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Local clustering via approximate 
heat kernel PageRank 
with subgraph sampling
Zhenqi Lu1, Johan Wahlström2 & Arye Nehorai1*

Graph clustering, a fundamental technique in network science for understanding structures in complex 
systems, presents inherent problems. Though studied extensively in the literature, graph clustering 
in large systems remains particularly challenging because massive graphs incur a prohibitively large 
computational load. The heat kernel PageRank provides a quantitative ranking of nodes, and a local 
cluster can be efficiently found by performing a sweep over the heat kernel PageRank vector. But 
computing an exact heat kernel PageRank vector may be expensive, and approximate algorithms are 
often used instead. Most approximate algorithms compute the heat kernel PageRank vector on the 
whole graph, and thus are dependent on global structures. In this paper, we present an algorithm for 
approximating the heat kernel PageRank on a local subgraph. Moreover, we show that the number 
of computations required by the proposed algorithm is sublinear in terms of the expected size of the 
local cluster of interest, and that it provides a good approximation of the heat kernel PageRank, with 
approximation errors bounded by a probabilistic guarantee. Numerical experiments verify that the 
local clustering algorithm using our approximate heat kernel PageRank achieves state-of-the-art 
performance.

Networks are a standard representation of complex interactions among multiple objects, and network analysis 
has become a crucial method for understanding the features of a variety of complex  systems1–8. Graph clustering 
is a fundamental technique for understanding mesoscopic structures in networks consisting of communities or 
clusters, that is, groups of nodes that are densely connected locally but sparsely connected to other groups in the 
 network9. The problem of graph clustering has been studied extensively in the literature, and the solutions to 
this problem have found many  applications10–15. Yet, as real-world networks become larger and larger, clustering 
massive graphs incurs a huge computational load, since the numbers of computations of many existing clustering 
algorithms are at least linearly dependent on the size of graphs. At the same time, in a variety of situations, we 
may be interested only in one single cluster near one object in the network. For these situations, we can instead 
make use of local algorithms to perform local clustering.

The goal of local clustering is to identify, near a specified seed node, a subgraph that is more densely con-
nected internally than to the rest of the graph. A local clustering algorithm utilizes only the local structure: it 
starts from the seed node, and examines only nodes connected by an edge to those it has examined before. The 
first local clustering algorithm was proposed by Spielman and  Teng16,17, and employed random walks on graphs 
to explore the local structure near the seed node. The idea behind this algorithm is that nodes near the seed node 
are more likely to be visited by random walks starting from the seed node. Thus such likelihoods probe the local 
structure near the seed node, and a local cluster can be found by simulating random walks on graphs and then 
evaluating resulting likelihoods.

Andersen et al. improved the algorithm of Spielman and Teng by examining approximate PageRank 
 vectors18–20. A PageRank vector is a geometric sum of the probability distributions induced by random walks 
starting from a specified initial distribution. If the initial distribution is concentrated on the seed node, then the 
PageRank vector provides a ranking of nodes at which random walks starting from the seed node most likely 
end. The set of nodes with high rankings approximates a good local cluster near the seed node.

State-of-the-art local clustering algorithms are based on heat kernel PageRank21. Similar to standard PageRank, 
heat kernel PageRank is based on random walks. However, heat kernel PageRank has the special benefit of also 
satisfying the heat  equation22. The exponential coefficients of heat kernel PageRank decay much faster than the 
geometric coefficients of standard PageRank, and so shorter random walks are more heavily weighted in heat 
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kernel  PageRank23. Subsets obtained by using heat kernel PageRanks are guaranteed to have good conductance 
 values22, which are commonly used as goodness measures for clusters and communities. As with standard Pag-
eRank, computing an exact heat kernel PageRank vector is prohibitively computationally expensive, and most 
methods use approximate algorithms  instead21,24. Yet these algorithms still compute the heat kernel PageRank 
vector on the whole graph, and thus the number of computations is dependent on the size of the whole graph.

In this paper, we present a local algorithm for approximating the heat kernel PageRank. Instead of working 
on the whole graph, we compute the values of the heat kernel PageRank vector only for nodes in a subgraph 
near the seed node. This subgraph is obtained by sampling nodes near the seed node in a greedy way. We then 
simulate random walks inside this sampled subgraph and evaluate the probability distributions resulting from 
these random walks. We show that, by making a few mild assumptions about the graph, the approximation 
errors induced by restricting the random walks in a subgraph can be well bounded and do not cause signifi-
cant changes to the heat kernel PageRank vector. Finally, we apply the proposed local clustering algorithm to 
computer-generated benchmark networks and real-world networks. When applied to networks with known 
communities, our local clustering algorithm finds local clusters that show excellent agreement with the ground-
truth communities. When applied to real-world networks without a-priori information of communities, our 
local clustering algorithm yields promising results that aid our understanding of the organization and structure 
in these massive complex networks.

Preliminaries
Let G = (V ,E) be an undirected simple graph on n nodes, where V is the set of nodes and E is the set of edges. 
We use u ∼ v to denote that a pair of nodes u and v are connected by an edge {u, v} ∈ E , and the nodes in such 
a pair are called neighbors. The degree dv of a node v is the number of edges attached to the node v. The volume 
of a subgraph S ⊂ V  is defined as the sum of the degrees of its nodes,

which is also known as the total degree of subgraph S. The edge boundary ∂(S) of subgraph S is the set of edges 
with one end in S and another end not in S,

For a given subgraph S of a graph G, the conductance value �(S) , also called the Cheeger ratio, of the induced 
cut (S,V\S) is defined as

which is the ratio of the number of edges between the two parts of the cut and the volume of the smaller part of 
the cut. This ratio can also be interpreted as the fraction of edges leaving the small part of the cut. We will use 
this ratio as the objective function to search for a local cluster near a seed node.

Let p : V → [0, 1] be a probability distribution vector over the nodes. Consider a probability-per-degree 
ranking of the nodes in the graph where

Let Si be the set of the first i nodes per the ranking:

The set Si is called a segment. The process of investigating all local subgraphs induced by segments to find an 
optimal local community is called performing a sweep over the probability distribution vector p. The ς-local 
Cheeger ratio �ς(p) of a sweep over a vector p is the minimum Cheeger ratio among all segments with volume 
from 0 to 2ς . For any subgraph S, we define p(S) to be the sum of all values of p(v) for v ∈ S:

A heat kernel PageRank vector ρt,f  is defined as

(1)vol(S) =
∑

v∈S
dv ,

(2)∂(S) = {u ∼ v : u ∈ S, v /∈ S}.

(3)�(S) := |∂(S)|
min(vol(S), vol(V\S)) ,

(4)
p(v1)

dv1
≥ p(v2)

dv2
≥ · · · .

(5)Si = {v1, v2, . . . , vi}.

(6)p(S) :=
∑

v∈S
p(v).

(7)ρt,f :=
∞
∑

k=0

e−t t
k

k! f P
k ,
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where t is a non-negative real value representing temperature, f : V → R is a preference vector on the graph 
representing the starting state of the heat diffusion, and P is the transition probability matrix

If f is a probability distribution vector, properly normalized so that 
∑

v∈V f (v) = 1 , then the heat kernel PageRank 
vector ρt,f  can be regarded as the expectation of the ending state of a random walk whose length follows a Poisson 
distribution with mean t and whose starting state is f. This observation sheds light on an approximate calculation 
of the heat kernel PageRank vector: we simulate sufficiently many random walks with lengths following a Poisson 
distribution with mean t and record the nodes at which these random walks end.

Sampling local subgraphs
Most local clustering algorithms calculate an approximate heat kernel PageRank vector on a whole graph, and 
thus the number of computations is dependent on the size of the whole graph. For example, the state-of-the-art 
method by Chung and Simpson requires O(log n)  computations21, where n is the size of the whole graph. We 
improve on the work of Chung and Simpson by stipulating that all simulated random walks must be local, i.e., 
we simulate random walks only around the seed node, to avoid unnecessary computations irrelevant to the local 
clustering that we wish to perform.

In the local clustering problem, given a seed node s, we wish to find a local cluster with a low conductance 
value around s. Based on this problem formulation, we propose to perform a rough sampling in the neighbor-
hood of the seed node s and find a local subgraph. The local cluster of interest will be a subset of the sampled 
subgraph, and will occupy a non-vanishing fraction of this subgraph. Then we calculate an approximate heat 
kernel PageRank vector by simulating random walks in the sampled subgraph. Through this process, we can 
ensure that the number of computations of the heat kernel PageRank approximation is dependent only on the 
size of the local cluster, and not on the size of the whole graph.

Our proposed subgraph sampling algorithm is formulated as follows. We start with the seed node s and all 
its neighbors. Then we iteratively add nodes that roughly cause the greatest decrease, or the least increase, in the 
conductance value into a subgraph S, thereby expanding S in a greedy way while keeping the conductance value 
�(S) low. In each iteration, we investigate all neighboring nodes of the current subgraph S, namely all nodes with 
connections to nodes in S. We compute for each neighboring node v the fraction of connections to S in its total 
connections dv . Then we add the nodes with the largest fraction into the subgraph S. We repeat this process itera-
tively until the size of the subgraph reaches the expected size, which is chosen to be proportional to the expected 
size ς of the local cluster of interest. Algorithm 1 provides the details of our subgraph sampling algorithm.

Algorithm 1: Subgraph sampling
Input : Seed node s, graph G, expected volume ς of local cluster, constant α
Output: Sampled subgraph S

1 Initiate S as s and all neighbors of s;
2 while vol(S) < ας do
3 Find all neighbors of S, namely all nodes with connections to any member of S;
4 Denote as κv the fraction of connections to S in total connections dv of a neighboring node v;
5 Denote as κ as the maximum of fractions κv among all neighbors v of S;
6 Add all neighbors with κ fractions into S.
7 end
8 Return S

Approximate heat kernel PageRank in sampled subgraph
We then calculate an approximate heat kernel PageRank vector on the support of the sampled local subgraph 
S. As stated earlier, we perform this calculation by simulating random walks only in subgraph S. Recall that the 
heat kernel PageRank vector ρt,s on graph G with the starting preference vector χs is given as

where

and s is the seed node. Since χs is properly normalized on graph G, the heat kernel PageRank vector ρt,s is thus the 
expectation of the ending state of a random walk starting from the seed node s and tracing a length that follows 
a Poisson distribution with mean t. Based on this observation, the intuition of our algorithm of approximating 

(8)[P]uv =
{

1/du if u ∼ v,
0 otherwise.

(9)ρt,s =
∞
∑

k=0

e−t t
k

k!χsP
k ,

(10)χs(u) =
{

1 if u = s,
0 otherwise,
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ρt,s on subgraph S works as follows. We perform r random walk simulations to approximate the infinite sum in 
(9) on the support of the sampled subgraph S, and choose r large enough to bound the error. In each simulation, 
we track the steps of the simulated random walk. If this random walk leaves the subgraph S, we terminate this 
simulation and restart. We also note that the Poisson distribution is highly concentrated around the mean value 
t, and thus we can choose a finite number K and discard all random walks with length greater than K.

Our proposed algorithm for the approximate heat kernel PageRank computation is summarized in Algo-
rithm 2. Starting from the seed node, we generate r random walks, with lengths following a Poisson distribution. 
When a random walk reaches a node v in the subgraph S, one of the two following cases can happen. With prob-
ability proportional to the number of edges connecting to the outside of S, this random walk is terminated. Also, 
with probability proportional to the number of edges connecting to other nodes in S, this random walk chooses 
one of the neighbors of v in S at random as the next step. If a random walk is not terminated in the middle of 
the simulation, the ending node is recorded in the PageRank vector. The choice of the number of iterations r 
depends on an error tolerance parameter ǫ , as we will discuss in detail later.

Algorithm 2: Approximate heat kernel PageRank
Input : Seed node s, sampled subgraph S, expected size ς of local cluster, true degree kv of each

node v in graph G, error tolerance parameter 0 < ε < 1
Output: Approximate PageRank vector ρ

1 r ← 16
ε3

log ς;

2 K ← log ε−1

log log ε−1 ;
3 t ← K/ logK;
4 Denote as κv the number of edges that connect node v to other nodes in subgraph S;
5 Initiate a zero vector ρ of dimension |S|;
6 for r iterations do
7 Simulate a random walk starting from seed node s with length k taken with probability e−t tk

k! ,
and at each step at node v do the follows;

8 Generate a random value τ uniformly in the range [0, 1);
9 If τ < (kv − κv)/kv, then this random walk is terminated;

10 Otherwise, choose one of the neighbors of node v in subgraph S uniformly at random as next
step;

11 If a random walk is not terminated, let u be the ending node of this random walk and
ρ(u) ← ρ(u) + 1;

12 end
13 Return 1/r · ρ

Restricting our attention to subgraph S comes with a price: we lose track of simulated random walks once 
they cross the boundary of S and enter the complementary part V\S . But we are interested only in the part of 
the heat kernel PageRank vector that is supported on the subgraph S, and we can simply discard the other part 
that is supported on V\S , since it is irrelevant to the local clustering we wish to perform. Thus, the only random 
walks that will interrupt our approximation of the heat kernel PageRank are those that leave the subgraph S first 
and then come back. But we will argue that, with reasonable assumptions, the contribution of these random 
walks is vanishingly small if the whole network is sufficiently large.

We will consider a network model with community structure as follows. The network is divided into a few 
non-overlapping communities, and each node belongs to one of these communities. Each node v has a mixing 
parameter µv ∈ (0, 1) , such that a fraction 1− µv of its edges connects to other nodes in its community, and 
a fraction µv of its edges connects to other nodes outside its community. We additionally assume that µv is an 
independent and identically distributed (i.i.d.) random variable, with an expected value µ . We note that our 
assumptions fit with commonly used network models with community structure, for example, the Girvan-
Newman  benchmark25, the LFR  benchmark26, and the stochastic  blockmodel27.

For a fixed seed node s in a local cluster of interest C, and for any node v in this community, we denote by Xv
k 

the indicator random variable defined as Xv
k = 1 if a random walk with length k starting from the seed node s 

ends at node v. By definition, the expectation E[Xv
k ] is equal to the fraction of random walks with length k starting 

from the seed node s that ends at node v. We denote by Xv the random variable corresponding to the combined 
random walk process that starts from the seed node s, ends at node v, has a length that follows a Poisson distri-
bution with mean value t and a maximum value of K, and has all steps in this cluster C. Then we can write Xv as

where t1, . . . , tk are the nodes visited in a random walk of length k. This random variable Xv is a weighted sum of 
the random variables Xv

k . The values of the weights follow a Poisson distribution corresponding to the distribution 

(11)Xv :=
∑

k≤K

e−t t
k

k!X
v
k (1− µt1)(1− µt2) · · · (1− µtk ),
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of the lengths of random walks, and are multiplied by a sequence of factors of the form 1− µ , which restricts all 
the steps of random walks to within subgraph S. The expected value of Xv is

This expected value represents the fraction of random walks starting from the seed node s that end at node v, 
which have lengths distributed according to a Poisson distribution with mean value t and a maximum value of 
K, and have all steps in this cluster C.

We will also consider the approximate form of the infinite sum in (9) by limiting the length of random walks 
to at most K. Let ρ(K)t,s denote the contribution to ρt,s from random walks with a length of at most K,

It follows from definition that

which is the expected value of the random variable Yv corresponding to the combined random walk process that 
starts from the seed node s, ends at node v, and has length distributed according to a Poisson distribution with 
mean value t and has a maximum value of K:

It follows that ρ(K)t,s = E[Yv] . So the value ρ(K)t,s(v) represents the fraction of random walks starting from 
the seed node s that end at node v, and whose lengths follow a Poisson distribution with mean value t and have 
a maximum value of K. We denote by Poiss(t) a Poisson random variable with mean t. By the Chernoff  bound28, 
we have

and if K = log ǫ−1

log log ǫ−1 , then for t < K/ log ǫ−1,

As a result, we have

with probability at least 1− ǫ , for each node v in the network. Our analysis of the approximation error of (11) 
relies on the Chernoff bound as summarized in Lemma 120.

Lemma 1 Let Xi be independent Bernoulli random variables with X =
∑r

i=1 Xi . Then, 

1. for 0 < ǫ < 1 , P(X < (1− ǫ)rE[X]) < exp
(

− ǫ2

2 rE[X]
)

,
2. for 0 < ǫ < 1 , P(X > (1+ ǫ)rE[X]) < exp

(

− ǫ2

4 rE[X]
)

,
3. for c ≥ 1 , P(X > (1+ c)rE[X]) < exp

(

− c
2 rE[X]

)

.

We now state our bound on the approximation error of our approximate heat kernel PageRank vector.

Theorem 1 Let G be a graph and s be a node in a local cluster C ⊂ V satisfying �(C) < φ , vol(C)/vol(G) < ψ and

Let ρt,s be the heat kernel PageRank vector with 1u as the starting distribution. For any 0 < ǫ < 1 , Algorithm 2 
outputs an approximate heat kernel PageRank vector ρ̂t,s satisfying

for all nodes v ∈ C , with a probability of at least 1− ǫ . The running time of the algorithm is O
(

log ǫ−1 log ς
ǫ3 log log ǫ−1

)

 , where 
ς is the volume of the local cluster C.

(12)E[Xv] =
∑

k≤K

e−t t
k

k! (1− µ)kE[Xv
k ].

(13)ρ(K)t,s =
∑

k≤K

e−t t
k

k!χsP
k .

(14)ρ(K)t,s(v) = E





�

k≤K

e−t t
k

k!X
v
k



 =
�

k≤K

e−t t
k

k!E[X
v
k ],

(15)Yv :=
∑

k≤K

e−t t
k

k!X
v
k .

(16)P(Poiss(t) > K) <
(et)Ke−t

KK
,

(17)P(Poiss(t) > K) < ǫ.

(18)ρt,s(v)− ǫ < ρ(K)t,s(v) < ρt,s(v)

(19)φψ < 2ǫ ·
(

log log ǫ−1

log ǫ−1

)2

.

(20)(1− ǫ)ρt,s(v)− 2ǫ < ρ̂t,s(v) < ρt,s(v),
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The proof of Theorem 1 is given in “Appendix A”. Theorem 1 states that, as long as the local cluster C of inter-
est is sufficiently small compared with the whole network G, then Algorithm 2 provides a good approximation 
of ρt,s for all nodes in the local cluster C. Many real-world networks are massive, and we are usually interested 
only in local structures near the seed node of interest, namely a small local cluster. The results in Theorem 1 
indicate that we can efficiently compute an approximate heat kernel PageRank for a small local subgraph when 
analyzing a massive network, and thus probe the local structures near the seed node without incurring huge 
computational loads.

Finding a good local cluster
Our local clustering algorithm finds a subset of nodes near the seed node s by performing a sweep on the 
approximate heat kernel PageRank vector ρ̂t,s . We now show that the ranking deduced from our approximate 
heat kernel PageRank can be used to find a good local cluster near the seed node. Specifically, by performing 
a sweep on ρ̂t,s with an appropriate seed node s in a subgraph C with �(C) < φ , we can find a subset of nodes 
with a conductance value of at most O(

√
φ) . The performance guarantee for the local cluster estimated by our 

proposed algorithm relies on the results summarized in Lemma 221,29.

Lemma 2 In a graph G with a subset C with vol(C) = ς ≤ vol(G)/4 , the set of u in C satisfying

has a volume of at least ς/4 , provided t ≥ 1/(�∗(C))2 , where

The ranking deduced from the approximate heat kernel PageRank vector ρ̂t,s is not very different from that 
of a true vector ρt,s in the local cluster C, as demonstrated by our bound on approximation errors in Theorem 1 
(see “Computational complexity” section for an experimental analysis). For nodes in the subgraph S but not in 
the local cluster C, we note that we discard all simulated random walks that exit S and thus ρ̂t,s(v) < ρt,s(v) for 
any v ∈ S\C . However, unlike the local cluster C, the sampled subgraph S is not guaranteed to have few boundary 
edges. Thus the approximation errors in S\C are not bounded from below as in Theorem 1. We note in addition 
that the approximation errors decrease the values of the approximate PageRank vector ρ̂t,s . Thus, compared with 
the ranking deduced from the true PageRank vector ρt,s , the ranking deduced from the approximate PageRank 
vector ρ̂t,s keeps the relative ordering of the nodes in C and also keeps the nodes in S\C behind the nodes in C. 
In other words, the segments Si with small i’s would more likely correspond to subsets of C. Then, as shown by 
Chung and  Simpson21, we can apply the results in Lemma 2 to our approximate heat kernel PageRank vector 
ρ̂t,s . Therefore by the bounds in (20) and Lemma 2,

where c = |C| is the number of nodes in C, and in particular,

for a set of nodes with volume at least ς/2 . We now present our performance guarantee using the bounds in (23).

Theorem 2 Suppose that G is a network and C ⊂ G is a local cluster with vol(C) = ς , |C| = c , and �(C) ≤ φ . 
There exists a subset Ct ⊂ C with vol(Ct) ≥ ς/2 , such that for any node s ∈ Ct , the approximate heat kernel Pag-
eRank vector ρ̂t,s computed by Algorithm 2 satisfying the following two assumptions

induces a ranking for which a sweep finds a set with ς-local Cheeger ratio at most 
√
8φ.

The proof of Theorem 2 is given in “Appendix B”. Theorem 2 implies that, we can find a good local cluster by 
choosing parameters t and ǫ following the assumptions in (25) and (26). Specifically, for a subset C with Cheeger 
ratio bounded by φ , for any seed node s in Ct ⊂ C as defined in Theorem 2, performing a sweep on the output 
of Algorithm 2 yields a local cluster with conductance at most 

√
8φ.

Computational complexity
Sampling a subgraph using Algorithm 1 is sublinear in terms of the expected volume of the subgraph, which is in 
proportion to the expected volume ς of the local cluster. According to the construction of the sampling algorithm, 
multiple nodes can be added to the subgraph in each round. Hence the number of computations required for 
subgraph sampling is sublinear in terms of ς.

(21)
1

2
e−t�∗(C) ≤ ρt,u(C) ≤

√
ς exp(−t�ς(ρt,u)

2/4)

(22)�∗(C) := min
T⊂C

�(T).

(23)ρ̂t,s(C) > (1− ǫ)ρt,s(C)− 2cǫ,

(24)
1

2
(1− ǫ)e−t�∗(C) − 2cǫ < ρ̂t,s(C) <

√
ς exp(−t�ς(ρ̂t,s)

2/4)

(25)t = φ−1
(

log(2
√
ς + 8cǫ)− log(1− ǫ)

)

,

(26)�ς(ρ̂t,s)
2 <

4

t
log 2,
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We adopt the assumptions that drawing from a probability distribution with bounds and performing a ran-
dom walk step both require constant time. For each of the r iterations, at most K = log ǫ−1

log log ǫ−1 random walk steps 
are simulated, and the number of simulated random walks is r = 16

ǫ3
log ς . Thus the number of computations for 

computing the approximate heat kernel PageRank is O
(

log ǫ−1 log ς
ǫ3 log log ǫ−1

)

.
Performing a sweep on the approximate heat kernel PageRank vector ρ̂ involves sorting the nodes according 

to their probability per degree and calculating the conductance of each segment. Recall that there are m nodes 
in the sampled subgraph S, which is in proportion to the expected size c of the local cluster C. Thus the number 
of computations for performing a sweep over ρ̂ is O(m logm) = O(c log c).

To summarize, the computational work of our local clustering algorithm is dominated by computing the 
approximate heat kernel PageRank, and the total number of computations is O

(

log ǫ−1 log ς
ǫ3 log log ǫ−1

)

 . We emphasize that, 
unlike some other approximation algorithms based on iterations, our proposed algorithm is based on simulated 
random walks, and thus allows parallel computations. As a result, in practice our proposed algorithm can be 
transformed into distributed computation tasks, thus improving running  time30.

Numerical experiments
We test our proposed local clustering algorithm on benchmark networks with ground-truth communities and 
compare the results to those of other existing local clustering algorithms. We will compare the clustering results 
in terms of the accuracy and the conductance of the estimated clusters.

Benchmark. We use benchmark networks to compare our local clustering algorithm with the algorithm 
by Chung and  Simpson21, the TEA+  algorithm24, and with the results of performing a sweep on the exact heat 
kernel PageRank with maximum length K

Benchmark networks are computer-generated graphs with ground-truth communities. We use the Lancichi-
netti–Fortunato–Radicchi (LFR) network as the benchmark for our numerical  experiments26. In this benchmark, 
each computer-generated graph contains n nodes and is partitioned into l communities. The degrees of the nodes 
and the sizes of the ground-truth communities both follow a power-law distribution, with exponents γ and β 
respectively. The minimal and maximal degrees, kmin, kmax , and the minimal and maximal community sizes, 
smin, smax , are chosen to satisfy kmin < smin and kmax < smax . Each node is assigned to one of the ground-truth 
communities, and the community structure is controlled by a mixing parameter µ . For each node, a fraction 
1− µ of its edges connect to other members of the same community chosen at random, and the remaining 
fraction µ of its edges connect to nodes outside its community also chosen at random. In our numerical simula-
tions, we choose as parameters n = 10000 , l = 30 , kmin = 30 , kmax = 300 , γ = 2 , smin = 50 , smax = 2000 , and 
β = 1.1 , and we vary the mixing parameter µ from 0.1 to 0.4. For each mixing parameter, we generate 400 graphs 
independently. For each generated graph, we randomly choose one of the ground-truth communities and then 
randomly choose one node in this community as a seed node. Then we apply the local clustering algorithms to 
find a local community of this seed node.

Subgraph sampling. As the first part of our numerical experiments, we evaluate the performance of our 
subgraph sampling algorithm. We vary the mixing parameter from 0.1 to 0.6 to better demonstrate the perfor-
mance of this algorithm. As a measure of goodness, we choose the fraction of nodes in the chosen local cluster 
that is also in the sampled subgraph

where C indicates the local cluster chosen, and S indicates the local subgraph found by our subgraph sampling 
algorithm. We choose 2vol(C) as the expected size of the sampled subgraph, and note that in practice we can 
choose a larger expected size when working with large networks.

The average fraction with varying mixing parameters of our subgraph sampling algorithm is shown in Fig. 1. 
The sampled subgraph contains all the nodes of the chosen local cluster as the value of the mixing parameter µ 
varies from 0.1 to 0.55, and starts to degrade slightly only after the value of µ exceeds 0.55. Thus, our subgraph 
sampling algorithm always finds a local subgraph that contains the local cluster of interest as a subgraph, as 
long as the nodes in this local cluster are more strongly connected internally than to nodes outside this cluster.

We also evaluate the goodness of the local subgraphs found by our subgraph sampling algorithm by measur-
ing the conductance values of these local subgraphs. Figure 2 shows the average conductance values of sampled 
subgraphs with varying mixing parameters µ . When µ = 0.1 , the average conductance value of sampled sub-
graphs is around 0.2. The average conductance value gradually increases as µ becomes larger, reaching around 
0.65 when µ = 0.6 . We note that, for each local cluster, the mixing parameter is the average fraction of edges that 
connect to nodes in other clusters, and so approximately equals the conductance values of these local clusters. 
We also show in Fig. 2 the average conductance value of benchmark clusters. The average conductance value of 
the sampled subgraphs grows almost in parallel with that of the benchmark clusters, with an increase of about 
0.1. Thus our subgraph sampling algorithm finds local subgraphs with conductance values slightly greater than 
those of the local clusters of interest.

(27)ρ(K)t,s =
∑

k≤K

e−t t
k

k!χsP
k .

(28)fraction of nodes sampled := |C ∩ S|
|C| ,
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Local clustering. As a second step, we compare the goodness of local clusters found by these local clustering 
algorithms. We first compute the conductance values of estimates by performing sweeps on different PageRank 
vectors. The average conductance values of local-cluster estimates with various mixing parameters are shown in 
Fig. 3, where the term “heat kernel” refers to performing sweeps on the heat kernel PageRank vector with maxi-
mum length, as in (13), and “benchmark” refers to the conductance values of the chosen clusters in the bench-
mark networks, averaged over experiments with the same mixing parameters. As we can see, for all values of the 
mixing parameter µ , all methods except the TEA+ algorithm yield conductance values equal to those of bench-
mark clusters. In particular, our proposed algorithm, despite the approximation errors in computing the heat 
kernel PageRank, finds local clusters as good as the ground-truth clusters, in terms of conductance. The clusters 
estimated by the TEA+ algorithm all have conductance values greater than those of the benchmark clusters.

We evaluate the similarity between two clusters C1 and C2 using the normalized mutual  information31,32

(29)In(C1, C2) :=
∑

c1∈C1,c2∈C2
p(c1, c2) log

p(c1,c2)
p(c1)p(c2)

1
2H(C1)+ 1

2H(C2)
,

Figure 1.  Average fraction of nodes in the chosen local cluster that is also in the sampled subgraph in the 
Lancichinetti–Fortunato–Radicchi benchmark. Vertical error bars represent standard deviations.

Figure 2.  Average conductance values of sampled subgraphs in the Lancichinetti–Fortunato–Radicchi 
benchmark. Vertical error bars represent standard deviations.
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where C1 = (C1,C1) and C2 = (C2,C2) are the bipartitions of the network induced by the clusters C1 and C2 , 
respectively, p(c) is the probability that a randomly chosen node belongs to a subgraph c, p(c1, c2) is the probabil-
ity that a randomly chosen node belongs to both subgraphs c1 and c2 , and H(C) is the Shannon entropy, defined as

By the above definition, the mutual information In(C1, C2) equals 1 if the two subgraphs C1 and C1 are identical, 
and equals 0 if they are independent. In our numerical experiments, C1 is the ground-truth community specified 
by the benchmark and chosen in our experimental setup, and C2 is the local cluster detected by different local 
clustering algorithms.

The average mutual information values with varying mixing parameters of different local clustering algorithms 
are shown in Fig. 4. The proposed local clustering algorithm maintains almost complete mutual information 
in all experiments, demonstrating that the approximation errors in computing the heat kernel PageRank do 
not degrade performance in estimating local clusters. In other words, our proposed approximate heat kernel 
PageRank vector is accurate enough for finding good clusters. For other methods, when µ is small, all methods 
yield a good estimate of the ground-truth local community, achieving almost complete mutual information 
and so detecting correct clusters. When µ increases, the average mutual information of the output of the TEA+ 
algorithm clearly decreases, demonstrating that the clusters estimated by this algorithm deviate from the ground-
truth cluster.

To conclude, even though our proposed approximate heat kernel PageRank might suffer from increased 
approximation errors due to discarding part of the simulated random walks, the performance of our local clus-
tering algorithm is not significantly influenced by these errors. In fact, our local clustering algorithm achieves 
state-of-the-art performance on benchmark networks; it always finds local clusters that are as good as benchmark 
clusters and clusters estimated by other methods. Our proposed approximate computation of the heat kernel 
PageRank is accurate enough to find good local clusters.

Application to real-world networks
College football network. We first apply the proposed local clustering algorithm to a real-world network 
with a known labeled community structure. This network represents the schedule of American football games 
between 116 football teams from Division IA colleges during the regular season in Fall  200025. A visualization of 
this network is shown in Figs. 5, 6, and 7 using  Cytoscape33, where nodes represent teams and edges mean that 
there exist regular season games between the pair of teams connected. These football teams belong to 12 confer-
ences, which we use as reference ground-truth communities. Every conference contains around 8 to 12 teams, 
represented as circles of nodes in our visualization. The five teams in the middle of the figure are not involved 
in any of the circles. These independent teams do not belong to any conference. In principle, teams tend to play 
more games within conferences than between conferences, which generates more edges within each conference.

Each subfigure of Figs. 5, 6, and 7 shows the local clusters found by the proposed method, using different 
seed nodes. We choose one node from each conference as a seed node, and use the size of the conference as the 
expected size of a local cluster. We mark the seed node in green, and mark nodes found to be a member of the 
local cluster in red. We also highlight in red the edges between the members of the found local cluster. In most 
cases, as the local cluster, the proposed algorithm correctly finds the conference to which the seed node belongs.

(30)H(C) := −
∑

c∈C
p(c) log p(c).

Figure 3.  Average conductance values of local clusters estimated by performing sweeps on different heat kernel 
PageRank vectors in the Lancichinetti–Fortunato–Radicchi benchmark. Vertical error bars represent standard 
deviations.
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We also observe in some cases that the resulting local cluster does not fit very well with the reference commu-
nities labeled by conferences. In Fig. 6a, node 110 is not included in the local cluster of the seed node 57, which 
is reasonable if we carefully inspect the network connections of this node. There are no connections between 
node 110 and any other members of this conference; instead, this node forms several connections with almost 
all members of the conference at eight o’clock. Thus it is no wonder that node 110 is identified as part of the local 
cluster of seed node 49, as shown in Fig. 7b. We also note that the independent team node 42 is regarded as part 
of the local cluster of seed node 38, as shown in Fig. 6b. This team plays regular games with four teams from 
the conference at four o’clock, and with, at most, one team each from any other conference. So our algorithm 
identifies it as part of the detected local cluster. Moreover, as seen in Fig. 7b, two teams, nodes 28 and 58 of the 
conference at eight o’clock, are not included in the local cluster of seed node 49. But node 28 has no connections 
within this conference, while at the same time it maintains several connections outside this conference, especially 
to the four teams colored in the conference at three o’clock, as shown in Fig. 7c. This pattern of connections 
explains why this team is included in the local cluster of seed node 24. On the other hand, the team of node 58 
plays regular games with only two teams within the conference at eight o’clock, but plays regular games with one 
or two teams from four other conferences and independent teams. Due to such an atypical connection pattern 
among multiple conferences, this node is not included in any local cluster in our experiment. Similar phenomena 
are also observed for the uncolored nodes in the conference at three o’clock, as shown in Fig. 7c, and thus these 
nodes are also left outside any local clusters. By contrast, the independent team of node 90 plays regular games 
with all the colored teams in this conference, and so is included in this local cluster.

In conclusion, our proposed local clustering algorithm perfectly reflects the local community structure around 
the selected seed nodes, established by regular-season-game association. In addition, our algorithm detects the 
lack of associations within conferences, as reflected by network connections.

YouTube social network. Our second example is a social network on the video-sharing website  YouTube34. 
In the YouTube social network, nodes represent users and edges represent friendships formed by users with each 
other. The whole network is composed of 1,134,890 nodes and 2,987,624 edges. In this network, users can create 
groups which other users can join, and these user-defined groups are considered as reference “ground-truth” 
 communities34. We apply the proposed clustering method to one of these user-defined groups composed of 121 
users, which has a conductance value of 0.2030. We randomly choose one of the group members as the seed 
node, and then find a local cluster of this seed node. The estimated local cluster is composed of 225 nodes, con-
tains all 121 users in the user-defined group, and has a conductance value of 0.0168.

The local cluster found by our algorithm is visualized in Fig. 8 using  Cytoscape33, with members of the esti-
mated local cluster in red. Due to limited graphical processing capabilities, we show only 5,846 nodes (about 0.5% 
of the total number of nodes) and the edges between these nodes that are closest to the seed node. This visual-
ized subgraph is chosen using the subgraph sampling algorithm in Algorithm 1. The YouTube social network is 
relatively sparse and contains several locally dense groups, shown as small circles of nodes. The estimated local 
cluster contains three such dense groups, visualized as the three circles of nodes at top right. Two of these groups 
have obvious hubs, and other members surrounding them and connected only to them by edges. The other 
group, on the right, does not show such concentration and forms edges among its members uniformly. These 
three groups have multiple edges between them, and most of these edges are linked to the hubs. Some scattered 

Figure 4.  Average mutual information of local clusters estimated by different local clustering methods with 
benchmark communities in the Lancichinetti–Fortunato–Radicchi benchmark. Vertical error bars represent 
standard deviations.
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nodes have many connections with these three groups, especially with the hubs of these groups, and thus these 
nodes are also identified as part of the local cluster.

DBLP collaboration network. Our third example is a collaboration network on the DBLP computer sci-
ence bibliography, which provides a comprehensive list of research papers in computer  science34. In the DBLP 
collaboration network, nodes represent authors of these research papers, and two authors are connected by 
an edge if they collaborate and publish at least one research paper together. The whole network is composed 
of 317,080 nodes and 1,049,866 edges. The reference “ground-truth” communities are defined by publication 
venues, for example, journals or conferences, and authors who have published research papers in a certain jour-
nal or conference are considered to form a reference  community34. The publication-venue group we choose is 
composed of 36 nodes, and has a conductance value of 0.1034. As the seed node, we randomly choose one of the 
group members, and then apply our proposed local clustering algorithm to find a local cluster of this seed node. 
The estimated local cluster is composed of 59 nodes and contains all 36 authors in the publication-venue group, 
and it has a conductance value of 0.0308.

The local cluster found by our algorithm is visualized in Fig. 9 using  Cytoscape33, with members of the 
estimated local cluster colored in red. As before, here we show only 6,342 nodes (about 2% of the total number 
of nodes) and the edges between these nodes that are most close to the seed node chosen using our proposed 
subgraph sampling algorithm. As shown in the figure, the DBLP collaboration network has a much denser 
connection pattern than the YouTube social network, and does not show explicit local groups. But our local 
clustering algorithm successfully finds a small research community at the top of the visualization, with dense 
collaborations among group members, and only four external links, all made by one group member. Thus our 
algorithm finds a research group in which all the members but one collaborate only with other group members 
and not with researchers outside the group.

Amazon product co-purchasing network. Our fourth example is a product co-purchasing network of 
Amazon users. This network was collected by crawling the Amazon website and is based on a co-purchasing 

Figure 5.  Identified local communities (red) of college football teams. Circles of nodes indicate the conferences 
of football teams. The five nodes placed in the middle represent five independent teams. Each of the subfigures 
shows the local clustering result generated by the proposed method, using seed nodes (green) 1, 19, 100, and 3.
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feature, “Customers Who Bought This Item Also Bought,” of the Amazon  website34. In the Amazon product co-
purchasing network, nodes represent products, and two products are connected by an edge if these two products 
are frequently co-purchased. The whole network is composed of 334,863 nodes and 925,872 edges. The reference 
“ground-truth” communities are defined by the product categories provided by Amazon. The product-category 
group we choose is composed of 96 products, and has a conductance value of 0.0235. The seed node is chosen 
as a random product in this category, and we then find a local cluster of this seed node using our proposed 
local clustering algorithm. The estimated local cluster is composed of 184 nodes, contains all 96 products in the 
product-category group, and has a conductance value of 0.0064.

The local cluster found by our algorithm is visualized in Fig. 10 using  Cytoscape33, with members of the 
estimated local cluster colored in red. As before, we show only 6,701 nodes (about 2% of the total number of 
nodes) and the edges between these nodes that are closest to the chosen seed node using our proposed subgraph 
sampling algorithm. As can be seen, the Amazon co-purchasing network has a giant and dense group of connec-
tions in the middle, with many branches that are relatively sparse and contain some locally dense groups. Our 
algorithm finds a local cluster that is part of one of these branches. The estimated local cluster contains approxi-
mately three local dense groups, with multiple edges connecting them. The estimated local cluster has only two 
edges connecting itself to the main part of the network, effectively separating it from the giant dense group in 
the middle. We also note two other dense groups on this branch, but each has only one edge connected to our 
estimated local cluster. As a result, these two dense groups are not regarded as part of our estimated local cluster.

Conclusion and discussion
In this paper, we introduced a local algorithm for computing approximate heat kernel PageRank vectors, and 
based on this algorithm we devised a novel local clustering algorithm. We restricted our computation of heat 
kernel PageRank vectors to within a local subgraph near the seed node, discarding simulated random walks that 
depart from this subgraph. As a result, the number of computations required to achieve a good approximation is 
no longer dependent on the size of the whole network, and is determined only by the expected size of the local 

Figure 6.  Identified local communities (red) of college football teams. Circles of nodes indicate the conferences 
of football teams. The five nodes placed in the middle represent five independent teams. Each of the subfigures 
shows the local clustering result generated by the proposed method, using seed nodes (green) 57, 38, 16, and 
111.
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cluster of interest. We showed that, under reasonable assumptions, the approximation error caused by restricting 
simulated random walks to within a local subgraph is bounded by a probabilistic guarantee. We also presented 
a greedy local search algorithm for finding a local subgraph near the seed node. The numbers of computations 
required for subgraph sampling and computing approximate heat kernel PageRank vectors are both sublinear in 
terms of the expected size of the local cluster of interest, and thus are both independent of the size of the whole 
network. Using numerical experiments, we demonstrated that the resulting local subgraph almost certainly 
contains the local cluster of interest as a subgraph, as long as the nodes in this local cluster are more strongly 
connected internally than to nodes outside this cluster. This local cluster has a conductance value only slightly 
greater than that of the local cluster of interest. Putting these results together, we then argued that, by performing 
a sweep on the proposed approximate heat kernel PageRank vector, our local clustering algorithm can find a local 
cluster having a small conductance value with high probability. Then we tested our local clustering algorithm on 
benchmark networks with well-established ground-truth communities, and on a football network with reference 
communities. In both cases, our local clustering algorithm achieved state-of-the-art performance, and the local 
clusters it found aligned well with ground-truth communities. Finally, we applied our local clustering algorithm 
to massive real-world networks with reference communities labeled using side information. Specifically, our 
algorithm provided insight into the online groupings of a video-sharing network, the collaboration patterns of 
a group of researchers, and the co-purchasing habits of Amazon users. In addition, our proposed approximate 
computation of the heat kernel PageRank is based on Monte Carlo simulation of random walks, and thus can be 
transformed into distributed algorithms in practical settings.

Appendix
A Proof of Theorem 1. Proof The difference between our approximation in (12) and simulated random 
walks in (14) lies in those random walks that leave subgraph S first and then come back to the cluster C. We 
will instead bound the contribution from the random walks that leave C first and then come back. For a node 
u outside of the cluster C, say in another community C′ , suppose that a random walk starting from seed node s 
reaches this node u. By the construction of our network model, a fraction µu of its edges connect to other nodes 

Figure 7.  Identified local communities (red) of college football teams. Circles of nodes indicate the conferences 
of football teams. The five nodes placed in the middle represent five independent teams. Each of the subfigures 
shows the local clustering result generated by the proposed method, using seed nodes (green) 17, 49, and 24.
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Figure 8.  Local community (red) detected in the YouTube social network using the proposed method. Here 
we show only 5846 nodes among the total 1,134,890 nodes (about 0.5% fraction) that are most close to the seed 
node.
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Figure 9.  Local community (red) detected in the DBLP collaboration network using the proposed method. 
Here we show only 6342 nodes among the total 317,080 nodes (about 2% fraction) that are closest to the seed 
node.
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Figure 10.  Local community (red) detected in the Amazon product co-purchasing network, using the 
proposed method. Here we show only 6701 nodes among the total 334,863 nodes (about 2% fraction) that are 
closest to the seed node.
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outside of its community C′ , and thus the probability of this random walk leaving C′ at this step is µu . There are 
∑

v/∈C′ µvdv edges that this random walk can choose if it leaves C′ , and among them |∂(C)| edges lead to our 
community of interest C. Denote by νu the probability that this random walk enters C from node u, and we have

where the approximation becomes exact when the network is large enough. Then the average probability that a 
random walk enters C, denoted as ν , is

The combined random variable corresponding to random walks with length at most K that leaves the cluster C 
exactly once and then comes back exactly once is given as

where t1, . . . , tj , tj+1 are nodes in C that are visited in a k-step random walk and s1, . . . , sk−2−j , sk−1−j are nodes 
outside C that are visited in a k-step random walk. Then the expected contribution to ρ(K)t,s(v) from random 
walks that leave C once and then enter C once is

Now consider the more general case that random walks leave the cluster C for exactly ℓ times, enter the cluster 
C for exactly ℓ times, and end at node v, where ℓ is a positive integer less than k/2. The random variable cor-
responding to these random walks is thus

Similarly, the expected contribution to ρ(K)t,s(v) from these random walks can be written as

Define Zv as 
∑

ℓ Z
v
ℓ , and then the expected contribution to ρ(K)t,s(v) of all random walks that first leave the 

cluster C and then come back and end at node v is

Noting that 1− µ , 1− ν , µ are all less than 1, we have

where the last inequality comes from K2ν/2 < ǫ and K = log ǫ−1

log log ǫ−1 . Suppose that we perform r > 16
ǫ3

log ς simu-
lated random walks, where ς is the volume of the sampled subgraph S. For every component with ρ(K)t,s(v) > ǫ , 
by the third part of Lemma 1, we have

(31)νu = µu
|∂(C)|

∑

v/∈C′ µvdv
≈ µu

|∂(C)|
∑

v µvdv
,

(32)ν ≈ µ
|∂(C)|
µvol(V)

= |∂(C)|
vol(V)

= |∂(C)|
vol(C)

· vol(C)
vol(V)

= φψ .

(33)Zv
1 =

∑

k≤K

e−t t
k

k!X
v
k

k−2
∑

j=1

(1− µt1) · · · (1− µtj )(1− νs1) · · · (1− νsk−2−j
)µtj+1νsk−1−j

,

(34)E[Zv
1 ] =

∑

k≤K

e−t t
k

k!E[X
v
k ]

k−2
∑

j=1

(1− µ)j(1− ν)k−2−jµν.

(35)Zv
ℓ =

∑

k≤K

e−t t
k

k!X
v
k

k−2ℓ
∑

j=1

j
∏

r=1

(1− µtr )

k−2ℓ−j
∏

q=1

(1− νsq )

ℓ
∏

w=1

µtj+wνsk−2ℓ−j+w
.

(36)E[Zv
ℓ ] =

∑

k≤K

e−t t
k

k!E[X
v
k ]

k−2ℓ
∑

j=1

(1− µ)j(1− ν)k−2ℓ−jµℓνℓ.

(37)E[Zv] =
K/2
∑

ℓ=1

E[Zv
ℓ ] =

K/2
∑

ℓ=1

∑

k≤K

e−t t
k

k!E[X
v
k ]

k−2ℓ
∑

j=1

(1− µ)j(1− ν)k−2ℓ−jµℓνℓ.

(38)E[Zv] ≤
∑

k≤K

e−t t
k

k!E[X
v
k ]

K/2
∑

ℓ=1

(K − 2ℓ)νℓ ≤ ρ(K)t,s(v) ·
K2ν

8
≤ ρ(K)t,s(v) ·

ǫ

2
,

(39)

P(Zv > rǫρ(K)t,s(v)) ≤P
(

Zv > r
( ǫ

2
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))

=P

(
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≤ exp
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)
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For every component with ρ(K)t,s(v) < ǫ , by the third part of Lemma 1, we have

We note that our approximate PageRank vector equals ρ̂t,s(v) = ρ(K)t,s(v)− 1
r Z

v . Thus for any node v in the 
local cluster C with ρ(K)t,s(v) > ǫ , we have

with probability at least 1− ς−4/ǫ , and for any node v in the local cluster C with ρ(K)t,s(v) ≤ ǫ , we have

with probability at least 1− ς−4/ǫ2 . Thus, combined with (18), for each node v in the local cluster C,

with probability at least 1−max(ǫ, ς−4/ǫ) , which completes our proof.   �

B Proof of Theorem 2. Proof Let Ct be the set of nodes satisfying the inequality in (24). Now rearranging 
this inequality, we get

and further rearrangement of the right-hand side yields

Then by the assumption in (26), we have

and thus

Then by the assumption in (25), we have

Applying that fact that �∗(C) < φ and rearranging (48) yields

Thus a sweep over the approximate PageRank vector ρ̂t,s finds a subset with Cheeger ratio at most O(
√
φ) as long 

as s is in Ct .   �
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