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Metabolomics‑based discrimination 
of patients with remitted 
depression from healthy controls 
using 1H‑NMR spectroscopy
Ching‑I. Hung1,2, Gigin Lin2,3,4, Meng‑Han Chiang2,3,4 & Chih‑Yung Chiu2,4,5*

The aim of the study was to investigate differences in metabolic profiles between patients with 
major depressive disorder (MDD) with full remission (FR) and healthy controls (HCs). A total of 119 
age‑matched MDD patients with FR (n = 47) and HCs (n = 72) were enrolled and randomly split into 
training and testing sets. A 1H‑nuclear magnetic resonance (NMR) spectroscopy‑based metabolomics 
approach was used to identify differences in expressions of plasma metabolite biomarkers. Eight 
metabolites, including histidine, succinic acid, proline, acetic acid, creatine, glutamine, glycine, and 
pyruvic acid, were significantly differentially‑expressed in the MDD patients with FR in comparison 
with the HCs. Metabolic pathway analysis revealed that pyruvate metabolism via the tricarboxylic acid 
cycle linked to amino acid metabolism was significantly associated with the MDD patients with FR. An 
algorithm based on these metabolites employing a linear support vector machine differentiated the 
MDD patients with FR from the HCs with a predictive accuracy, sensitivity, and specificity of nearly 
0.85. A metabolomics‑based approach could effectively differentiate MDD patients with FR from HCs. 
Metabolomic signatures might exist long‑term in MDD patients, with metabolic impacts on physical 
health even in patients with FR.

Major depressive disorder (MDD) is a common mental disorder. However, no robust objective laboratory test is 
available for the diagnosis of MDD or evaluation of the severity of depression. A metabolomics-based approach 
can be employed to identify products of a given biochemical system and metabolic substrates, and therefore this 
approach has emerged as a method by which to increase our understanding of diseases and biological systems 
in a large-scale  manner1. The technology of metabolomics offers significant potential as a tool to investigate the 
diagnosis of diseases and responses to medications. Metabolomics has been used in MDD-related research, such 
as to evaluate the severity of  depression2, identify biomarkers of  MDD3–9, for predictive diagnosis of  MDD10–13, 
identify metabolic profiles post-antidepressant  treatment14–17, pinpoint biomarkers of metabolites for drug 
response  phenotypes18,19, and differentiate MDD from bipolar  disorder12,20,21.

Full remission (FR) of depression is a treatment goal for patients with MDD. One of the commonly-used defi-
nitions of FR is a 17-item Hamilton Depression Rating Scale (HAMD) score ≤  722. However, MDD with FR does 
not equate to achieving  health23,24. For example, cognitive dysfunction, which may hinder functional recovery, is 
one of the common residual symptoms of depression, and may persist during the remission  phase25. This raises 
two interesting questions: (1) are there any differences in the metabolic profiles between MDD patients with FR 
and healthy controls (HCs), and (2) is it possible to establish an algorithm based on metabolites as biomarkers 
to differentiate MDD patients with FR from HCs?

The majority of studies of metabolomics in MDD patients, as described above, have been concerned with 
identifying biomarkers or obtaining a predictive diagnosis of MDD, or predicting the response to antidepres-
sants. Few studies have focused on investigating differences in metabolite expressions between MDD patients 
with FR and HCs using targeted metabolomics  analysis26,27, and to our knowledge, no study has comprehensively 
investigated differences in metabolite levels in peripheral plasma between MDD patients with FR and HCs. An 
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algorithm based on metabolomics analysis to differentiate MDD patients with FR from HCs is still lacking. 
However, investigation of the above two issues is important, because MDD has negative impacts on multiple 
physical  systems28–30. Abnormalities in metabolites among MDD patients with FR might be associated with 
long-term negative impacts on physical health. Furthermore, recurrence is common in MDD, and investigation 
of these issues may provide clues as to the recurrence of depression and subsequent prevention of depression.

Therefore, this study aimed to comprehensively investigate the differences in metabolomic profiles in periph-
eral plasma between patients with MDD with FR and HCs, and to then establish an algorithm based on metabo-
lomics analysis to differentiate MDD patients with FR from HCs. We hypothesized that an algorithm based on 
metabolomics analysis could be effective in differentiating MDD patients with FR from HCs.

Methods
Subjects. The subjects included in this study were nested within a project that examined MDD patients and 
were recruited at the 10-year follow-up point from August 2014 to December  201629,31,32. At baseline (from Janu-
ary 2004 to August 2007), patients diagnosed with MDD in that project were enrolled from outpatient clinics of 
the Psychiatric Department of Chang Gung Memorial Hospital at Linkou, a medical center in northern Taiwan. 
The outpatients fulfilled the criteria for MDD, and were diagnosed using the Structured Clinical Interview for 
DSM-IV-text revision (TR) Axis I  Disorders33.

At baseline, 229 participants with MDD were enrolled, then were treated by antidepressants. At the 10-year 
follow-up point, 137 (47.2%) subjects attended follow-up. The severity of depression was evaluated using the 
17-item Hamilton Depression Rating Scale (HAMD)34 administered by a psychiatrist, and among the 137 sub-
jects, a total of 47 MDD patients were in FR, which was defined as a HAMD score ≤  722, and had been medication-
free for at least 6 months and had no history of substance abuse or dependence.

Sixty-seven healthy persons were simultaneously enrolled as controls. The exclusion criteria for the HCs 
were as follows: (1) any current or previous lifetime history of neurological or DSM-IV-TR axis I/II diagnoses; 
(2) systemic medical diseases, such as hypertension, diabetes mellitus, and others; and (3) any family history 
of psychiatric disorders. The project was approved by the Institutional Review Board of Chang Gung Memorial 
Hospital (No. 105-5895C). Based on the guidelines regulated in the Declaration of Helsinki, written informed 
consent was acquired from all subjects.

The enrolled subjects, including 47 MDD patients with FR and 67 HCs, were then randomly split (3/5 for 
training, 2/5 for testing) into training (30 MDD patients with FR and 42 HCs) and testing sets (17 MDD patients 
with FR and 30 HCs) for algorithm development. Twelve-hour fasting plasma samples of the 47 MDD patients 
with FR and 67 HCs were collected and analyzed at the 10-year follow-up point. Fasting plasma parameters 
including glucose, cholesterol, or triglyceride, alanine aminotransferase (ALT), and aspartate aminotransferase 
(AST) analyzed by completely automated methods at clinical laboratories were also analyzed.

Plasma sample preparation. Fasting blood samples for plasma collection were obtained at 9–10 a.m., 
aliquoted and stored immediately at − 80 °C until analysis. Thawed plasma samples were centrifuged at 12,000×g 
at 4 °C for 30 min. 500 μL of plasma supernatant were mixed with 500 μL of 0.075 M phosphate buffer (pH 7.40) 
in 20% deuterium water containing 0.08% 3-(trimethylsilyl)-propionic-2,2,3,3-d4 acid sodium salt (TSP) as an 
internal chemical shift reference standard. The mixed samples were vortexed for 20 s and centrifuged at 12,000×g 
at 4 °C for 30 min, following which 600 μL of the supernatant were loaded into a standard 5-mm NMR tube 
(Bruker BioSpin, Billerica, MA, USA) for further analysis.

Nuclear magnetic resonance (NMR) spectrum acquisition. NMR experiments were performed at 
Chang Gung Healthy Aging Research Center, Taiwan. 1H-NMR spectra were acquired on a Bruker Avance 600-
MHz spectrometer (Bruker-Biospin GmbH, Karlsruhe, Germany) equipped with a 5-mm CPTCI 1H cryoprobe. 
Temperature was controlled at 300  K throughout the experiments. Relaxation-edited spectra were acquired 
using Carr–Purcell–Meiboom–Gill (CPMG)-presat pulse sequence. In CPMG method, a series of 180° pulse 
was applied with the radio-frequency (RF) pulses in 27.24 μs and the water presaturation bandwidth 25 Hz. 
Low-power water pre-saturation pulse sequence was used for water signal suppression during the relaxation 
time of 4 s. For each spectrum, 64 transients were collected into 64 K data points using a spectral window of 
20  ppm during a relaxation time of 4  s. The temperature-controlled Bruker SampleJet automation unit was 
installed for sample handling and laboratory automation. Prior to Fourier transformation, all 1H-NMR spectra 
were processed with zero-filling and exponential line-broadening of 0.3 Hz. The acquired spectra were manu-
ally phased, baseline corrected, and the internal TSP signal calibrated to δ 0.0 ppm using TopSpin 3.2 software 
(Bruker BioSpin, Rheinstetten, Germany).

NMR data processing and analysis. NMRProcFlow (https:// www. nmrpr ocflow. org), an open-source 
software, provides comprehensive tools for the processing and visualization of 1D NMR data. The raw 1H-NMR 
spectra were imported into NMRProcFlow 1.3 for ppm calibration, baseline correction, alignment, spectra 
bucketing and data  normalization35. Spectra bucketing was performed using the method of intelligent bucket-
ing and variable size bucketing with the full range of 10.0–0.00  ppm36. Metabolite identification was performed 
using Chenomx NMR Suite 8.0 professional software (Chenomx Inc., Edmonton, AB, Canada). The compounds 
were identified by comparing spectra to database Chenomx 600 MHz Version 9 (Chenomx Inc., Edmonton, 
Canada) with 332 metabolites in this particular database. A standard two-dimensional (2D) NMR experiment 
(1H and 13C NMR spectrum) was conducted on a pooled plasma sample and metabolites were further assigned 
by comparison with reference spectra from the Human Metabolome Database (HMDB). The area of individual 
resonances of glucose metabolite was significantly correlated with biochemical glucose concentration (Supple-

https://www.nmrprocflow.org
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mentary Fig. S1). The exported bucketing data of the 1H-NMR spectra were uploaded to MetaboAnalyst 4.0 
(http:// www. metab oanal yst. ca) with mean-centered, generalized log transformation and scaled by Pareto scal-
ing. To identify metabolites that may be used to distinguish MDD patients with FR from healthy controls, par-
tial least squares-discriminant analysis (PLS-DA) was applied with the variable importance in projection (VIP) 
score and fold-change values. Pathway analysis of the potential metabolites selected owing to a p-value lower 
than 0.05 was carried out to identify the implicated pathways. The potential metabolites were selected from 
the training samples, and Receiver Operating Characteristic (ROC) analysis was performed to investigate the 
accuracy of the training and testing models using four well-established algorithms, including PLS-DA, Random 
Forest, Support Vector Machine (SVM) and Logistic Regression Models. One-hundred cross-validations were 
performed to obtain a more reliable prediction model and the permutation test was used 1000 times to evaluate 
the performance of the model.

Results
Subjects. Table 1 shows the differences in demographic variables and biochemical indices between the MDD 
patients with FR and the HCs in the training and testing groups. There were no significant differences in age, 
gender, BMI, fasting plasma glucose, cholesterol, or triglyceride levels between groups. A significant difference 
was noted in the HAMD score between the MDD patients with FR and the HCs in the training group; however, 
both scores were within the range of FR (HAMD score ≤ 7).

Metabolites significantly differentially‑expressed between the MDD patients with FR and the 
HCs in the training group. 1H-NMR spectra obtained from plasma corresponded to 27 known metabo-
lites (Supplementary Table S1). Metabolites that contributed to discrimination between the groups were identi-
fied using supervised PLS-DA (Fig. 1A, score plots). Table 2 shows the metabolites significantly differentially-
expressed between the MDD patients with FR and the HCs in the training group. Compared with the HCs, eight 
metabolites were found to be significantly associated with the MDD patients with FR (p < 0.05), among which 
seven metabolites, including succinic acid, proline, acetic acid, creatine, glutamine, glycine, and pyruvic acid, 
had significantly lower expressions in the MDD patients with FR, while in contrast histidine had a significantly 
higher expression in the MDD patients with FR than in the HCs. Figure 1B shows a heatmap of these eight 
metabolites clustered using Hierarchical Clustering. A representative 600  MHz 1H-NMR spectra of selected 
eight metabolite signals are shown in Fig. 2.

Metabolic pathway associated with MDD patients with FR. Table 3 shows functional pathways of 
the metabolic network associated with the MDD patients with FR. Pyruvate metabolism via the tricarboxylic 
acid (TCA) cycle linked to amino acid metabolism, including alanine, aspartate and glutamate; arginine and 
proline; and glycine, serine and threonine metabolisms, was significantly associated with the MDD patients with 
FR (p < 0.01).

Model of metabolites in MDD patients with FR. Table  4 shows the performance of the model of 
metabolites in terms of discriminating the MDD patients with FR from the HCs using four types of machine 
learning algorithm. Figure 3 shows the ROC curves for the SVM, PLS-DA, random forest, and logistic regression 
models. The model included the eight metabolites that had been identified as being significantly associated with 
the MDD patients with FR, with a highest AUC value of 0.784 and a highest predictive accuracy of 0.715 in the 
traing group (Ppermutation test < 0.05). Using linear SVM classification in the testing group, the predictive accuracy, 
sensitivity, and specificity were 0.846, with a positive predictive value of 0.733 and a negative predictive value of 
0.917.

Table 1.  Demographic variables and biochemical indices in the MDD patients with full remission and the 
healthy controls. Full remission was defined as a HAMD score ≤ 7. MDD major depressive disorder, HAMD 
Hamilton Depression Rating Scale, BMI body mass index, ALT alanine aminotransferase, AST aspartate 
aminotransferase. *p < 0.05.

Training group Testing group

MDD with remission Healthy controls MDD with remission Healthy controls

Number 30 42 17 30

Age (years) 42.1 ± 9.2 41.2 ± 7.3 38.2 ± 5.2 40.6 ± 8.7

Female (%) 70.0 71.4 58.8 66.7

HAMD score 3.7 ± 2.0 1.5 ± 2.4* 2.9 ± 1.9 2.1 ± 4.2

BMI 24.2 ± 4.8 22.8 ± 3.7 22.8 ± 4.3 23.8 ± 3.5

Fasting plasma glucose (mg/dL) 92.6 ± 19.7 89.5 ± 10.2 104.9 ± 62.2 86.7 ± 5.7

Cholesterol 190.8 ± 29.2 185.5 ± 25.1 193.5 ± 24.2 191.5 ± 30.8

Triglycerides (mg/dL) 104.9 ± 61.1 94.4 ± 61.1 97.4 ± 60.8 94.5 ± 51.3

AST 23.4 ± 9.7 22.6 ± 5.4 22.9 ± 4.9 25.0 ± 7.4

ALT 21.8 ± 15.8 19.1 ± 12.1 19.2 ± 9.7 23.7 ± 16.4

http://www.metaboanalyst.ca
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Discussion
This study demonstrated the potential of metabolic profiling in MDD patients with FR. A model based on 
metabolomics analysis using machine learning could effectively differentiate MDD patients with FR from HCs. 
Several studies have reported differences in metabolomes between MDD patients in a depressive episode and 
 HCs5,12,37. Our findings implied the long-term existence of biological characteristics of MDD, even in patients 
with FR. Despite the fact that MDD with FR does not equate to achieving health in terms of clinical symptoms, 

Figure 1.  PLS-DA score plots from the analysis of 1H-NMR spectra using plasma samples and a heat map of 
eight metabolites significantly differentially-expressed between the major depressive disorder (MDD) patients 
with full remission (FR) and healthy controls (HCs). (A) Two-dimensional scatter plot showing the model’s 
degree of separation between the two groups: x axis, component 1 (% of total variance); y axis, component 2 (% 
of total variance). (B) Each column represents a plasma sample and each row represents the expression profile 
of a metabolite. The fold changes from the overall mean concentration are shown in a color-coded manner, with 
blue representing a decrease and red an increase.

Table 2.  Significantly differentially-expressed metabolites between the MDD patients with full remission and 
the healthy controls. MDD major depressive disorder, VIP variable importance in the projection, s singlet, m 
multiplet.

Metabolite Chemical shift (ppm) VIP score Fold change p

Succinic acid 2.394–2.397 (s) 1.32 0.85 < 0.001

Proline 2.322–2.357 (m) 1.79 0.75 < 0.001

Acetic acid 1.907–1.914 (s) 1.37 0.83 < 0.001

Creatine 3.918–3.926 (s) 1.03 0.89 0.001

Glutamine 2.403–2.409 (m) 0.79 0.93 0.005

Glycine 3.548–3.565 (s) 0.63 0.94 0.020

Pyruvic acid 2.357–2.369 (s) 0.77 0.91 0.032

Histidine 7.760–7.783 (s) 1.39 1.06 0.039

Figure 2.  Representative 600 MHz 1H-NMR spectra of plasma showing the selected eight metabolite signals 
(δ1–9). x axis, parts per million (ppm); y axis, intensity (a.u.). 1, Acetic acid; 2, Proline; 3, Pyruvic acid; 4, 
Succinic acid; 5, Glutamine; 6, Glycine; 7, Creatine; 8, Histidine.
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Table 3.  Functional pathway analysis of metabolites associated with MDD with full remission. MDD major 
depressive disorder, FDR false discovery rate, TCA  tricarboxylic acid. a Metabolites for which p < 0.05 were 
selected.

Pathway name Match status Metabolitesa P FDR Impact

Alanine, aspartate and glutamate metabolism 3/24 Pyruvic acid, glutamine, succinic acid < 0.001 0.002 0.207

Aminoacyl-tRNA biosynthesis 4/75 Histidine, glutamine, glycine, proline < 0.001 0.002 0.000

Arginine and proline metabolism 4/77 Glutamine, proline, creatine, pyruvic acid < 0.001 0.002 0.134

Nitrogen metabolism 3/39 Glutamine, histidine, glycine < 0.001 0.004 0.000

Glycine, serine and threonine metabolism 3/48 Glycine, creatine, pyruvic acid < 0.001 0.006 0.188

Taurine and hypotaurine metabolism 2/20 Pyruvic acid, acetic acid 0.002 0.020 0.022

Citrate cycle (TCA cycle) 2/20 Succinic acid, pyruvic acid 0.002 0.020 0.105

Glycolysis or Gluconeogenesis 2/31 Pyruvic acid, acetic acid 0.004 0.041 0.096

Pyruvate metabolism 2/32 Pyruvic acid, acetic acid 0.005 0.041 0.282

Table 4.  Model of metabolites in MDD with full remission using different types of machine learning 
algorithm. MDD major depressive disorder, AUC  area under the receiver operating characteristic curve, SVM 
support vector machine, PLS-DA partial least squares-discriminant analysis. a Metabolites for which p < 0.05 
were selected. b 1000 random permutations were performed for validation testing.

Model 
 metabolitea

Machine 
learning model

Training model Testing model

AUC Ppermutation test
b

Predictive 
accuracy Ppermutation test

Predictive 
accuracy Sensitivity Specificity

Positive 
predictive value

Negative 
predictive value

Succinic acid
Proline
Acetic acid
Creatine
Glutamine
Glycine
Pyruvic acid
Histidine

Linear SVM 0.784 0.007 0.707 0.011 0.846 0.846 0.846 0.733 0.917

PLS-DA 0.779 0.003 0.705 0.011 0.846 0.923 0.808 0.706 0.955

Random FOR-
EST 0.738 0.007 0.677 0.029 0.821 0.769 0.846 0.714 0.880

Logistic regres-
sion 0.772 0.004 0.715 0.005 0.821 0.769 0.846 0.714 0.880

Figure 3.  Receiver operating characteristics (ROC) curves for supportive vector machine (SVM), PLS-DA, 
random forest, and logistic regression models.
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such as cognitive  dysfunction23,25, our results further demonstrated that FR of depression might not be equivalent 
to biological health based on the aspect of metabolomics.

In this study, eight metabolites were identified as being significantly differentially-expressed between the 
MDD patients with FR and the HCs. One review article identified several differentially-expressed metabolites 
between patients with MDD and controls from 46  studies37. Different studies of MDD patients might present 
controversial results in terms of elevated or decreased levels of metabolites as compared with  HCs37–39. However, 
all eight metabolites identified in this study had been previously reported to be associated with  MDD37, with the 
exception of acetic acid. Among these metabolites, significantly lower levels of l-glutamine and pyruvic acid 
were identified in the MDD patients with FR as compared with the HCs, which was compatible with the findings 
of an integrated meta-analysis of metabolites in MDD  patients37. As was the case in this study, lower levels of 
succinic acid and glutamine have been reported to be significant in the diagnosis of MDD using metabolomics 
 analysis12. However, in contrast to the decreased level of proline and elevated level of histidine observed in this 
study, antidepressant-free MDD patients have previously been reported to have a conversely increased level of 
proline and decreased level of l-histidine37.

A recent study reported that serum levels of methionine, phenylalanine, tryptophan, and tyrosine were sig-
nificantly decreased in MDD patients compared to  HCs40. Three of these four metabolites including methionine, 
tryptophan, and tyrosine related to aminoacyl-tRNA biosynthesis, glycine, serine and threonine metabolism, 
and citrate cycle were associated with MDD as in this study. Higher serum serine levels have reported to be sig-
nificantly higher in patients with  depression41. In addition, plasma levels of glutamate, glutamine, glycine, and 
taurine were found to be significantly increased in the depressed patients, particularly reflecting the severity of 
 depression42. Despite the differences between studies, the available evidence suggests the importance of amino 
acid metabolites in patients with depressive disorder.

Amino acids, in particular glycine, glutamate, and glutamine, have been reported to significantly affect mac-
rophage atherogenicity through modulation of the cellular triglyceride  metabolism43. Most importantly, the 
anti-atherogenic properties of glycine have been further confirmed in vivo43. In this study, the MDD patients 
with FR appeared to have steady, low glycine levels, which may imply a risk of atherosclerosis in MDD patients, 
even with FR. Indeed, depression is clinically associated with an increased risk of cardiovascular  diseases28,30. 
The findings of this study indicated that MDD patients might suffer persistent metabolic impacts on physical 
health, despite FR of the disease.

Nine functional metabolic pathways associated with MDD with FR were identified in this study, most of which 
have been reported  previously37. Amino acid metabolism in the peripheral blood, such as nitrogen metabolism 
and aminoacyl-tRNA biosynthesis, appeared to be prominently associated with MDD  patients44,45. The majority 
of the differentially-expressed metabolites identified in this study were significantly lower in the MDD patients 
with FR. In fact, previous studies have also reported some reductions in amino acid bioavailability in MDD 
 patients37,38.

Several points are worthy of note. (1) Ali-Sisto et al. identified a significant difference between MDD patients 
and HCs in purine metabolism by analysis of fasting serum samples; however, there were no significant differ-
ences in metabolite levels between remitted and non-remitted MDD  patients26. Most of the metabolites identified 
in this study had been reported in previous studies that investigated differences in metabolites between MDD 
patients in a depressive episode and  HCs37. These results demonstrated that metabolomic signatures of MDD 
might not disappear, even with FR. (2) Kaddurah-Daouk et al. reported significant differences in tryptophan 
and tyrosine metabolism in cerebrospinal fluid in MDD patients with FR in comparison with  HCs27. Our study 
ascertained that differences in metabolomics between MDD patients with FR and HCs were also present in 
peripheral plasma. (3) There is a possibility that people in the community who have similar metabolomic char-
acteristics to MDD patients with FR may be at greater risk of the onset of depression; however, this hypothesis 
requires more evidence for confirmation.

There were some limitations and bias in this study. (1) The course of depression fluctuates, and it was dif-
ficult to clarify how long the patients with MDD had been in FR at the time point of the investigation. It was 
also unknown whether the duration of FR might affect the results of metabolomics analysis. (2) The HAMD 
score in the MDD patients with FR was still significantly higher than that in the HCs in the training group. It 
was unknown whether this difference in the HAMD score was a factor associated with metabolomic differences 
between the MDD patients with FR and the HCs. (3) The study did not control the phase of menstrual cycle, 
which might affect metabolomic  profiles46, in female subjects. This might cause bias.

Conclusion
There were significant differences in the expressions of eight metabolites between the MDD patients with FR and 
the HCs. Pyruvate metabolism via the TCA cycle linked to amino acid metabolism may play a biological role in 
the potential depression status. Using machine learning Linear SVM, a model containing the eight metabolites 
related to MDD with FR was developed, which provided a predictive accuracy, sensitivity, and specificity of nearly 
0.85 for discrimination of MDD patients with FR from HCs. Metabolomic signatures might exist long-term in 
MDD patients and could have a persisting impact on physical health, despite FR of the disease.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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