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Automated tumor proportion 
score analysis for PD‑L1 (22C3) 
expression in lung squamous cell 
carcinoma
Jingxin Liu1,3,7, Qiang Zheng1,2,7, Xiao Mu3, Yanfei Zuo3, Bo Xu3, Yan Jin1,2, Yue Wang1,2, 
Hua Tian4, Yongguo Yang4, Qianqian Xue1,2, Ziling Huang1,2, Lijun Chen1,2, Bin Gu3, 
Xianxu Hou5, Linlin Shen5,6, Yan Guo3 & Yuan Li1,2*

Programmed cell death ligend‑1 (PD‑L1) expression by immunohistochemistry (IHC) assays is a 
predictive marker of anti‑PD‑1/PD‑L1 therapy response. With the popularity of anti‑PD‑1/PD‑L1 
inhibitor drugs, quantitative assessment of PD‑L1 expression becomes a new labor for pathologists. 
Manually counting the PD‑L1 positive stained tumor cells is an obviously subjective and time‑
consuming process. In this paper, we developed a new computer aided Automated Tumor Proportion 
Scoring System (ATPSS) to determine the comparability of image analysis with pathologist scores. 
A three‑stage process was performed using both image processing and deep learning techniques to 
mimic the actual diagnostic flow of the pathologists. We conducted a multi‑reader multi‑case study 
to evaluate the agreement between pathologists and ATPSS. Fifty‑one surgically resected lung 
squamous cell carcinoma were prepared and stained using the Dako PD‑L1 (22C3) assay, and six 
pathologists with different experience levels were involved in this study. The TPS predicted by the 
proposed model had high and statistically significant correlation with sub‑specialty pathologists’ 
scores with Mean Absolute Error (MAE) of 8.65 (95% confidence interval (CI): 6.42–10.90) and 
Pearson Correlation Coefficient (PCC) of 0.9436 ( p < 0.001 ), and the performance on PD‑L1 positive 
cases achieved by our method surpassed that of non‑subspecialty and trainee pathologists. Those 
experimental results indicate that the proposed automated system can be a powerful tool to improve 
the PD‑L1 TPS assessment of pathologists.

The programmed cell death-1 (PD-1) and its ligands of PD-L1 and PD-L2, known as a family of immune 
checkpoint proteins, act as T-cell co-inhibitory factors, which is able to suppress the immune response. The 
interaction of PD-1 and PD-L1 ensures that the immune system is activated at the appropriate  time1. PD-L1 
expressed on tumor cells bind to PD-1 receptors on the activated T-cells, which helps tumor cells evade anti-
cancer  immunity2,3. Monoclonal antibodies that blockade the interaction between PD-1 and PD-L1 can restore 
the ability of immune response to kill cancer  cells4,5. According to this mechanism of action (MOA), a number 
of inhibitors have been developed. Existing immunotherapeutic drugs involving anti-PD-1 inhibitor and anti-
PD-L1 inhibitor have provided promising results in clinical  trials6,7.

Different PD-L1 IHC assays have been co-developed as companion or complementary diagnostics to dif-
ferent anti-PD-1/PD-L1 inhibitor  drugs8. The 28-8 antibody have been approved by both U.S. Food and Drug 
Administration (FDA) and National Medical Products Administration (NMPA) China as a complementary 
diagnostic to nivolumab for non-small cell lung cancer (NSCLC). The pembrolizumab uses the 22C3 antibody 
as a companion diagnostic  assay9. Most recently, FDA has expanded the use of the 22C3 assay alongside cemi-
plimab-rwlc for advanced NSCLC. Higher tumoral expression of PD-L1 evaluated by immunohistochemical 
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(IHC) assays has been approved to be associated with remarkably longer overall survival and with fewer adverse 
events on  NSCLC10–12.

The Dako PD-L1 IHC 22C3 and 28-8 pharmaDx assays employ tumor proportion score (TPS) to measure 
PD-L1 expression. The TPS is determined as the percentage of PD-L1 positive stained tumor cells (TCs) with at 
least partial membrane staining relative to the total number of TCs, excluding tumor-associated interstitial cells 
(ICs), necrotic, normal or non-neoplastic cells from the evaluation:

Therefore, the pathological assessment of tumoral PD-L1 expression is based on two semi-quantitative informa-
tion of PD-L1 positive tumor cell number and total viable tumor cell number.

In clinical practice, pathologists determine the TPS by microscopic examinations. Specifically, when the 
slide has a single PD-L1 positive tumor area, the TPS is determined as the product of the % of positive staining 
area and the % of positive TCs in the area. Whereas for the slide with heterogeneous tumor areas, TPS is calcu-
lated by averaging the stained tumor cell percentages of several divided tumor  areas13. Manually assessment is 
obviously time-consuming and subjective. It is hardly possible for pathologists to conduct visually quantitative 
analysis based on the whole slide images (WSI), which may contain millions of cells. Furthermore, imprecise 
and subjective definition of stain intensity makes the assessment even more difficult to ensure the inter- and 
intra-observer reproducibility.

With the advent of whole slide imaging scanners and dramatic improvements in computer vision algorithms, 
an increasing number of clinicopathologic Computer Aided Diagnosis (CAD) systems have been  proposed14. 
Previous works have shown promising performance in many straightforward tasks, such as metastasis  detection15, 
tumor region  detection16,17, and cell  detection18, etc. Researchers also introduced high level assessment system 
based on comprehensive information. Liu et al. proposed an end-to-end deep learning framework for automatic 
histochemical-score assessment for breast cancer tissue  microarray19. A deep reinforcement learning based model 
was introduced for HER2 scoring, which was able to select diagnostically relevant  regions20. Christiansen et al. 
showed their pioneering research of predicting fluorescent labels from transmitted-light images of unlabeled 
 samples21 using supervised machine learning techniques. Inter- and intra-observer concordances are essential 
and widely used for CAD system evaluation. Luo et al. compared their proposed gastrointestinal artificial intel-
ligence diagnostic system with three endoscopists of varying degrees of  expertise22. Eleven pathologists of four 
experience levels were involved to assess the deep learning assistant  system23.

Given the recent advances in the field of deep learning and computer vision, researchers have proposed several 
deep learning based frameworks for automatic PD-L1  scoring24,25. However, prior literature has focused on the 
methodology. In this study, we introduced computer aided TPS system named Automated Tumor Proportion 
Scoring System (ATPSS) for PD-L1 tumor proportion score assessment on lung squamous cell carcinoma slides. 
The system was designed to mimic the scoring process of the pathologists by only using PD-L1 stained IHC 
digital slides as input. We first constructed a tumor image and a positive tumor image, which were produced by 
deep learning based model of tumor area segmentation and image processing based module of positive membrane 
detection. The numbers of total TCs and PD-L1 positive TCs were counted on those two images by nuclei detec-
tion model for TPS calculation. To get a better understanding of AI aided PD-L1 TPS system, we conducted 
a multi-reader multi-case study. The main contribution of this paper is threefold and summarized as follows:

• To the best of our knowledge, this is the first comprehensive study involving different experience level 
pathologists and different PD-L1 expression level cases for the automatic TPS system evaluation.

• The proposed system was designed with recently published deep learning techniques and trained with the 
simplest labels of tumor region and tumor nuclei center.

• The results demonstrated that the ATPSS achieved promising results on PD-L1 positive cases, and could 
significantly improve the assessment accuracy of pathologists with lower levels of relevant expertise.

Materials and methods
The study was approved by the institutional review boards of the participating institution, i.e., the Fudan Univer-
sity Shanghai Cancer Center. Informed consent was obtained from all subjects. All clinical data and digital slides 
used were anonymized. Methods and experiments in this study were performed in accordance with relevant 
guidelines and regulations.

Materials. We collected two PD-L1 IHC WSI datasets, i.e., algorithm development cohort and evaluation 
cohort, for lung squamous cell carcinoma. Both were obtained from Fudan University Shanghai Cancer Center 
from 2018 to 2020. For each case in those two datasets, newly cut sections from formalin-fixed paraffin-embed-
ded samples obtained by surgical resection and biopsy were used to avoid degradation of PD-L1 protein due to 
long-term archiving, so as to ensure the reliability of the immunohistochemical results for PD-L1 expression. 
It is noted that all cases in evaluation cohort were from surgical resection, while biopsies were collected for 
algorithm development. Two serial sections were cut from each tissue for Haematoxylin and Eosin (H&E) and 
PD-L1 IHC. H&E sections were stained using the Sakura Tissue-Tek Prisma staining machine (Sakura Prisma-
J2S). PD-L1 IHC slides were performed on the Dako Autostainer Link 48 platform according to the automated 
staining protocol with the PD-L1 22C3 antibody. All slides were digitized by KFBIO FK-Pro-120 slide scanner.

TPS(%) =
# of PD-L1 positive TCs

Total # of viable TCs
× 100.
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The algorithm development set consists of 45 PD-L1 WSIs. According to our proposed algorithm, we extracted 
two different patch image datasets of TumorSeg and NucleiDetect for tumor region segmentation module and 
nuclei detection module respectively. TumorSeg consisted of 22,000 patch images of size 512× 512 captured 
at 20× optical magnification ( 0.475µm/pixel) with pixel-wise labels on tumor region. NucleiDetect contained 
4600 patch images of 256× 256 captured at 40× optical magnification, where nuclei centers of tumor cells were 
manually marked. The patch image ratios of PD-L1 expression negative to positive in both datasets were 3:7. 
Manual annotations were conducted by two experienced pathologists and four graduate students of pathology. 
Both datasets were randomly split into training and validation sets for ten-fold cross-validation.

A total of 51 tumor tissues from lung squamous cell carcinoma patients were collected as the evaluation 
cohort in this study. Inclusion criteria were that tissues contained a sufficient number of viable TCs for PD-L1 
IHC testing, and the PD-L1 tumor expression of the evaluation cohort were balanced in three PD-L1 expression 
levels of < 1% , 1–49%, and ≥ 50% . Detailed patient demographics and PD-L1 results are summarized in Table 1.

Automatic TPS algorithm development. We proposed an artificial intelligence based algorithm com-
bining both deep learning and image processing techniques for PD-L1 TPS assessment. Only PD-L1 stained IHC 
WS image was utilized as input. The system produced two intermediate results, i.e., tumor mask and positive 
stain mask, and the final TPS estimation by counting tumor nuclei on those two masked regions. The overview 
of the automatic TPS prediction framework is shown in Fig. 1. The framework consists of three main modules: 
(1) tumor area segmentation; (2) positive membrane detection; (3) nuclei detection.

We employed the fully convolutional network (FCN) architecture named Res50-UNet to detect and seg-
ment the tumor area. The model was built on U-Net26, which has a symmetric encoder-decoder architecture 
with skip connection between downsampling and upsampling paths. We utilized the pre-trained Resnet-5027 as 
the encoder, and removed the striding in the last two blocks and applied dilated convolution with rate of 2 and 
4. In addition, Atrous Spatial Pyramid Pooling (ASPP) was utilized between encoder and decoder to capture 
contextual information at multiple scales. The ASPP module contained four parallel atrous convolutions with 
increasing dilation rates of [1, 2, 4, 7].

The proposed positive membrane detection module does not require manual annotation. The DAB channel 
image IDAB was first extracted from input original RGB images using color  deconvolution28. In order to detect the 
positive stained membrane, we applied a difference of Gaussian (DOG) filter on the DAB channel image, which is 
then processed by luminance weighted  thresholding19. Specifically, the Luminance Adaptive Multi-Thresholding 
(LAMT)29 was first utilized to classify the positive stained pixels. We assigned luminance values to positive pixels 
for later thresholding. The idea was that the luminance instead of the value of IDAB could correctly describe the 
stain intensity. Finally, the positive stained region mask was obtained by post-processing with morphological 
operations and hole filling. The morphological operations are open and close operations, which arm to eliminate 
small dot noise and complete the partial membrane respectively. The positive stained cells are determined that 
if cells fall within the positive stain mask.

The tumor cell counting module was implemented by a nuclei detection model of Micro-Net30, which also 
resembled U-Net. The network was characterized by multi-resolution input and output for extracting multi-scale 

Table 1.  Baseline characteristics in the development and evaluation cohorts.

Characteristic Development cohort Evaluation cohort

Age (years)

Average 65.1 64.6

Range 40–71 51–81

Sex

Male 39 50

Female 6 1

Stage

T1 18

T2 22

T3 9

T4 2

N/A 45

Smoking history

Current/former smoker 46

Never smoker 5

N/A 45

TPS

< 1% 2 15

1–49% 10 18

>= 50% 33 18
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visual features. The label of the training set was processed according to repel coding  scheme31. Finally, we used 
non maximum suppression (NMS) to get the final detection result for counting.

Results
Intermediate results of the proposed ATPSS. Figure 2 shows an example of the intermediate results 
of tumor area segmentation, positive membrane detection, and nuclei detection. To measure the performance 
of the tumor region segmentation model, we calculated the Overall Pixel Accuracy (OPA) and pixel level recall. 
The model achieved OPA of 85.66% and recall of 0.91 (95% confidence interval (CI): 79.31–90.32% and 0.8616–
0.9443 respectively). The OPA in PD-L1 negative images was 82.14% while that in PD-L1 positive images was 
87.02%. The segmentation result showed that the model can correctly segment the tumor regions while dismiss 
the necrotic and Interstitial areas on IHC images. It is seen that positive stained membranes can be clearly 
marked by our proposed unsupervised method. The color deconvolution combined with morphological opera-
tions was able to reliably detect and separate positive membranes. The tumor nuclei detection model was evalu-
ated in terms of average F1 score on the validation set, where a true positive detection was determined if the 
Euclidean distance between the predicted point and the nearest annotated center is below 10 pixels. Using this 
metrics, the model achieved an area under the receiver operating characteristic (ROC) curve (AUC) of 0.901 
(95%CI: 0.845–0.918) and a F1 Score of 0.859 (95%CI: 0.812–0.898). PD-L1 positive and negative tumor cell can 
be calculated by combining three intermediate results. The comprehensive tumor cell detection results on WSIs 
with different PD-L1 expression level are illustrated in Fig. 3.

Comparison of ATPSS to pathologists on WSIs TPS assessment. In order to evaluate the impact 
of the automatic TPS assessment system, we designed a multi-reader multi-case study. Six pathologists involved 

(b) Training

(a) System modules

NucleiDetect dataset

(c) Inference Workflow

Npt = Number of PD-L1 positive tumor cell

TPS

residual 
encoder

 
decoder

Res50-UNet: Tumor Region Segmentation

multi-input 
residual encoder decoder

Positive Membrane Detection

color deconvolution DOG weighted thresholding

x40

x20

x20

Npt

Ntt

Ntt  = Number of Total viable tumor cell

MicroNet:Tumor Nuclei Detection

Positive Tumor Image

Tumor Image

Figure 1.  Overview of proposed framework in this study. (a) three main modules in ATPSS: tumor 
segmentation network (Res50-UNet), nuclei detection network (MicroNet), and positive membrane detection 
(PMD). (b) Model training. Res50-UNet and MicroNet were trained on datasets of TumorSeg and NucleiDetect 
respectively, which were cropped from WSI with different sizes and manually annotated by pathologists. (c) WSI 
inference workflow. A whole-slide image at 20× resolution is fed into the trained Res50-UNet and PMD module 
to get the masks of tumor region and positive tumor region. Npt and Ntt were predicted by MicroNet based on 
those two masked whole-slide images with 40× resolution, and finally the tumor proportion score is produced.
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in this study were divided into three groups based on their experience: pathology trainees (2), non-subspecialty 
pathologists (2), and subspecialty pathologists (2). Subspecialty and non-subspecialty pathologists have experi-
ences of PD-L1 TPS assessment, while pathology trainees had been trained before the experiment. All patholo-
gists can access the corresponding H&E slide during the assessment, while ATPSS only used PD-L1 IHC whole 
slide image for prediction. The ground truth TPS results of the evaluation cohort were from the pathology 
reports, which were interpreted by two subspecialty pathologists blinded to the clinical data under a light micro-
scope (Olympus BX43).

We evaluated the results using the 3-class classification (PD-L1 expression levels of negative [<1%], low 
expression [1–49%], high expression [ ≥ 50%]) accuracy (ACC). Meanwhile, Mean Absolute Error (MAE) and the 
Pearson correlation coefficient (PCC) between the ground truth and the TPS predicted by ATPSS and patholo-
gists were used as the evaluation metrics. As a reference, the MAE and PCC between the predicted TPS given 
by the two pathologists with the same experience level were also calculated.

The average accuracy for PD-L1 expression level classification of all 6 pathologists was 84.3%, and the patholo-
gist experience level had a significant effect on TPS assessment accuracy. Among the pathologist subgroups, sub-
specialists was unsurprisingly accurate on all three expression levels with a classification accuracy of 97.06% and 
an MAE of 4.17(95% CI 3.13–5.20). The within-group correlation between two sub-specialists is 0.96 ( p < 0.001 ). 
Whereas the ACC and MAE of non-subspecialists were 84.30% and 7.91 (95% CI 5.84–9.99), and those of trainees 
were 71.55% and 11.22 (95% CI 8.77–13.68) respectively, which had a significant accuracy drop compared to sub-
specialists (see Table 2). The within-group correlation of non-subspecialists and trainees were 0.86 ( p < 0.001 ) 
and 0.90 ( p < 0.001 ) respectively, and also demonstrated unreliability.

Our further analysis found that the PD-L1 expression level also affects the TPS assessment accuracy for 
pathologists of all three experience levels. Subspecialists only mis-classified the PD-L1 positive WS images, 
and yielded MAEs of 5.08 and 6.72 for the expression levels of “1–49%” and “ ≥ 50%”. The mis-classification 
of non-subspecialists and trainees focus on the lower expression cases with TPS of “<1%” and “1–49%”. Non-
subspecialists produced similar MAEs on two PD-L1 positive expression levels (“1–49%”: 10.61, “ ≥ 50%”: 9.72), 
which were worse than that of negative expression. The MAEs of trainees were increasing with the expression 

Figure 2.  Examples of intermediate images in the ATPSS pipeline. From left to right of the top row is the 
original PD-L1 IHC images with different scales. From left to right of the bottom row: tumor area segmentation 
result, positive membrane detection result, and tumor nuclei detection result.

Figure 3.  Examples of comprehensive results of proposed ATPSS that combine three intermediate results. The 
slides show different PD-L1 expression levels. Red dots indicate positive PD-L1 stained tumor cells, while green 
dots depict tumor cells negative for PD-L1 staining.
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level of 3.05, 12.53 and 16.72. The confusion matrix and violin plot of different PD-L1 expression levels for ATPSS 
and each pathologist subgroup are shown in Fig. 4.

ATPSS achieved a classification accuracy of 74.51% and an MAE of 8.65 (95% CI 6.42–10.90) on the valida-
tion cohort, which was better than trainees and worse than non-subspecialists. It can be found that ATPSS gave 
poor prediction on negative PD-L1 expression cases, which mistakenly classified the negative expression into low 
expression level (Fig. 4). We excluded the negative PD-L1 expression cases, the MAE and classification accuracy 
of ATPSS were 9.3%(6.57–12.07) and 94.4%, respectively, which significantly surpassed those of non-subspe-
cialists (MAE: 10.17 [95% CI 7.49–12.85], ACC: 87.5%) and trainees (MAE: 14.63 [95% CI 11.82–17.44], ACC: 
69.4%). Within PD-L1 expression subgroups, the MAE of ATPSS were 7.06, 6.73 and 11.90 for “<1%”, “1–49%”, 
and “ ≥ 50 %” respectively. While ATPSS produced significantly lower MAE than that of the non-subspecialist 
group in “1–49%”, and their performance is similar in “ ≥ 50%”.

Discussions
In this study, we developed an automatic TPS assessment algorithm named ATPSS for IHC PD-L1 whole-slide 
images of squamous cell lung cancer patients, which is highly helpful to improve pathologists’ diagnosis accuracy 
and efficiency. The ATPSS utilized widely proved deep learning models and image processing techniques, and 
the intermediate results were calculated according to pathologists’ assessing process.

According to the results of ATPSS and the histopathological manifestations of the cases, we can conclude that 
ATPSS was able to accurately distinguish tumor parenchyma, interstitium, most infiltrating immune cells and 
tissue cells in lung squamous cell carcinoma, and could precisely identify PD-L1 membrane-positive tumor cells 
from histiocytes, which showed a high level of agreement with the ground truth. In addition, the performance 
of tumor region segmentation was consistent on the IHC images with different PD-L1 expression levels. With 
the uniform thresholds of DAB stains, the positive membrane detection module showed more precise results 
than pathologists.

However, ATPSS easily mis-classified the PD-L1 negative cases with TPS <1% as low PD-L1 expression of 
TPS 1–49% (see Fig. 5). Among the 11 cases that were mis-classified as level of 1–49%, most of the cases (8/11, 

Table 2.  The performance of ATPSS and pathologists for PD-L1 tumor proportion score assessment.

ACC (%)

MAE [TPS%]

PCC (p value)Overall (95% CI) <1% 1–49% >50%

ATPSS 74.51 8.65 (6.42–10.90) 7.06 6.73 11.90 0.9436 ( < 0.001)

Subspecialist 97.06 4.17 (3.13–5.20) 0.00 5.08 6.72 0.9828 ( < 0.001)

Non-subspecialist 84.30 7.91 (5.84–9.99) 2.50 10.61 9.72 0.9268 ( < 0.001)

Trainee 71.55 11.22 (8.77–13.68) 3.05 12.53 16.72 0.8934 ( < 0.001)
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Figure 4.  Results PD-L1 TPS assessment of ATPSS and pathologists on different PD-L1 expression levels. The 
top row presents the confusion matrices; bottom row shows the violin plots. The results of pathologists are the 
sum of two pathologists with same experience level. The ATPSS shows satisfactory level of accuracy on positive 
PD-L1 expression cases; the level of accuracy drops as the pathologist’s level of experience deceases.
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72.7%) were interpreted to have a TPS ranging from 1 to 10%. Those PD-L1 IHC images were individually 
analyzed by thoracic subspecialty pathologist, and the main reasons can be summarized: (1) a small number of 
membrane-positive histiocytes or other infiltrated immune cells scattered inside and around the tumor nests 
were recognized as positive tumor cells; (2) a few of necrosis or apoptotic foci in tumor nests were recognized 
as positive tumor cells due to the non-specific staining.

The last three negative PD-L1 expression cases were assessed with TPS ranging from 15.78 to 27.8% by 
ATPSS. There were two reasons leading to the large deviation. Firstly, poor tissue processing and staining qual-
ity, such as poor immunohistochemical staining, peeling off, tissue-fold, etc, lead to the poor elution of second 
antibodies and chromogenic reporter, resulting in non-specific staining in many areas, which directly affected 
the performance of tumor region detection and tumor cell detection. Secondly, those cases had common char-
acteristics, i.e., PD-L1 positive non-tumor cells are closely intermixed with tumor nests, or distributed in clusters 
on the edge and inside of tumor nests. Furthermore, those cases with large deviation usually showed complex 
histologic architecture due to poor differentiation, such as poorly cohesive pattern and single cell stromal inva-
sion. Such complex architecture and mixed immune infiltration pattern results in identification mistakes, e.g. 
mis-recognizing positive non-tumor cells as positive tumor cells.

It should be noted that similar problems of the non-specific staining and complex cancer tissue structure 
also occurred in the positive expression slides. Nevertheless, such incorrectly identified area was significantly 
smaller than the whole tumor area, which would not have a great influence on the final TPS assessment. The main 
causes of large assessment error by ATPSS on positive PD-L1 expression cases were low image quality, such as 
out-of-focus, tissue-fold, and unclear nuclei caused by strong DAB staining. Therefore, it is of great significance 
to control the quality of samples submitted for inspection in future works.

The study has several limitations. From the perspective of model development, the unbalanced development 
cohort was also a possible reason of poor accuracy on PD-L1 negative cases. Although two datasets (e.g., Tumor-
Seg and NucleiDetect) had a sufficient amount of PD-L1 negative patch images from PD-L1 positive cases, the 
morphological particularity of the PD-L1 positive cases were ignored. Therefore, a balanced development cohort 
may be one of the possible solutions to this problem. The ground truth of the evaluation cohort was assessed 
manually by pathologists without accurate quantification of tumor areas or tumor cells. As a result, the TPS 
values have a quantitative step-size of 5. If a WS image was assessed at 70%, it means that the image has a value 
of around 70%. However, as a fully automatic and quantitative assessment system, the ATPSS predicted TPS 
at cell level. Therefore, in the strict sense, the ground truth cannot be used as the gold standard for validating 
ATPSS performance. More accurate ground truth can be obtained by summarizing several experienced patholo-
gists’ results or manually correction of ATPSS’s intermediate results with computer assisted system. According 
to the suggested methods for determining TPS provided by ‘PD-L1 IHC 22C3 pharmDx Interpretation Manual 
- NSCLC’13, the TPS assessment on the whole slide images are based on selected tumor areas. Therefore, instead 
of whole slide image assessment, the tile-based assistant experiment (e.g. pathologists first visually divide the 
tumor area into tiles with equal size, and select several tiles for TPS prediction) may be closer to the clinical 
diagnosis process. Finally, our study was limited to the cases from a single hospital of Fudan University Shanghai 
Cancer Center. A further study incorporating larger datasets from multiple hospitals, digitized with different 
scanners, as well as more pathologists with border experience levels will be necessary to validate the automatic 
tumor proportion scoring system.

Future work can further develop this research in aspects: biopsy ability, adenocarcinoma support, and com-
puter assisted system. First, routine diagnostics of NSCLC are typically needle biopsy. To develop the ability on 
biopsy, a specialized dataset should be collected for training the tumor area segmentation model, and the model 
should also have a larger receptive field for extracting long range morphological information. Second, in this 
work, we only study the squamous cell carcinoma of NSCLC. Adenocarcinoma has a more complex morphol-
ogy of tumor compared to squamous cell carcinomas. Our preliminary study found that manual annotation is 

Figure 5.  Three PD-L1 negative expression slides mis-classified as weak expression. These slides have different 
levels of tissue-fold, non-specific staining, and intermixing of tumor and non-tumor region.
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time consuming and has serious inter-difference between different pathologists. To solve this, future research 
can employ manual correction based on the transfer result of the tumor area segmentation model of ATPSS to 
accelerate the annotation process. Finally, future research can further develop computer assisted system which 
combines the results of artificial intelligence based algorithm and pathologists for more accurate TPS assessment.

In summary, we have developed computer-aided system using IHC PD-L1 whole slide images of lung squa-
mous cell carcinoma for automatic tumor proportion scoring. ATPSS was able to achieve high assessment accu-
racy on positive PD-L1 expression cases and significantly surpass to that of non-subspecialists and trainees. In 
doing so, we show the potential of automatic or computer assisted tumor proportion scoring to improve the 
effectiveness and accuracy of quantitative PD-L1 assessment.
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