is the applied 
compressive strain normalized by the critical value at the onset of primary bifurcation.

Controversies exist in the literature regarding the wrinkling patterns pertaining to specific loading states. 
There are other well recognized surface instability patterns such as herringbone (or zigzag) and labyrinth, 
which emerge after the primary modes when the compressive stress is well beyond the first critical point. 
There are also uncertainties regarding their evolution and necessary loading condition in the post-instability 
regime. A detailed discussion is given in the Supplementary Information. On the experimental side, although 
the most energetically favorable mode under equi-biaxial loading is square-checkerboard17,19, other checker-
board patterns (including the hexagonal and triangular modes) have been observed in actual  experiments17. 
A true square-checkerboard pattern can only form under pre-defined conditions using special fabrication 
 methods43,44. As a consequence, researchers have speculated the possible causes of the discrepancy. A pre-
existing curvature of the film surface has been considered as a possible cause to initiate hexagonal-mode 
 wrinkles17,22. Nonlinear elastic property of the  substrate17 and unequal substrate elastic moduli in tension and 
compression have also been proposed as the origin for the hexagon-based checkerboard  patterns21.

It is evident that, even with a flat film-substrate system with a simple elastic behavior, a unified theme for the 
evolution of wrinkle patterns is lacking. Furthermore, how transitions occur from one post-instability mode to 
another is not at all clear. The effects of loading biaxiality are also in need of investigating. In addition to demon-
strating the modeling capabilities using the embedded imperfection approach, the present work seeks to address 
all these issues and offer an overarching scheme of surface wrinkling under biaxial loading.

Numerical model description
The overall problem geometry and boundary conditions are schematically shown in Fig. 1. A thin-film layer, with 
thickness tf = 0.1µm , is on top of a compliant substrate. Both the film and substrate materials are taken to be 
isotropic linear elastic in all simulations. In this study we consider two film materials separately: P3HT:PCBM 
(poly-3-hexylthiophene conjugated polymer and phenyl-C61-butyric acid methyl ester fullerene derivative) 
and PEDOT:PSS (poly-3,4-ethylenedioxythiophene and polystyrene sulfonate acid). These are common pol-
ymeric thin films used in organic optoelectronic devices. For the P3HT:PCBM film the elastic modulus is 
Ef = 7300  MPa9; and for the PEDOT:PSS film it is Ef = 2000  MPa45. This large difference in stiffness helps 
establish the generality of the current numerical predictions. The Poisson’s ratio is taken as νf = 0.35 for both 
film materials. The substrate material is PDMS (polydimethylsiloxane), with elastic modulus of Es = 2.97  MPa46 
and Poisson’s ratio of νs = 0.495 (set slightly smaller than 0.5 to avoid potential convergence issues).

The simulation domain is defined in such a way to represent a unit cell of a periodic structure. This periodic-
cell approach is built upon our earlier 1D wrinkling  study37 and is now extended to full 3D simulations. One 
embedded imperfection is placed in the substrate adjacent to the film-substrate interface, as shown in Fig. 1. 
The pre-existing defect is a regular finite element carrying the elastic property of the film material instead of 
that of the substrate. To preserve symmetry, the imperfection is of the square shape and exactly at the center of 
the xz-plane (note that all the elements in the model are initially perfectly square shaped in the xz-plane). Fol-
lowing the same approach in our two-dimensional  simulations37, the size of the model is scaled by the analytical 
critical wavelength of 1D wrinkles ( �cr as defined in Eq. 1). The domain dimensions of Wx = Wz = 10�cr and 
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overall depth D = 5�cr were chosen. The film surface is thus of square shape, and the substrate is sufficiently 
thick compared to film thickness. As a consequence of such scaling, the domain dimensions for the cases with 
P3HT:PCBM film and PEDOT:PSS film were not identical. Nevertheless, this approach is more advantageous 
since it provides better control over the total number of elements and leads to computationally efficient simula-
tions with straightforward comparisons. It should be noted that the domain dimensions of Wx = Wz = 10�cr 
were intentionally chosen such that 10�cr ∼= 7(�cr)Cb , meaning that the model size is also sufficiently large for the 
formation of 7 cycles of square-checkerboard waves (based on Eq. 4) in each of the x and z directions. In addi-
tion, the model size is presumably suitable for the post-buckling studies of herringbone and labyrinth patterns, 
following the rationale discussed in the Supplementary Information that the short wavelength of the surface 
wrinkling patterns remains invariant and identical to the wavelength of 1D mode in post-instability regimes. 
Therefore, the model size is appropriate for capturing a variety of wrinkling features, and is also suitable for 
verification studies by comparing the results with available analytical solutions.

It is noted that, since the embedded imperfection is a regular finite element, the imperfection size will be 
affected as the mesh density is altered. From our previous studies, the simulated surface wrinkling features 
were found to be essentially independent of the imperfection  size37,38 and material  property36 as long as mesh 
convergence is achieved. It was also shown that the out-of-plane imperfection thickness of 0.5 tf  , used also in 
the current study, has a negligible effect on the numerical  prediction38. In addition, it was further  illustrated37,38 
that the dependency on imperfection distribution can be avoided if one uses an appropriately sized periodic 
unit-cell model with only one imperfection at the center as shown in Fig. 1. Therefore, there is a high degree of 
generality of the present numerical approach.

The simulations were performed under displacement control with a full range of biaxial compression consid-
ered. The boundary conditions and applied displacement directions are schematically shown in Fig. 1b, c. The 
roller boundary condition is imposed on faces z = 0 and x = 0 with only tangential slide allowed. The node at the 
origin (a corner point at the bottom of the substrate) is entirely fixed in space. The faces z = Wz and x = Wx are 
constrained to remain perpendicular to the z and x axes, respectively, during  deformation47; and the bottom-
substrate and top-film faces are traction-free. The compressive displacement was applied incrementally with 
its magnitude varying as 0 ≤ ux ≤ ux (and similarly 0 ≤ uz ≤ uz ), where ux and uz are the maximum applied 
displacements in x and z directions, respectively. The displacement increments for the static analysis were kept 
sufficiently small to avoid the potential increment-size dependency of the  solutions37. The applied nominal strain 
therefore varies as 0 ≤ exx ≤ exx (and 0 ≤ ezz ≤ ezz ) where exx and ezz are the maximum applied compressive 
strains in x and z directions, respectively. The biaxiality ratio (BR) is then defined as

Due to the square geometry in the xz-plane, the strain ratio can also be written in terms of the applied displace-
ments ( uz and ux ) as seen in Eq. (7). Simulations for various biaxiality ratios were performed in that ux was kept 
constant and uz was altered within the range of 0 ≤ uz ≤ ux for different cases of BR. As a consequence, the 
biaxiality varies within the range of 0 ≤ BR ≤ 1, where BR = 0 pertains to uniaxial compression (applied in the 
x-direction) and BR = 1 corresponds to the perfectly equi-biaxial compression. Any other BR values represent 
non-equi-biaxial loading conditions.

The simulations were performed using the finite element software package ABAQUS (Version 2017, Dassault 
Systems Simulia Corp., Johnston, RI, USA). The 20-noded second-order continuum brick elements were used 
throughout the model. A uniform element distribution was used for the film layer (four layers of elements along 
the thickness of the film). A graded element distribution is applied for the substrate, with the element size increas-
ing gradually from top (interface) to bottom. The detailed procedure of mesh generation and element definition 
can be found in the ABAQUS user’s  manual48. To stabilize the numerical solutions in the post-buckling state, 
viscous damping was included and the corresponding damping factor was calculated via the adaptive automatic 
stabilization  scheme48 for each time-increment via an iterative process until the converged solution is ensured. 
The iteration is controlled by the convergence history and the ratio of the energy dissipated by the viscous damp-
ing to the total strain energy (termed “accuracy tolerance”)48. In this study the accuracy tolerance was specified 
to be less than 10% to prevent damping-dependent solutions. Note that incorporating damping is discretionary, 
however it facilitates more efficient computations for large-scale simulations. It is worth mentioning that viscous 
damping was not employed in our earlier studies featuring problems with smaller  scopes35–38.

The simulations were conducted using the Message Passing Interface (MPI) parallelization technique, and 
were implemented at the Center for Advanced Research Computing (CARC) at University of New Mexico. A 
total of 50 computing nodes (400 Intel-Xenon cores) were employed for each simulation. Preliminary analyses 
have verified that the numerical solutions were independent of the parallel computational procedures.

Results and discussion
Model verification. Verification of the numerical models in conjunction with the mesh convergence analy-
sis are presented first. Consider uniaxial compression (BR = 0) applied to the film-substrate system. A typical 
form of simulated 1D wrinkles using the converged mesh is shown in Fig. 2a. The mesh refinement scheme is 
based on the number of elements in the x and z directions per critical wavelength of the 1D mode ( �cr in Eq. 1), 
and equal mesh size in both x and z is maintained to ensure a square element shape in the plane. This refinement 
practice provides a neat control over the total number of elements in a wrinkled structure. Figure 2b shows the 
simulated critical wavelength of the 1D mode as a function of the number of elements per unit wavelength. The 
theoretical values are also included as horizontal lines for comparison. Three different thin-film materials were 
studied: a single-layer P3HT:PCBM, a single-layer PEDOT:PSS, and a composite (bi-layer) film comprising of 
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50%–50% (equal thickness) P3HT:PCBM on top of PEDOT:PSS. The case of composite film has been compre-
hensively studied in our earlier 2D planar  models36,37, and is now successfully extended to the full 3D model. 
(Note that the theoretical relations, Eqs. (1–3) and (6), valid for a single-layer film, need to be revised for a bi-
layer film via the definition of effective composite film moduli under bending and axial  deformations2,49,50. For 
brevity they are not listed here.) As can be seen from Fig. 2b, mesh-insensitive solutions were achieved when the 
mesh density reaches about eight elements per unit wave. Further increases in mesh density result in constant 
critical wavelengths matching the theoretical values.

Figure 2c shows how the amplitude of the 1D wrinkles (normalized by the film thickness) evolves with the 
applied strain (normalized by the critical value at the onset of primary bifurcation), for the two cases of single-
layer film material. The mesh density used is the converged 10 elements per wavelength. The corresponding 
plot for the bi-layer composite film is shown in Fig. 2d. The theoretical response displayed in Fig. 2c, d are 
based on Eq. (6). It is evident that the numerical results are generally in agreement with the analytical solutions 
in all cases. From the discussion in Supplementary Information, the critical wavelength of 1D wrinkles is the 
shortest wavelength compared to all other primary and post-buckling modes under general biaxial loading. In 
the remainder of this paper, all simulation results were based on the sufficiently fine mesh of 10 elements per 
wavelength to ensure accuracy.

Figure 2.  (a) Typical form of simulated 1D wrinkles associated with the converged mesh. (b) Variation of 
simulated 1D wrinkling wavelength with the number of elements per analytical wavelength. (c, d) Amplitudes 
of the sinusoidal wrinkles normalized by film thickness as a function of the applied strain normalized by the 
critical value, plotted for (c) single-layer, and (d) bi-layer film systems.
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As a part of the verification study, we now present the evolution of stresses using the case of P3HT:PCBM 
film under uniaxial loading (BR = 0). A column of elements along the film-thickness direction from top (free 
surface) to bottom of film (adjacent to interface) and into the top substrate element, near the lower-right corner 
of Fig. 1c, were selected. Figure 3a shows the history of the elemental stress component σxx in all these elements 
(evaluated at the elements’ centroids) as a function of the applied strain in the x-direction, exx . It is clear that the 
stress developments in all the film elements considered are identical at the pre-instability stage, and bifurcation 
starts at the same point with the σxx value in agreement with Eq. (2). Upon instability the top and bottom film 
elements selected are at the concave and convex sides of a wrinkle, respectively, so their stresses become more and 
less negative, respectively, as deformation progresses. Note that the stress in the compliant substrate immediately 
below the interface remains close to zero throughout the deformation. The same type of stress history is plotted 
in Fig. 3b, using four random elements at the top surface of the film. The locations of the chosen elements are 
highlighted in the inset of Fig. 3b. Again, bifurcation initiates at the same point consistent with the analytical 
critical stress value. The post-instability stress diverges depending on the element location.

In addition to uniaxial loading, the critical stresses associated with the primary bifurcation mode for various 
biaxiality ratios were obtained from the numerical simulations and compared with the theoretical value of Eq. (2). 
The variation of the magnitude of (σxx)cr with the BR value is shown in Fig. 3c. As can be seen, the simulated 
(σxx)cr is independent of the biaxiality ratio and is close to the theoretical prediction. It is worth mentioning 
that, for biaxial loading, (σzz)cr will change with BR so overall the critical stress state is actually a function of 
the load biaxiality.

Figure 3.  (a, b) Evolution of stress σxx as a function of applied strain exx , (a) through the film thickness and 
into the top element of the substrate at a chosen location, and (b) at various locations of the film’s top surface. 
(c) Variation of critical stress, (σxx)cr , with the biaxiality ratio, BR. The theoretical solution is also included for 
comparison.
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Wrinkle patterns vs. macroscopic response. The present work investigates the full range of biaxial 
loading between BR = 0 and 1. In this section we first present the simulated surface morphologies and their 
correlation with the macroscopic load response, using a special case of non-equi-biaxial loading with BR = 0.7. 
While the case of BR = 0.7 was chosen arbitrarily, this loading ratio does lead to a series of pattern changes 
from 1D mode (primary) to herringbone (secondary) and then to labyrinth (tertiary), as shown in Fig. 4a. The 
entire sequence from the pre-instability stage can be directly captured in one simulation run. From the model 

Figure 4.  (a, b) Evolution of surface wrinkling patterns during the loading history, starting from a flat surface 
to 1D mode (primary), herringbone (secondary), and then to labyrinth (tertiary) mode, obtained from a single 
simulation run for the case of non-equi-biaxial loading with BR = 0.7. (c, d) Variation of reaction force (c) Fz and 
(d) Fx with the applied strain ( exx ); the results for various BR values are included for comparison.
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output, the reaction forces in either compressive direction may be plotted against the applied strain. An example 
is shown in Fig. 4b using the reaction force in z, Fz, and the applied strain exx. The curve spans a wide range of 
deformation history from pre-instability to well into the tertiary instability mode, with the representative top-
view surface patterns included as insets in the figure. Whenever the instability mode change occurs, the curve 
displays a sudden change in slope or load drop.

Before the onset of instability, the film-substrate system is under nominally uniform compression and the 
surface remains generally flat. In Fig. 4b, we include a pre-instability image with a highly amplified displacement 
map, illustrating that the formation of wrinkles is in fact a gradual process starting from very small disturbances 
around the imperfection  site38. The onset of primary instability is at the applied strain of approximately 2.6 ×  10–3, 
and the dominant 1D wrinkle mode lasts through the strain of approximately 3.6 ×  10–3 when the second-
ary bifurcation (herringbone mode) commences. As the strain approaches 4.0 ×  10–3, an abrupt load reduction 
occurs which signifies a significant change in pattern into the labyrinth mode. Subsequent aberrations of the 
curve correspond to further adjustments of wrinkle configurations which will change the labyrinth form as the 
applied strain continues to increase. The simulation approach adopted here enables continuous visualization of 
the evolving instability patterns and the correlation with the macroscopic mechanical response.

It should be noted that the bifurcation points identified in Fig. 4b depend on the material properties and load-
ing condition. The specific case of P3HT:PCBM film with BR = 0.7 is chosen for illustration. Figure 4c shows the 
reaction force Fz versus applied strain exx for seven biaxiality ratios ranging from 0 to 1. The corresponding plot 
for Fx is shown in Fig. 4d. The exx value is used as a reference for both figures to represent the extent of applied 
strain. In Fig. 4c the case of BR = 0 is for uniaxial loading along the x-direction so Fz remains zero throughout 
the history. From Fig. 4c, d, a linear elastic response is observed at the pre-instability stage in all cases. In Fig. 4d 
a higher BR value results in a higher initial slope due to the Poisson’s ratio effect of biaxial loading. For each BR 
the first change in the load-strain slope corresponds to the onset of the primary instability mode. Subsequent 
irregularities along the curves are the result of mode transformation or configuration change, as described in 
the previous paragraph. (Note that the curve in Fig. 4b is a zoomed-in view of the curve of BR = 0.7 in Fig. 4c.) 
The curves in Fig. 4c, d indicate that different biaxiality ratios result in significantly different post-instability 
behavior. The following section is then devoted to a systematic analysis of the wrinkle pattern formation over 
the entire BR span.

Wrinkle patterns versus biaxiality ratio. To assess the dependency of wrinkle patterns on the biaxial-
ity ratio, extensive simulations were conducted with the pattern evolution closely monitored. Due to the nature 
of the resulting patterns as discussed below, the cases of 0.9 < BR ≤  1.0 require more detailed examinations. 
Therefore, this range is to be presented separately below. The progression of deformation is characterized by 
the normalized applied strain in the x-direction, exx/ecr , where ecr is the numerically obtained critical strain 
corresponding to the first bifurcation point. Figure 5 shows a collection of top-view (xz-plane) wrinkle pat-
terns displayed by the P3HT:PCBM film, for biaxiality ratios between 0 and 0.9 up through an applied strain of 
exx/ecr = 5 . The color contours represent the out-of-plane displacement ( uy ) with the red and blue colors being 
the highest (peak) and lowest (valley) positions, respectively. Note that the same quantitative color scheme is 
applied to all the surface patterns presented in this paper.

In Fig. 5 the left-most images are patterns right before instability, at exx/ecr ≈ 0.98 , showing very small 
disturbances originating from the imperfection site. (A very high scaling factor of 1000 is assigned to these pre-
instability images to make them visible.) Shortly after the deformation reaches exx/ecr = 1.0 , all cases of BR from 
0 to 0.9 have displayed well defined 1D wrinkles. For high BR values such as 0.9, the wrinkles are perpendicular 
to the x-direction since exx was set to be the higher compressive strain than ezz in the models. For uniaxial loading 
(BR = 0), the 1D mode persists throughout the entire history. For biaxial loading with a non-zero ezz component, 
the parallel wrinkles will start to curve so as to transform into the herringbone-like structure as deformation 
continues. This transformation occurs earlier as the biaxial loading becomes more prominent (increasing BR). 
In addition, another major post-buckling transformation from herringbone to labyrinth appears for high BR 
values, which also tends to occur earlier as BR increases.

The herringbone pattern observed in Fig. 5 deserves further discussion. As stated in Supplementary Infor-
mation, theoretical uncertainties exist in the literature regarding the evolution of herringbone pattern and the 
necessary loading condition in the post-instability regime. From the current simulations, the pattern is essentially 
an outcome of lateral undulation (post-bifurcation) in the 1D waves. In addition, this mode was not observed 
under pure equi-biaxial condition and was captured only for non-equi-biaxial cases of 0 < BR ≤ 0.90. It was 
observed that the short wavelength (perpendicular to the local wrinkle lines) remains invariant, but the long 
wavelength (lateral undulation) and the jog angle depend strongly on the applied strain. Our results about the 
herringbone pattern in general conform to the theoretical considerations in  references19,21,23.

Figure 6 shows the wrinkle patterns at various stages of deformation, for BR values greater than 0.9. With 
the loading conditions now closer to equi-biaxial, it can be seen that the 1D mode observed previously in Fig. 5 
is suppressed right from the onset of first bifurcation. (Immediately before instability a very small disturbance 
in the form of ripples originating from the imperfection site can be detected under a very high scaling factor.) 
There is a tendency for the primary instability mode to become checkerboard-like as BR approaches unity. Soon 
after the primary mode, there is a transient stage where the checkerboard form breaks down and more continu-
ous wrinkles emerge leading to a labyrinth structure. This transformation happens within the strain range of 
1 ≤ exx/ecr ≤ 2 , with the labyrinth mode staying dominant thereafter. Note that the transient patterns seen in 
Fig. 6 may be interpreted as a hybrid mode of checkerboard-herringbone; the term “bistable modes” have been 
used in the literature to refer to such hybrid instability  patterns21,51.
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Figure 5.  Evolution of wrinkling patterns as a function of applied strain (normalized by the critical value) and 
biaxiality ratios within the range of 0 ≤ BR ≤ 0.9.

Figure 6.  Evolution of wrinkling patterns as a function of applied strain (normalized by the critical value) and 
biaxiality ratios within the range of 0.9 < BR ≤ 1.0.
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The primary instability modes observed in Figs. 5 and 6 are now grouped together in Fig. 7 for a clear com-
parison. Within the range of 0 ≤ BR ≤ 0.91 (Fig. 7a) the mode is 1D wrinkles. It is worthy of note that, for a 
biaxial loading state with the applied compressive strain in one direction (z in the current study) as high as above 
90% of that in the other direction (x), the primary instability mode is still 1D wrinkles. Some 1D wrinkles become 
“branched” when BR is increased to the range of 0.92 ≤ BR ≤ 0.94, which is also associated with the lateral 
kinks displayed by most of the waves (Fig. 7b). This is a transitional state from the 1D wrinkle to checkerboard 
modes. Figure 8a, b shows the evolution of branching patterns for BR = 0.92 and 0.94, respectively. In both cases 
the 1D wrinkles at the two opposite sides of the model appear to emerge in a staggered manner. With further 
deformation the two sets of waves link up, resulting in a kinked and branched structure. As BR is increased to 
0.95 (Fig. 7c), the continuous waves are entirely broken up by the increasingly dominant kinking and branching, 
and the surface topography tends toward discrete islands.

Beyond BR = 0.95, a periodic wave form in both the x- and z-directions becomes more distinct and the check-
erboard pattern takes shape. Note that the true square-checkerboard is obtained only when BR = 1 (Fig. 7f). With 
a slight deviation from perfect equi-biaxiality, e.g., at BR ≈ 0.99, the wavelength along the z-direction is greater 
than that along the x-direction (Fig. 7e). It is worth mentioning that this non-square checkerboard pattern is 

Figure 7.  Primary deformation instability patterns obtained for various biaxiality ratios.
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qualitatively akin to the hexagonal/triangular modes proposed analytically by Cai et al17. Major findings from 
Fig. 7 can be summarized as follows:

• The wrinkling patterns are highly sensitive to the loading biaxiality, and variations of the checkerboard pattern 
are observed for BR ≥ 0.95. All these simulation results are with an initially perfectly flat surface, influenced 
only by the load biaxiality. This aspect has not been predicted by any theoretical studies discussed in Sup-
plementary Information.

• With BR ≥ 0.95 the loading state is very close to the pure equi-biaxial compression. This may explain why the 
perfect square-checkerboard pattern has not been observed in earlier experimental  studies1,3,17 (in addition 

Figure 8.  Formation and progression of “branched” wrinkles through the link-up process under the influence 
of loading biaxiality. (a) BR = 0.92 and (b) BR = 0.94.
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to other possible reasons discussed in the literature), since a nominal equi-biaxial state in actual experiments 
is likely to have slight deviations so non-square types of checkerboard patterns may be easily triggered. Fur-
thermore, any non-uniformity in the film and substrate materials may also affect the local stress state.

Construction of instability phase diagrams. The results presented in Figs. 5 and 6 provided an over-
view of how the instability pattern evolves as deformation progresses for the various biaxiality states. Since our 
simulations are able to predict temporal evolution of one bifurcation mode to another, the critical biaxial strains 
for each mode may be graphically presented so as to create a phase diagram. Figure 9a shows the variation of 
critical strains in the x-direction, (exx)cr , as a function of biaxiality ratio for our model system of P3HT:PCBM 
film on PDMS substrate. (Different materials will lead to different quantitative values but the qualitative features 

Figure 9.  (a) Variation of numerically calculated critical strain, (exx)cr , with the biaxiality ratio, BR; critical 
strains corresponding to the first three bifurcation points are shown and respectively labeled as (ecr)1 , (ecr)2 , and 
(ecr)3 . (b) Instability phase diagrams.
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remain the same, as confirmed by our analyses using the PEDOT:PSS thin film.) Note that, with any combina-
tion of BR and (exx)cr values in Fig. 9a, (ezz)cr is also determined. The critical strains here were obtained from 
the load-strain curves in conjunction with the wrinkling patterns, as discussed in previous sections. The critical 
values for the primary, secondary, and tertiary bifurcations are denoted as (ecr)1 , (ecr)2 , and (ecr)3 , respectively. 
These curves serve as the boundaries between the domains whose characteristic instability patterns are also 
displayed. Two theoretical values for the first bifurcation are included for comparison, one for the square-check-
erboard mode and the other for 1D wrinkles under the plane strain condition.

It is evident from Fig. 9a that the critical strains decrease as the biaxiality ratio increases. These domain 
boundaries converge toward the equi-biaxial state (BR = 1). However, at BR = 1 the three critical values do not 
actually coincide, as shown in the inset. There is a very small primary instability region where the characteristic 
pattern is checkerboard. The critical strains, (ecr)2 and (ecr)3 , on the other hand, are indistinguishable and thus the 
square-checkerboard transforms to labyrinth as the compressive strain increases. In the vast majority of biaxial 
loading conditions, 1D wrinkling is the primary bifurcation mode. Herringbone exists between 1D wrinkles and 
labyrinth. The stable herringbone pattern, however, occurs only within a relatively narrow region in this diagram.

An alternative form of the phase diagram is shown in Fig. 9b, using exx and ezz to characterize the biaxial state 
(note that both axes are normalized by (ecr)1 along the x-direction). The diagonal line represents the border of 
this diagram, since exx ≥ ezz in all cases of this study without the loss of generality. (Flipping the loading direc-
tions will lead to exactly the same results but in the other half of the figure). A dashed line representing BR = 0.9 
is added in the figure as a reference (not as a “phase boundary”), to aid in the reading of the map. The horizontal 
axis itself corresponds to the case of BR = 0. The phase boundaries are the three critical strains (ecr)1 , (ecr)2 and 
(ecr)3 normalized by (ecr)1 (corresponding to the respective BR values). As in Fig. 9a, the three main domains 
featured in Fig. 9b have the characteristic instability patterns of 1D wrinkles, herringbone and labyrinth. The 
checkerboard pattern, as well as the transitional hybrid mode of checkerboard-herringbone mentioned in the 
last section, only exist in a very small region when BR > 0.95 between the pre-instability and labyrinth domains. 
For all other BR values, the development of bifurcation modes follows the order of 1D wrinkles, herringbone 
and labyrinth as deformation progresses.

Concluding remarks
The embedded imperfection approach is successfully applied to three dimensions, and a comprehensive study on 
the surface instability patterns induced by biaxial compression is presented. The technique is easily implemented 
for structures consisting of thin films above a compliant substrate. Instead of treating the surface patterns dis-
cretely under specific assumptions, the generation of wrinkling morphologies and their transformations can be 
directly obtained from the simulations. The results provide insight and mechanistic rationale for uncertainties 
seen from past theoretical and experimental considerations. The state of biaxiality is found to influence the sur-
face pattern significantly, and each bifurcation mode can be traced back to certain abrupt changes in the overall 
load–displacement response. The square-checkerboard pattern has proven to be a dominant bifurcation mode 
only under strict equi-biaxial loading within a very narrow range of strains; physical experiments would easily 
miss the condition due to any slight deviation. A lower biaxiality ratio (closer to uniaxial loading) expands the 
dominance of the 1D wrinkles. However, for a biaxiality ratio as high as 0.9, the primary bifurcation mode is still 
1D wrinkles except that it transforms into herringbone and then labyrinth patterns quickly. The phase diagrams 
constructed from the simulation results provide an overview of wrinkling configurations over the entire span of 
biaxial loading. It is worth emphasizing that all the results presented in the current paper are based on simple 
isotropic linear elastic material behavior with an initially perfectly flat film layer. The 3D numerical model is well 
suited for future investigations involving more complex material, geometric and loading conditions.

Data availability
All data generated and analyzed during the current study are included in this article.
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