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Eye tracking based dyslexia 
detection using a holistic approach
Boris Nerušil*, Jaroslav Polec, Juraj Škunda & Juraj Kačur

A new detection method for cognitive impairments is presented utilizing an eye tracking signals in 
a text reading test. This research enhances published articles that extract combination of various 
features. It does so by processing entire eye-tracking records either in time or frequency whereas 
applying only basic signal pre-processing. Such signals were classified as a whole by Convolutional 
Neural Networks (CNN) that hierarchically extract substantial features scatter either in time or 
frequency and nonlinearly binds them using machine learning to minimize a detection error. In the 
experiments we used a 100 fold cross validation and a dataset containing signals of 185 subjects (88 
subjects with low risk and 97 subjects with high risk of dyslexia). In a series of experiments it was 
found that magnitude spectrum based representation of time interpolated eye-tracking signals 
recorded the best results, i.e. an average accuracy of 96.6% was reached in comparison to 95.6% that 
is the best published result on the same database. These findings suggest that a holistic approach 
involving small but complex enough CNNs applied to properly pre-process and expressed signals 
provides even better results than a combination of meticulously selected well-known features.

The International Dyslexic Association and the US National Institute of child health and human development 
have defined dyslexia as a specific learning disability that is neurobiological in  origin1. Worldwide, it is estimated 
that about 10% of the population suffers from dyslexia. Dyslexics face issues while processing words from writ-
ten language to speech and in a word decoding. The result is an inability to read or a very cumbersome reading. 
Typical manifestations of dyslexia include problems in distinguishing shapes of letters, not being able to separate 
sounds that are similar, such as b, d, p, q, m, n, etc. The rotation of letters can be considered as an effect that 
causes these difficulties. Moreover, for dyslexics it is hard to recognize letters that are in wrong  positions2. Other 
manifestations of dyslexia include omitting letters and syllables within words and misunderstanding the content 
of the quoted  text3,4. As a consequence, it has been observed that the eye movements of dyslexics are different 
from the eye movements of non-dyslexics. Typical patterns for dyslexic eye movements are more frequent and 
longer fixations, shorter saccades and more regressions.  In5 fixations are specified as periods when gaze remain 
at the same location for 200–300 ms and saccades as rapid and abrupt eye movements that shifts the point of 
fixation. Eye movements from right to left are called regressions whereas those from left to right are marked as 
progressive, and both can be considered as types of saccadic movements.

It is assumed that the increased word processing requirements lead to the longer processing time and changes 
in fixation  patterns6. These observations can be considered as basic assumptions for the research branch focusing 
on eye movements. Several studies compared the eye movements of dyslexics and normal readers and many types 
of eye movement have been shown to have diagnostic potential for subjects with dyslexia, e.g. for dyslectics it is 
typical to make more regressions than healthy  ones7,8.

Children with dyslexia require special learning methods to overcome reading difficulties. To diagnose dys-
lexia, it is necessary to perform assessments either in written or oral  form9. By tracking eye movements during 
reading it is possible to create a path of visual  attention10,11 as shown in Fig. 1. Cognitive defects in subjects can 
be detected by detailed investigation of the visual path. Various types of cognitive disorders as autism, schizo-
phrenia, dementia can be identified by using eye tracking  technology10,12.  Moreover, there are many articles on 
modelling human visual attention, e.g.13 as well. Currently, there are several research projects detecting cogni-
tive disorders by evaluating visual attention of subjects either while viewing pictures or regarding texts. Such 
scenarios combined with an eye-tracking form a base for the detection of cognitive  disorders12,14–17. In some 
cases regions of interest in selected pictures are analysed, e.g. cards of the Rorschach test (ROR) for the detection 
of  schizophrenia14, whilst in the detection of other cognitive disorders (autism, dementia, or dyslexia) the text 
reading test is of the main  focus12,18–20. This article is especially dedicated to dyslexia detection where the eye 
movements of dyslectic are assumed to differ from healthy  individuals16,20.
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The article is organized as follows. First, an overview of the related work is provided focusing on the detec-
tion of dyslexia. Then a detailed description of the proposed approach is outlined together with the supporting 
assumptions. In paragraph 4, the dataset, training and testing conditions are presented. Next the designed 
experiments and results are shown. The article is concluded by summarizing the achieved results in comparison 
to the reference methods, and concluding remarks.

Related work
Several research articles have investigated the association between abnormal eye movements and dyslexic dis-
orders during a reading activity. Most of them evaluated their methods on a dataset presented  in16 comprising 
97 subjects of high risk (HR) and 88 subjects of low risk (LR) of dyslexia, i.e. in total there are 185 recordings.

In the original  research16 fixations were defined as periods when eyes remain steady for at least 50 ms, and 
saccades where eye movements cross a certain distance threshold. Fixations were used to define set of derived 
features as duration of an event, distance spanning event, average eye position during an event, standard deviation 
of average position, maximum range between any two positions, and accumulated distance over all subsequent 
positions. In total the authors generated 168 features capturing different quantitative eye movement properties 
during reading that can be categorized as durations, amplitudes, directions, stability and symmetry measures. 
Such set of distinctive features was reduced down to 48 features by using recursive feature elimination (RFE). 
The classification was based on support vector machines (SVM) reaching an accuracy of 95.6% and together with 
a feature elimination it forms the SVM-RFE  method16.  In21, the authors used the Particle Swarm Optimization 
(PSO) and Hybrid Kernel SVM classifier in their approach to detect dyslexia. Statistical methods were used to 
extract features from eye movements such as fixations and saccades. These features were analysed-processed by 
Principal component analysis (PCA) and then classified. They reported an average detection accuracy of 95%. 
 In22 the authors tested different algorithms such as Random Forest Classifier (RF), SVM or k-nearest neigh-
bours (k-NN) with different features derived from the eye fixations that were further reduced by RFE. In such 
settings the k-NN classifier recorded the best accuracy of 95%. The authors  in5 used statistics of fixations and 
saccades and in addition to that they deployed a variance threshold identification (I-DT) and velocity threshold 
identification (I-VT) algorithms to derive extra features. Then the Hybrid Kernel SVM-PSO achieved the best 
result of 95.6%, using a feature set containing the average number of fixations and saccadic movements, and the 
average duration of fixations and saccadic movements.  In15 the authors used a dataset having 48 subjects with the 
diagnosed dyslexia and 97 subjects with no dyslexia. The extracted features they used include, e.g. the number 
and duration of fixations, the number and duration of returns, the age of the subject or the font of the text. The 
data were classified using a SVM binary classifier recording an accuracy of 80.18%.

Other important group of  publications23–25 focusing on the diagnosis of dyslexic disorders is based on ana-
lysing brain images either in form of Functional Magnetic Resonance Imaging (fMRI) or MRI. The reported 
accuracies range from 80 to 92.5% depending on the used dataset, processing and classification methods.

Another interesting approach published  in26 is based on analysing handwriting images of children aiming 
to identify the symptoms of dyslexia. The neural network (NN) based classification reached a 73.33% accuracy.

Proposed approach
Our method for the detection of dyslexia is based on analysing eye movements during a text reading activity. 
Unlike similar methods, we decided to apply a different approach than representing the eye movement signal by 
many specific features evaluated at the global level. Instead, the eye movements that are represented as sequences 
of x–y coordinates are modelled and classified as a whole either in time or frequency, i.e. without an explicit fea-
ture extraction stage. This is to test if a proper model can both extract “hidden” and possibly more representative 
features and classify them at the same time using machine learning. It is important even though many designed 
features show a good performance, however there is still no prove they are optimal for the detection of dyslexia.

Our method as the majority of others consists of two main parts. Nevertheless, due to a holistic approach 
they are not that strictly separated, i.e. signal processing/feature extraction and a classification stage that are 

Figure 1.  Eye movements of randomly selected subjects from the high risk (left) and low risk (right) dyslexia 
groups during a text reading test (movements outside the paper are not shown because of spatial reasons).
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realized by a CNN, which acts as a feature extraction method and a classification tool as well. In the following 
both will be outlined.

Signal pre-processing and signal representations. The proposed method was derived following nat-
ural and well accepted assumptions as stated in the following:

1. Even though the total text reading time is significantly greater for children with high risk of dyslexia (HR) 
than for children with low risk (LR), it is not true in all cases.

2. The time course of x-coordinate in LR children has a saw-tooth like shape (Fig. 2A), which ideally has as 
many maxima (teeth) as there are lines of the read text and each tooth has almost a linear course.

3. The time course of x-coordinate in HR children has also a saw-tooth like shape, however sometimes a sudden 
backward movement is observed, (Fig. 2B). This naturally deforms the “ideal” saw-tooth as observed in LR 
subjects.

4. If all LR children read the text as fast as HR children, the spectrum of the saw-tooth like signal according to 
assumption 2 should be shorter for LR subjects than the spectrum observed for HR subjects according to 
assumption 3 (sudden returns result in more complex frequency components, i.e. less decaying spectrum).

With regards to assumptions 1–4, the proposed method reflects all of them. To see how relevant assumption 
1 is, two options were tested. First one uses signals stripped off the time information by interpolating all record-
ings to the maximal sample length. We chose a suitable interpolation method based on a discrete orthogonal 
transformation. The second approach applies a zero-padding of shorter signals to the length of the longest one 
(the same-length condition was also required by CNN that assumes a fixed length input), where the time infor-
mation is implicitly present in the form of a number of padded zeros.

To reflect assumption 4 (indirectly 2 and 3) the standard Discrete Fourier transform (DFT) was used to 
calculate a spectrum of examined signals. More precisely the magnitude spectrum (only its first half) should 
sufficiently describe the saw-tooth nature of the signal as well as the disproportion in the shape of typical “teeth”  
for LR and HR children. The additional benefit of the magnitude spectrum is that it does not depend on which 
line (position) a HR child encountered a reading problem and had to shift his or her gaze to the beginning of a 
given line (such information is present in a phase spectrum), as we believe these sudden shifts (returns) happen 
randomly (line independently). Therefore, by removing the positional information we have dramatically reduced 
all possible combinations of those sudden returns and thus made the CNN training process much easier, i.e. not 
having to learn all positional combinations that occur randomly. To confirm the frequency based assumptions, 
signals in the time domain either interpolated (no reading time information) or zero padded (reading time 
implicitly present) were directly used as CNN inputs too.

Unlike other approaches, here the signal is pre-processed only to meet the basic assumptions as stated before, 
whereas the genuine feature extraction and classification parts are implicitly realized inside a proper classifier 
(CNN) that process entire signals (holistic approach).

Eye movements expressed as x–y coordinates for each eye separately i.e. (Rx, Ry) right eye, and (Lx, Ly) left 
one were averaged over both eyes as there is no evidence that dyslectic patients would have different scanning 
patterns for left and right eyes. Moreover, averaging of x–y trajectories over left and right eyes produces less 
redundant and more robust training–testing samples that are easier to process and classify.

Subsequently, all signals were cut in length so that only active reading parts were present. Furthermore, it 
was observed that after the reading was accomplished (reaching end of the last line) the subjects regardless of 
LR or HR groups paid attention to different parts of the text exhibiting different eye-movement patterns. It was 
found that non-reading parts represent approximately half of the recording time, and so this could affect the 
detection process that is based only on text reading. In Fig. 2A,B entire signals (x-coordinate) with the marked 
end of reading are shown for a typical LR and HR subjects.

In the subsequent data processing, we have derived and tested following signals that are in line with the 
outlined assumptions:

Figure 2.  The eye movements expressed in x axis for a typical—LR subject (A) and HR subject (B). The end of 
reading part is marked with a red line.
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a) Time domain zero padded signal
b) Spectrum of a time domain zero padded signal
c) Time domain interpolated signal
d) Spectrum of time domain interpolated signal

Bock schemes illustrating the suggested signal pre-processing methods, e.g. processed signals entering the 
CNN classifier are shown in Fig. 3.

In methods (a) and (b), signals were padded by zeros to get the same length as of the slowest reader. Such 
signals are shown in Fig. 4A,B, for LR and HR subjects, respectively. In method (b), additionally, the DFT was 
applied and a magnitude spectrum was calculated, as shown in Fig. 4C,D for LR and HR subjects.

In methods (c) and (d) a signal interpolation in time is applied to get fixed length signals entering a CNN 
classifier and to remove the reading time. All signals were interpolated—extended to the length of the slowest 
reading subject. They were interpolated by harmonic functions preferred in image processing; in our case we 
used base functions of the Discrete Cosine Transform 3 (DCT3) to get signals of the fixed length N as in Eq. (1):

where k and n represent spectrum and time indexes, respectively. Next, the ratios between the original and the 
modified lengths were calculated for each subject. Such interpolated signals were multiplied by the ratios to 
correct the overall energy; x-axis interpolated signals are shown in Fig. 5A,B for LR and HR subjects. The same 
signals represented in the frequency domain, i.e. by their magnitude spectra are shown in Fig. 5C,D.

Except the reading time, horizontal signals (x-axes) differ between LR and HR subjects too, as can be seen 
in Fig. 5A,B. Whilst x axes in case of LR subjects closely resemble a saw-tooth shape, such pretty deterministic 
structure is disrupted by unpredictable abrupt backward movements and equally sudden returns to the original 
position. This discriminative pattern was rather dominant (carries significant information) thus the vertical 
axis (y) was not included in the following processing and classification. By doing so we reduced the amount of 

(1)DCT3Uk,n
=

√

2

N
cn cos

(

π((2k + 1)n)

2N

)

k= 0,1,...,N−1, n= 0,1,...,N−1,

Figure 3.  A block scheme of the designed and tested data processing methods; (a) time domain zero padded 
signal, (b) spectrum of time domain zero padded signal, (c) time domain interpolated signal, (d) spectrum of 
time domain interpolated signal.
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Figure 4.  Time domain zero padded eye movement signal (x axis) of a typical LR subject (A), and HR subject 
(B). Magnitude spectrum of time domain zero padded signal (x axis) of a typical LR subject (C), and HR subject 
(D).

Figure 5.  Time domain interpolated signal (x-axis) for a typical LR subject (A), and HR subject (B). Magnitude 
spectrum of time domain interpolated signal (x-axis) for a typical LR subject (C), and HR subject (D).
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processed data by factor 2, the complexity of CNN (kernel dimension), and thus simplified the training process 
as well. Moreover, experiments involving also y axis were performed, but no improvements were observed.

Finally, it should be noted that a magnitude spectrum representation of signals reduced the amount of pro-
cess data by factor of 2 (as spectrum is symmetric only 1st half is needed), and that the spectral unidirectional 
component does not carry any obvious information (just the centre of text in the horizontal direction) and so it 
was excluded from the final vector entering the CNN.

Convolutional neural network—suitable classification model. As we decided to process and clas-
sify entire signals which contain both the typical patterns for a text reading task and specific ones caused by 
the reading errors that are randomly scattered in the time, the natural choice was a CNN  network27. The search 
for scattered patterns can be performed both in time and frequency domains and thus a CNN structure acts as 
unifying framework for all our intended experiments. CNNs are currently the best performing NN structures 
in image and video recognition, image classification, medical image analysis and language  processing15,28,29. It is 
due to their structures that allow to extract relevant features located at different positions (shift invariant), more 
filters (kernels) placed in parallel planes provide a resolution invariance, and proper concatenation of more con-
volutional layers enables a hierarchical non-linear feature extraction that is vital for very complex features. Thus 
a CNN usually requires relatively small signal pre-processing compared to other image classification algorithms 
as it learns the feature extraction model by means of machine learning minimizing a classification error. It is 
unlike traditional algorithms that use theoretical (usually limited) knowledge to extract particular features prior 
to the classification stage. This independence from prior knowledge and human errors in the design is a major 
advantage.

Training and testing setup
In our dyslexia detection experiments we used database that was presented  in16 as it meets all the necessary 
requirements, and to have the same data as most of the other published methods that is vital for a correct com-
parison. It contains 185 recordings each for a single tested subject. Subjects with cognitive disorder were in the 
HR group—reading disorder was identified in 97 subjects (76 male and 21 female subjects). In the LR group 88 
subjects were presented (69 male and 19 female subjects). The age of subjects ranged between 9 and 10 years, 
and none of them suffered mental retardation. The text that was read consisted of 10 sentences divided into 8 
lines with an average length of 4.6 words. The eye movements were recorded by Goggle-based Obe-2 TM system 
in the horizontal and vertical directions (x, y axes) for both eyes at the sampling frequency of 100 Hz. For the 
purpose of our research and taking into consideration the outlined assumptions only horizontal (x-axis) eye 
movements were averaged over both eyes and used for further processing.

In our experiments, we used Matlab both for the signal pre-processing and the classification that was realized 
by a CNN. To reduce the effect of improperly selected classification models i.e. CNN complexity, we selected 
CNNs with different number of convolutional layers, namely 2, 3 and 4. The exact structures and names of the 
tested CNNs are:

a) CCN2—2 layers, kernel sizes [1 × 3, 1 × 3], Relu activation function, number of kernels [8, 16],  max pooling 
[1 × 2] with a stride [1 × 2]

b) CNN3—3 layers, kernel sizes [1 × 3, 1 × 3, 1 × 3], Relu activation function, number of kernels [8, 16, 32], max 
pooling [1 × 2] with a stride [1 × 2]

c) CNN4—4 layers, kernel sizes [1 × 3, 1 × 3, 1 × 3, 1 × 3], Relu activation function, number of kernels  [8, 16, 
32, 64], max pooling [1 × 2] with a stride [1 × 2]

The output of each convolutional layer was batch normalization. At the end a 2 layer fully connected network 
with a softmax output was appended. In the training Stochastic Gradient Descent algorithm (initial learning 
speed of 0.01) with a momentum was used to minimize a crossentrophy loss function.

Out of 185 subjects we generated 100 different test folds each containing 16 subjects (8 HR, 8 LR). Such 
scenario mimicked the training conditions as stated  in16 and provides more accurate and robust results as well. 
It was ensured that in the worst case there was at most a 50% intersection between any folds (sets). The remain-
ing data were divided as 90% for training and 10% for validation. The training, testing and validation process 
is shown in Fig. 6.

Results
Observing the trimmed data and considering assumption 1, we first tested a very simple classification method 
that is purely based on a histogram of reading times; as reading times of LR subjects are in the majority of cases 
shorter than in HR group. If only such simple parameter is used it is possible to find a single threshold providing 
very high accuracy of 95.67%.

In the next series of experiments methods converting different length signals to the same length signals 
(interpolation vs. zero padding) and proper signal representations (time vs. frequency) were evaluated. First, 
we visualize typical inputs to CNN for 5 LR and 5 HR subjects, i.e. zero padded signals expressed in time and 
frequency (magnitude spectrum) are shown in Fig. 7A,B, and time interpolated energy normalized signals 
expressed in time and frequency are in Fig. 7C,D.

Clearly, there are visible differences between LR and HR groups especially in the case of zero padded signals 
in the time domain (Fig. 7A) and in the frequency—magnitude spectra (Fig. 7B). In both cases that stems mainly 
from the differences in reading times (lengths of the recordings).
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The overall results showing the performance of the suggested pre-processing methods, signal representations, 
and the tested CNN structures are listed in Table 1. For a better comparison results of other published methods 
are listed as well, using accuracy, true positive (TPR) and true negative (TNR) rates; the methods are listed in 
an accuracy-descending order. The highest accuracy (96.6 ± 2.9) was recorded in the case of magnitude spec-
trum of time interpolated signals. However, a magnitude spectrum representation was successful in both cases 
(zero padding and interpolation), e.g. the magnitude spectrum brought 0.7% and 23.1% improvements over the 
time domain representation for zero padded and interpolated signals, respectively. This may suggest it carries 
additional useful information to the reading times. The worst scoring candidate was obviously a time domain 
interpolated signal (73.5 ± 10.8) that is stripped off any reading time information and, moreover, is missing the 
benefits provided by a magnitude spectrum representation. When the CNN complexity is regarded the best 
results were achieved for a 3 layer CNN (4 layer CNN provides very similar results), that means such a small 
network is complex enough for a given processing, representation and dataset. Nevertheless when considering 
computational complexity of a CNN classifier compared to a SVM it is obvious that in general CNNs require 
more numerical operations than SVM. On the other hand, CNN performs all the major processing steps, e.g. 
detection, extraction, fusion of features and their classification at the same time. When the suggested CNN 
approach is used in the diagnosis, the screening time of the diagnosed person is incomparably longer than the 
classification itself, and thus it does not play an important role.

Conclusions
We have designed, presented and analysed a novel holistic method for dyslexia detection in a text reading 
scenario. Unlike competing methods our system process entire signals with only minor pre-processing and 
two representations. This removes additional errors introduced by the feature detection-extraction methods. 

Figure 6.  A block scheme of the training—testing process.

Figure 7.  (A) Time domain zero padded signals for 5 LR and 5 HR subjects, (B) Magnitude spectra of time 
domain zero padded signals for 5 LR and 5 HR subjects, (C) Time domain interpolated and energy normalized 
signals for 5 LR and 5 HR subjects, (D) Magnitude spectra of time domain interpolated and energy normalized 
signals for 5 LR and 5 HR subjects. Due to the visualization signals/spectra were quantized into the grayscale 
range < 0–255 > , i.e. 0 is black and 255 is white.
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Furthermore, we let the machine learning represented by a CNN to learn implicit features and classify them at 
the same time. This is important as the usually extracted well-known features are not proven to be optimal for 
the detection process.

In comparison to the best scoring reference method SVM-RFE16 utilizing meticulously selected combination 
of global features we were able on average to improve the detection process from 95.6 to 96.6% by applying a 
holistic approach This was achieved by a rather simple signal pre-processing, representation (magnitude spec-
trum) and a suitable classification model (CNN).

Furthermore, our approach is between the 3 best scoring methods in terms of TPR, e.g. 97.8% compared to 
97.88% as provided by SVM-RBR and SVM-linear methods. This can play a role in cases where TPR is more 
important than the overall performance. It is usually the case in medical diagnostics, where the misclassification 
of healthy patients would be less dangerous than not providing the treatment to seriously ill subjects. False nega-
tivity in this case can make it more difficult for a child to receive further education, as it will not be adequately 
adapted to his/her reading  disorder30.

The reading time is predominant and provides by itself a high accuracy, i.e. 95.67%. This was also observed in 
other experiments i.e. the time domain zero padded signals (have implicit reading time information, i.e. number 
of padded zeros) reached a high accuracy of 95.6%, whereas for the time domain interpolated signals that are 
stripped off any time related information the detection accuracy dropped significantly to 73.5%.

As it was already mentioned, in the vast majority of cases, children with dyslexia read significantly slower than 
the healthy ones. However, there are still healthy children who naturally read slowly. The proposed method that 
uses the magnitude spectrum representation of time domain interpolated signals recorded the best accuracy, and 
it is obvious the time interpolation eliminates the effect of time. Thus this successful method is rather independ-
ent of the predominant reading time parameter that is observed in the dyslexia detection.

Another advantage of our system is that the input to a classifier is a vector of coordinates (x-axis) and thus 
there is no needed for other classification/detection of events that express different eye movement types and 
parameters e.g. number of fixations, length of fixations or length of saccades; moreover, there is no subsequent 
selection and combination of such features e.g. by recursive feature elimination. It should be noted that the detec-
tion of saccades and fixations is not errorless and may introduce additional noise that can affect the accuracy.

Observing the performance of our approach in relation to the complexity of CNN structures it is clear that 
relatively a simple structure (3–4 layers) can extract relevant information vital to classify dyslectic subjects in 
the text reading—eye tracking scenario.

The combination of eye-tracking and text reading task proves to be very powerful for the detection of dyslexia 
and other disorders. Thus it would be interesting to test if this or similar holistic approach would be as successful 
as it is in this task. For example, applying this approach for the detection of subjects with an increased risk of 

Table 1.  Results for the tested signal pre-processing, representations, and CNN structures in comparison to 
other published methods.  The suggested methods are in bold and all methods are sorted by their accuracies. 
a We believe this is a correct value calculated as an average over tenfold results that were provided by the 
authors, but possibly incorrectly listed in their comparison table.

Methods Accuracy (%) TNR (%) TPR (%)

Spectrum of time domain interpolated signal -3 layer CNN 96.6 ± 2.9 95.4 ± 4.1 97.8 ± 2.1

Spectrum of time domain interpolated signal -4 layer CNN 96.3 ± 3.1 95.5 ± 3.9 97 ± 2.6

Spectrum of time domain zero padded signal -3 layer CNN 95.9 ± 3.4 – –

Spectrum of time domain interpolated signal-2 layer CNN 95.6 ± 3.8 95.3 ± 4.3 96 ± 3.7

SVM-RFE16 95.6 ± 4.5 95.7 ± 4.5 95.5 ± 4.6

Time domain zero padded signal-3 layer CNN 95.2 ± 3.8 – –

Hybrid Kernel SVM-PSO5 95.11 93.19 96.89

LR5 95.11 93.19 96.88

Hybrid Kernel SVM-PSO21 95 (94.5)a 89 (91.4)a 100 (97.2)a

SVM—Linear5 94.58 92.08 96.88

KNN22 94 92 93

KNN5 92.47 90.97 93.88

SVM-RBF5 92.44 86.52 97.88

SVM—Sigmoid5 92.44 86.52 97.88

RFC5 92.44 89.86 94.77

SVM-Linear22 93 92 94

SVM-RBF22 93 87 97

SVM-Sigmoid22 92 89 91

SVM -Hybrid22 93 88 90

RF22 91 94 91

Linear  SVM21 90 (90.4)a 70 (87.8)a 94 (93.4)a

Time domain interpolated signal-3 layer CNN 73.5 ± 10.8 – –
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developing dementia based on eye-movements during a reading activity  test18. Such test could complement some 
comprehensive assessment of mild cognitive impairment, such as Montreal Cognitive Assessment (MoCA)31.

Received: 8 May 2021; Accepted: 21 July 2021
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