
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:15824  | https://doi.org/10.1038/s41598-021-95218-w

www.nature.com/scientificreports

A generic intelligent tomato 
classification system for practical 
applications using DenseNet‑201 
with transfer learning
Tao Lu1,2, Baokun Han1, Lipin Chen3, Fanqianhui Yu3* & Changhu Xue3,4

A generic intelligent tomato classification system based on DenseNet‑201 with transfer learning was 
proposed and the augmented training sets obtained by data augmentation methods were employed 
to train the model. The trained model achieved high classification accuracy on the images of different 
quality, even those containing high levels of noise. Also, the trained model could accurately and 
efficiently identify and classify a single tomato image with only 29 ms, indicating that the proposed 
model has great potential value in real‑world applications. The feature visualization of the trained 
models shows their understanding of tomato images, i.e., the learned common and high‑level 
features. The strongest activations of the trained models show that the correct or incorrect target 
recognition areas by a model during the classification process will affect its final classification accuracy. 
Based on this, the results obtained in this study could provide guidance and new ideas to improve the 
development of intelligent agriculture.

Deep learning, an emerging non-destructive technique with advantages of automation, speed, accuracy and low 
cost, has been successfully applied in agriculture and food fields such as pest detection, disease diagnosis, ripeness 
determination and quality assessment of fruits, vegetables, meat and  seafood1–3. In particular, deep convolutional 
neural networks (CNN) have become the dominant deep learning approach in image-based recognition, clas-
sification, and detection tasks for fruits and  vegetables4–6. With its outstanding ability of automatically learning 
features from images, CNN-based approaches have been integrated with existing agricultural practices to accel-
erate the development of smart farming and precision  agriculture7. Specifically, applying CNN to harvesting 
robots can guide them to detect and distinguish different types of fruits in an orchard, such as different varieties, 
maturity stages or grades of fruits, which helps robot to pick accurately and quickly, and reduce labor  costs8–10. 
In recent years, a number of studies have been devoted to investigating the feasibility and applicability of CNN 
in fruit image-based detection and classification. However, many studies have ignore the differences between 
laboratory use and real-world use of deep learning because they only use the ideal images captured in labora-
tory environments, i.e., high-resolution images with a white background taken by a well-set-up digital camera, 
which do not reproduce the range of conditions in  practice11,12. Although a few studies have used images that 
closely relate to reality, such as fruits with leaves or a bunch of fruit, they still miss the most important point in 
practice, which is unforeseen  circumstances13.

In general, CNN is trained and tested on high quality image datasets, but in practice, it cannot be assumed 
that the input images are all high  quality14. This is because in practical environments, image noise is inevitable 
due to the various processes involved in image acquisition, conversion and  transmission15. Image noise is a 
number of isolated, randomly positioned pixels that do not reflect the true information of an  image16. It is the 
major contributor to poor image quality and loss of useful information and signals, usually caused by photogra-
phy equipment and the external  environment17. For example, unclear images are taken by digital cameras with 
inherent noise, dirty lenses, or working in fog, rain or snow. And blurry images are taken by robotic vision system 
because the fruit is obscured by leaves or is blown by the  wind18. As a result, poor quality images with different 
levels of noise are often collected in agricultural production. Unfortunately, the obtained poor quality images 
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can strongly interfere with CNN’s target detection and classification, degrading its performance, and leading to 
inaccurate predictions of the  output14,19. Based on this, the real-world applications of CNN are more challenging, 
as it requires CNN-based methods to be more generalizable and robust.

Inspired and motivated by the above reasons, the purpose of this study was to address the problem of low 
accuracy of CNN in identifying and classifying poor quality images in practical applications. For this reason, 
DenseNet-201 with transfer learning was employed to develop models, and data augmentation methods were 
used to enhance and expand the size of training sets. This study contributes to the further advancement of CNN-
based methods from laboratory applications to actual agricultural production processes, such as the establish-
ment of CNN-based automated systems for fruit and vegetable picking, sorting and packing, which will facilitate 
the development of intelligent agriculture in the future and improve labor efficiency and economic benefits.

Material and methods
Fruits‑360 dataset. “Fruits-360” (https:// www. kaggle. com/ molte an/ fruits, Version: 2020.05.18.0) is a large 
and open benchmark fruit images  dataset20,21, which has been employed by several studies to evaluate their 
proposed  models22,23. Based on this, “Fruits-360” dataset was employed in this study to objectively evaluate and 
demonstrate the performance of our proposed models and to facilitate researchers to reproduce our work. This 
dataset contains a total number of 90,483 images of fruits and vegetables in 131 classes. Among them, tomato 
includes 9 types, namely Tomato 1, Tomato 2, Tomato 3, Tomato 4, Cherry Red, Heart, Maroon, Tomato not 
Ripened, and Yellow. Each image (100 × 100 pixels) is of a single tomato on a white background.

DenseNet architecture. DenseNet was proposed by Huang et al.24, and is known for its excellent perfor-
mance on four object recognition benchmark datasets such as CIFAR-100 and  ImageNet25. To maximize the 
information flow between the layers in the network, the DenseNet architecture uses a simple connectivity pat-
tern that connects all layers directly to each other in a feed-forward fashion, i.e., each layer obtains additional 
inputs from all previous layers and passes its own feature-maps to all subsequent  layers26. With this architecture, 
DenseNet has several impressive advantages, including mitigating the vanishing gradient problem, strengthen-
ing feature propagation, encouraging feature reuse, and substantially reducing the number of parameters. As a 
result, DenseNet-201 was employed in this study and more details can be found  in24.

Transfer learning. CNN is typically exploited on large datasets of more than one million images (e.g., Ima-
geNet) and perform best when they have deeper and more highly interconnected  layers27. However, it is difficult 
to obtain a huge number of manually labeled images in agriculture, so the currently used CNN-based methods 
for agricultural issues such as fruit and vegetable classification are directly exploited on a limited number of 
classes and small datasets, which can easily lead to overfitting problems of deep networks, and thus the results 
obtained are not rigorous and  scientific28. An effective way to overcome overfitting problems while achieving 
significant results in classification tasks with a limited amount of data is transfer  learning26. Transfer learning is 
a deep learning approach in which a model that trained for one task is used as a starting point to train a model 
for a second task. With its help, deep CNN can not only avoid overfitting problems when the dataset is relatively 
small, but also reduce training time.

Image processing. As the original size of each image in Fruits-360 dataset was 100 × 100 × 3, all images 
were resized to 224 × 224 × 3 to comply with the input size requirements of DenseNet-201.

Data augmentation by adding Gaussian white noise to images. Data augmentation is a popular 
technique used to enhance the training of  CNN29. Data augmentation mitigates the overfitting problems of deep 
networks on small datasets because it expands the size of the dataset. The commonly used data augmentation 
methods include geometric rotation, adversarial training, and generative adversarial networks,  etc30. However, 
these methods also have some problems, such as geometrically rotated images cannot solve the problem of low 
accuracy of CNN in identifying images with noise, while generative adversarial networks are relatively complex 
and hard to  train31. Additive Gaussian white noise is a fundamental noise model used in Information Theory to 
mimic the effect of many random processes that occur in  nature32. In addition, injecting Gaussian white noise 
into images can be used as a simple and convenient way to augment the dataset. Therefore, in order to expand 
the size of dataset and simulate different levels of poor-quality images acquired in practical scenarios, data aug-
mentation was performed by adding Gaussian white noise with mean M and variance of 0.01, where M ranges 
from 0 to 1.0.

Feature visualization and strongest activations. Feature visualization images of the last fully con-
nected layer of each trained model were generated by the deepDreamImage  technique33. Strongest activations 
images of the last convolutional layer of each trained model were generated using the method “Visualize Activa-
tions of a Convolutional Neural Network” in Mathworks (R2020b).

Computer configuration and operating parameters. All models were implemented using the MAT-
LAB R2020b version, ran on the same workstation with Intel Xeon Gold 5120 CPU*2, Nvidia P2000 GPU (5 G 
memory) *1, and 64 G (16 G*4) memory. Models were trained by Adaptive Moment Estimation (ADAM). In 
addition, the same operating parameters were adopted: initial learn rate = 0.00001, minibatch size = 64, and max 
epochs = 2.

https://www.kaggle.com/moltean/fruits
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Results and discussion
Performance comparision of five CNN‑based models. In order to select the optimal model, the per-
formance of the five CNN-based models (NasNet-Mobile, Xception, DenseNet-201, Inception-Resnetv2, and 
Inception-v3 with transfer learning) was evaluated on different datasets (Tables 1, 2), and the results are pre-
sented in Table 3. Specifically, the five models were first trained and tested on the original dataset (training set 
1—testing set 1) provided by “Fruits-360”, respectively, and all models achieved high classification accuracy of 
around 99%, especially Xception, DenseNet-201, and Inception-Resnetv2-based models achieved almost 100% 
classification accuracy with no significant difference. Therefore, for further comparison, the five models were 
then trained and tested on training set 2—testing set 2, which is an inverse version of training set 1—testing set 
1, i.e., training set 2 is testing set 1, and testing set 2 is training set 1. This kind of dataset configuration posed a 
challenge for the five models since the size of training set was reduced and the size of testing set was increased 
(Table 1). Undoubtedly, the results showed a significant decrease in classification accuracy for most models, 

Table 1.  The number of images used in different training sets. For each type of tomato in each training set, 1/5 
of the images were used for validation and the remaining 4/5 of the images were used for training.

Tomato type Training set 1 Training set 2 Training set 3 Training set 4 Training set 5

Tomato 1 738 246 1476 2952 2952

Tomato 2 672 225 1344 2688 2688

Tomato 3 738 246 1476 2952 2952

Tomato 4 479 160 958 1916 1916

Cherry red 492 164 984 1968 1968

Heart 684 228 1368 2736 2736

Maroon 367 127 734 1468 1468

Tomato not ripened 474 158 948 1896 1896

Yellow 459 153 918 1836 1836

Total 5103 1707 10,206 20,412 20,412

Table 2.  The number of images used in different testing sets. A total of 11 testing sets, from testing set 3 to 13, 
were added with different levels of noise, and the noise addition was increased from M = 0 to M = 1.0, with an 
increment of 0.1.

Tomato type Testing set 1 Testing set 2 Testing set 3 (M = 0) … Testing set 13 (M = 1.0)

Tomato 1 246 738 246 … 246

Tomato 2 225 672 225 … 225

Tomato 3 246 738 246 … 246

Tomato 4 160 479 160 … 160

Cherry red 164 492 164 … 164

Heart 228 684 228 … 228

Maroon 127 367 127 … 127

Tomato not ripened 158 474 158 … 158

Yellow 153 459 153 … 153

Total 1707 5103 1707 … 1707

Table 3.  Performance comparison of five CNN-based models on different datasets.

NasNet-Mobile Xception DenseNet-201 Inception-Resnetv2 Inception-v3

Training set 1: Testing set 1

Accuracy (%) 98.95 99.94 100.00 99.94 99.12

Training time (s) 24,875 49,007 28,706 55,022 12,030

Testing time (s) 126 119 53 121 29

Training set 2: Testing set 2

Accuracy (%) 88.97 91.63 96.16 90.40 92.16

Training time (s) 8126 17,704 13,340 21,347 4397

Testing time (s) 478 876 157 392 80
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but DenseNet-201-based model still achieved the best performance with the highest classification accuracy of 
96.16%. Based on this, DenseNet-201-based model was employed in this study for further discussion.

Influence of image noise on performance of DenseNet‑201‑based model. The purpose of this 
part of the work was to simulate the poor quality images obtained in real scenarios by adding different levels of 
noise to tomato  images34 and to find out the influence of image noise on the classification accuracy of a trained 
DenseNet-201-based model. Figure 1 shows the examples of tomato images with different levels of Gaussian 
white noise added, with M ranging from 0 to 1.0, and “Control” representing the original tomato image without 
the added noise. Obviously, the tomato images became increasingly unclear as the noise level increased, and 
when M > 0.7, they were difficult to recognize even with the human eye. Next, the trained DenseNet-201-based 
model (trained by training set 1) was tested on different testing sets to demonstrate the effect of image noise on 
the classification accuracy of the model. Specifically, as shown in Fig. 2 and Table 2, a total of twelve testing sets 
(1, 3–13) were used, where testing set 1 was the control set (the original testing set without added noise provided 
by Fruits-360 dataset), and testing sets 3–13 were based on testing set 1 with added different levels of Gaussian 
White noise (M from 0 to 1.0 in increments of 0.1), respectively. Model 1 in Fig. 2 represents the DenseNet-201-
based model trained by training set 1 (in “Performance comparision of five CNN-based models” section). The 
curve of Model 1 shows that the classification accuracy drops sharply from 100.00 to 29.23% when the testing 
set starts to contain noise (M = 0), indicating that the trained model is sensitive to image  noise14. Then, as the 
noise increases from M = 0.1 to M = 0.7, the classification accuracy fluctuates between 32.22 and 42.06%. And 
the classification accuracy continues to decrease as the noise level increases and is only 7.56% at M = 1.0 (testing 
set 13). This phenomenon indicates that although the trained Model 1 can achieve excellent performance on the 

Figure 1.  Tomato images with the addition of different levels of Gaussian white noise.

Figure 2.  Performance variation of four DenseNet-201-based models (trained on different training sets) on 
twelve testing sets with different levels of noise.
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testing sets of high-quality images, images containing noise significantly reduce its classification accuracy, which 
is unacceptable and limits the practical application of the model.

Data augmentation of training sets. To address the above problem of Model 1, two data augmentation 
strategies, adding Gaussian white noise and geometric rotation, respectively, were adopted to generate additional 
training sets. Specifically, in Table 1, training set 3 is an augmented set consisting of two parts, one with all 
images of training set 1 and the other with Gaussian white noise (M = 0.5) added to each image of training set 
1, thus making training set 3 twice the size of training set 1. Training set 4 consists of four parts, one of which is 
all the images of training set 1, and the other three parts are Gaussian white noise (M = 0.2, 0.5, and 0.8) added 
to each image of training set 1, respectively, so training set 4 is four times the size of training set 1. Meanwhile, 
training set 5 also consists of four parts, but is generated by geometric rotation, i.e., all the original images of 
training set 1, and the original images rotated by 90, 180, and 270 degrees respectively. Then, DesnseNet-201-
based model was trained by training sets 3, 4 and 5 to obtain Models 2, 3 and 4, respectively, and the three mod-
els were tested on the twelve testing sets (1, 3–13) to examine their performance in classifying images containing 
different levels of noise.

As shown in Fig. 2, when the images in testing set begin to contain noise (M = 0), the performance of Models 
2 and 4 is similar to that of Model 1, i.e., the classification accuracy decreases dramatically. After that, the clas-
sification accuracy of Model 2 starts to increase and reaches very high (over 96%) on testing set 6 (M = 0.3) to 
9 (M = 0.6), but then decreases again when the noise M > 0.6. This trend is caused by two reasons: the size of 
training set 3 was two times larger than training set 1, so the overall performance of Model 2 was better than that 
of Model 1; Gaussian white noise (M = 0.5) was added to images of training set 3 resulted in Model 2 achieving 
high accuracy on the testing set 6 (M = 0.3) to 9 (M = 0.6), since the levels of image noise in these testing sets 
were the same or similar to those in training set 3. Inspired by the improved performance of Model 2, Model 
3 was trained by training set 4, which was four times larger than training set 1. The performance of Model 3 is 
encouraging, as it not only overcomes the sensitivity of the model to image noise in the testing sets, but also 
maintains a high classification accuracy of about 99% on the ten testing sets (1, 3–11) with noise added (M ≤ 
0.8). And the decrease in classification accuracy on testing sets 12 and 13 is due to the fact that the tomatoes in 
images were almost invisible after adding the noise (M = 0.9 and 1.0). Furthermore, Model 4 achieved very low 
classification accuracy on all testing sets, even lower than Model 1, indicating that the use of geometric rotation 
to augment the size of dataset did not have a positive impact on the improvement in model performance. This 
may be due to the fact that geometric rotation did not increase the diversity of the training data, whereas the 
addition of Gaussian white noise increased the diversity of the training data and thus allowed Model 3 to learn the 
underlying features used to distinguish between the different categories. Therefore, due to the poor performance 
of Model 4, we only compare the other three models in the next sections.

Models 1, 2 and 3 were similar in model size and classification time for a single image, at approximately 66 MB 
and 29 ms respectively. The training time of the three models increased with the increasing number of images 
in their training sets, i.e., 3743 s for Model 1, 6640 s for Model 2, and 16,180 s for Model 3. The relatively long 
training time for Model 3 is acceptable because firstly, in practice, the ultimate goal of a multiclass classification 
task is to achieve accurate classification of a single image with the shortest recognition time. Secondly, training 
the model is a one-off activity or at most a periodic training to maintain and update its performance, and finally 
it can be further shortened as computer hardware  improved35. Based on the above results, it is shown that Model 
3 has a stable performance and can accurately and quickly classify the images with different levels of noise, mak-
ing it more suitable for practical agricultural applications.

Feature visualization. Since CNN can automatically learn features from raw image pixels during the train-
ing phase, feature visualization of a trained CNN is used to show its understanding of an image to  humans36,37. 
Specifically, CNN generally builds understanding of an image in a hierarchical way over many layers, where 
earlier layers learn basic visual features such as edges or textures, while deeper layers can learn and integrate 
features learned by earlier layers into more abstract features such as patterns, parts, or  objects38. Therefore, the 
feature visualization of the last fully connected layer of a trained model exhibits its learned common and high-
level features of tomatoes in the training set, which are used to classify the different types of tomatoes in testing 
 sets39. Figure 3 shows the sample images of each type of tomato in training set 1 and the corresponding feature 
visualization images generated by the three trained models. It can be seen that the feature visualization images 
generated by the different models for each class of tomatoes look similar but still differ in details, suggesting that 
image noise affects the learning and integration of features by the models. In addition, all the feature visualiza-
tion images are colorful, complex, and abstract patterns that are difficult for us to describe and understand. This 
may be due to the fact that DenseNet-201 is very deep with 708 layers, and the presented feature visualization 
image was generated by layer 706 (the last fully connected layer). Although it was difficult for us to figure out 
what features they had learned, the truth is that Model 3 achieved excellent performance on complex testing sets 
containing noise based on its learned features.

Strongest activations. As Fig. 4 shows, one tomato image was randomly selected from testing sets 1 (Con-
trol), 9 (M = 0.6), and 13 (M = 1.0), respectively, and fed into each trained model to generate the corresponding 
strongest activations image. In the strongest activations images, the white pixels represent strong positive activa-
tion, which is the recognized areas by a trained model. Therefore, the aim of the work in this section was to show 
how a trained model recognizes a tomato and to demonstrate the differences in the recognition areas by different 
models for the same tomato image. First, for the tomato image in control set, the areas recognized by each model 
were almost identical and corresponded to all three models achieving about 100% classification accuracy on 



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:15824  | https://doi.org/10.1038/s41598-021-95218-w

www.nature.com/scientificreports/

Figure 3.  Sample images of nine types of tomatoes and feature visualization of the last fully connected layer of 
each trained model.

Figure 4.  Randomly selected tomato images containing different levels of noise from testing sets 1, 9, and 13, 
and their corresponding strongest activations images generated by each trained model.
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testing set 1 (Fig. 2), indicating that the areas they recognized should be correct. Second, for the tomato image 
with added noise (M = 0.6), the areas recognized by Models 2 and 3 were similar but significantly different from 
those recognized by Model 1, which corresponded to the high classification accuracy of 96.19% and 99.94% 
achieved by Models 2 and 3 respectively, on testing set 9, while the classification accuracy of Model 1 was only 
37.61%. This phenomenon suggests that the areas recognized by Model 1 are incorrect and that the misidentified 
areas for tomatoes may be responsible for the low classification accuracy achieved by Model 1 on testing set 9. 
Last, for the tomato image with added noise (M = 1.0), since all three models had very low classification accuracy 
on testing set 13, their similar recognized areas of the tomato were probably incorrect. Thus, the above results 
indicate that the correct or incorrect target identification (strongest activations areas) by a trained model during 
the classification process will affect its final classification accuracy.

Conclusion
In recently years, CNN-based methods have been successfully applied in agriculture and food. They are gener-
ally trained and tested on high quality image datasets and achieve high classification accuracy, as poor quality 
images can strongly interfere with target detection and classification of CNN, resulting in inaccurate output 
results. However, in practice, poor quality images are often obtained, which limits the application of CNN. 
Therefore, this study focuses on solving the problem of low accuracy of CNN in identifying and classifying 
poor quality images in real-world applications. We first used nine types of tomato images from the publicly 
available “Fruits-360” dataset to evaluate the performance of state-of-the-art CNNs and chose DenseNet-201 
with transfer learning as the optimal model. Twelve testing sets were then constructed by adding vary levels of 
Gaussian white noise in order to mimic the poor-quality images obtained in practice. The poor performance of 
Model 1 on the twelve testing sets showed that DenseNet-201-based model was very sensitive to image noise. 
Next, training DenseNet-201-based models with the augmented training sets obtained by adding Gaussian 
white noise to the images solved this problem, as it not only expanded the size of training sets but also increased 
the diversity of the training data. Furthermore, the feature visualization and strongest activations of the three 
trained DenseNet-201-based models were investigated to compare the differences between the different models, 
and the visual evidence obtained can be used to gain insight into the internal structure or working principle of 
deep network as a “black box”. In conclusion, the results showed that Model 3 achieved superior performance 
in identifying and classifying both high and poor-quality images, and thus can be used as a generic intelligent 
tomato classification system in practical applications.

Data availability
The datasets generated during the current study are available from the corresponding author on reasonable 
request.
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