
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:15559  | https://doi.org/10.1038/s41598-021-95156-7

www.nature.com/scientificreports

Quantum algorithm 
for MMNG‑based DBSCAN
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DBSCAN is a famous density‑based clustering algorithm that can discover clusters with arbitrary 
shapes without the minimal requirements of domain knowledge to determine the input parameters. 
However, DBSCAN is not suitable for databases with different local‑density clusters and is also a very 
time‑consuming clustering algorithm. In this paper, we present a quantum mutual MinPts‑nearest 
neighbor graph (MMNG)‑based DBSCAN algorithm. The proposed algorithm performs better on 
databases with different local‑density clusters. Furthermore, the proposed algorithm has a dramatic 
increase in speed compared to its classic counterpart.

Clustering, an important branch of unsupervised machine learning, is the process of partitioning a dataset into 
subsets of points called clusters, such that similar points are grouped in the same cluster and dissimilar points 
are put in different clusters. This procedure is widely used in many scientific fields, including  bioinformatics1–4, 
image  processing5–8, and social  networks9,10.

DBSCAN11, a density-based clustering algorithm, is one of the most famous clustering algorithms. The distin-
guishing advantage of the DBSCAN algorithm is that it can be used to discover arbitrarily shaped clusters. Fur-
thermore, it does not need the minimal requirements of domain knowledge to determine the input parameters, 
and can also exclude outliers from the clusters. However, DBSCAN has two dire drawbacks. First, DBSCAN has 
a low efficiency on databases with different local-density clusters; second, the algorithm is very time-consuming.

Quantum computing has attracted tremendous attention due to its parallel capability. In 1982, Feynman 
pointed out that quantum computers might achieve significant increase in speed over classical computers on 
certain specific  problems12. Shor’s  algorithm13 and Grover’s  algorithm14 are two of the most popular quantum 
algorithms. Shor’s algorithm has an exponential increase in speed, and Grover’s algorithm has a quadratic increase 
in speed over their classical counterparts. With the rise of quantum computing, many researchers have also 
designed various quantum machine learning algorithms and quantum data mining algorithms, such as quan-
tum linear  regression15–17, quantum support vector  machine18,19, quantum k-nearest neighbors  classification20, 
quantum deep  learning21, and quantum association rules  mining22. Recently, tremendous advances have been 
made in constructing quantum computers. Krantz et al.23,24 introduced the central concepts and challenges of 
superconducting quantum circuits. Huang et al.25 provided experimental efforts toward large-scale supercon-
ducting quantum computers. Bruzewicz et al.26 concluded the basics of trapped-ion quantum computing and 
explored the outlook for trapped-ion quantum computing.

Inspired by quantum computing, we propose a quantum mutual MinPts-nearest neighbor graph (MMNG)-
based DBSCAN algorithm. First, we design a quantum mutual MinPts-nearest neighbor graph algorithm that is 
devoted to dividing a database into subsets. After that, we quantize the original DBSCAN algorithm to cluster 
each subset.

Preliminaries
In this section, we provide the necessary background knowledge for this paper. First, we briefly introduce the 
basic definitions of the classical DBSCAN algorithm. Then, we review the fundamental concepts of Grover’s 
algorithm.

DBSCAN. The DBSCAN algorithm offers a new notion of “cluster” and “noise” in a database D of N points 
of some k-dimensional space S . The whole set of definitions is given as follows.

Definition 1 (Eps-neighborhood of a point) The Eps-neighborhood of a point p , denoted by NEps(p) , is defined 
by NEps(p) = {q ∈ D|Dist(p, q) ≤ Eps}.
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The Eps-neighborhood, the fundamental definition of the algorithm, can be used to distinguish core points 
and noncore points. Eps is the distance threshold. Core points are the points inside of any cluster, and noncore 
points are the points on the border of any cluster or the points belonging to none of the clusters. Let p be a point 
in a database D , where |NEps(p)| denotes the number of points within the Eps-neighborhood of p . Let MinPts 
be the threshold of the number of points; if |NEps(p)| ≥ MinPts , then p is a core point; otherwise, p is a noncore 
point.

Definition 2 (directly density-reachable) A point p is directly density-reachable from a point q if

1. p ∈ NEps(q) and
2. |NEps(p)| ≥ MinPts

Directly density-reachable is not always symmetric. When p and q are both core points, the direct density 
reachability is symmetric; when one is a core point and the other is a border point, the direct density reachability 
is asymmetric.

Definition 3 (density-reachable) A point p is density-reachable from a point q if there is a chain of points 
p1, p2, . . . , pN ∈ D , p1 = q , pN = p such that pi+1 is directly density-reachable from pi.

Definition 4 (density-connected) A point p is density-connected to a point q if there is a point o such that p and 
q are density-reachable from o.

Definition 5 (cluster) Let D be a database of points. A cluster C is a nonempty subset of D satisfying the fol-
lowing conditions:

1. ∀p, q : if p ∈ C and q is density-reachable from p then q ∈ C.
2. ∀p, q ∈ C : p is density-connected to q.

In the database D , not all the points belong to clusters. The points that do not belong to any cluster are defined 
as “noise” in the DBSCAN algorithm.

Definition 6 (noise) Let C1, . . . ,Ck be the clusters of the database D , i = 1, . . . , k . Then, we define the noise as 
the set of points in the database D not belonging to any cluster Ci , i.e., noise = {p ∈ D|∀i : p /∈ Ci}.

Grover’s algorithm. Let us assume that we wish to search M(1 ≤ M ≤ N ) solutions from an unstructured 
search space of N elements. Rather than examining N elements one by one, Grover’s algorithm checks the ele-
ments in parallel by assigning indexes to all of the elements and storing the indexes in a quantum register. With 
a series of unitary operations augmenting the success probability gradually, Grover’s algorithm can obtain the 
indexes of the target elements with a high probability.

The proposed algorithm
In this section, we design a quantum mutual MinPts-nearest neighbor graph algorithm and a quantum DBSCAN 
algorithm and present a quantum MMNG-based DBSCAN algorithm.

Quantum MMNG algorithm. Let D be a database, p and q be some objects in D , and MinPts be a positive 
integer. The relative concept will be introduced as follow.

Definition 7 (Mutual MinPts-nearest neighbor (MMN)): If p is in the MinPts-nearest neighborhood of q and q 
is in the MinPts-nearest neighborhood of p , then we call p a mutual MinPts-nearest neighbor of q ; similarly, q 
is a mutual MinPts-nearest neighbor of p.

Definition 8 (Mutual MinPts-nearest neighbor graph (MMNG)): The mutual MinPts-nearest neighbor graph 
can be constructed by connecting each point to its mutual MinPts-nearest neighbors.

Note that MMNG is an algorithm with high complexity. To speed up the MMNG, we intend to quantize 
the MMNG algorithm. Dürr et al.27 developed a quant_find_smallest_values algorithm for finding the c clos-
est neighbors of a point with high probability within O

√
cn time. Based on the quant_find_smallest_values, we 

propose a quantized MMNG algorithm, as shown in algorithm 1.
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In this paper, algorithm 1 is used to obtain the subsets of database D . After obtaining the subsets, we apply 
the quantum DBSCAN algorithm on each subset to obtain the eventual clusters and the noise set.

Quantum DBSCAN algorithm. We consider a database DN = {p1, . . . , pN } , which is composed of n 
points, and each point pi has k attributes. For each point pi in DN = {p1, . . . , pN } , it is necessary to calculate 
Dist(pi , pj) n− 1 times to determine the Eps-neighborhood of pi . Determining the Eps-neighborhood is fairly 
time-consuming. To solve this problem, we intend to screen the points in the Eps-neighborhood of pi with 
quantum search.

In our model, a quantum distance black box is proposed. The proposed black box can accept two types of 
inputs, as illustrated in Fig. 1. |i� is a one-state input and the index of point pi ; 

∣

∣j
〉

 is a superposition of inputs and 
includes the indexes of all the points. Evidently, this is feasible because one q-bit can be a pure state or a super-
position of states. Furthermore, one query to this black box means asking for distances between the point pi and 
all the points pj s (when i = j , Dist(pi , pj) = 0 ). After obtaining the distances, the black box compares them with 
the Eps distance. Then, a selection function f (i, j) assigns a value of 1 when Dist(pi , pj) is smaller than or equal 
to the Eps distance and a value of 0 otherwise. The selection function is shown in Eq. (1).

(1)f (i, j) =
{

0, if Dist(pi , pj) > Eps
1, if Dist(pi , pj) ≤ Eps
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Meanwhile, a flipping operation is carried out in the black box. As depicted in Eq. (2), if f (i, j) = 1 , the 
ancillary register |r� is flipped; if f (i, j) = 0 , the ancillary register |r� remained unaltered. The symbol ⊕ denotes 
module 2, also known as an exclusive-or.

Based on the aforementioned black box, we designed algorithm 2 (quant_find_Eps-neighborhood as described 
below) as a subroutine of the quantum-based DBSCAN algorithm. Given a specific point pi , algorithm 2 is able 
to fix its Eps-neighborhood.

Once the Eps-neighborhoods are fixable quantum-mechanically, core points and noncore points become 
discernable according to the basic notions of the classic DBSCAN. If a point is a noncore point, we keep looking 
for a core point because there is no need to create a new cluster for a noncore point; however, if a point is a core 
point, we set up a new cluster and expand it. With the expanding methodology offered in the original DBSCAN 
algorithm, the quantum-based DBSCAN algorithm quant_DBSCAN(DN , Eps , MinPts ) is presented hereafter, 
as shown in algorithm 3.

(2)|i�
∣

∣j
〉

|r� → |i�
∣

∣j
〉∣

∣r ⊕ f (i, j)
〉

Figure 1.  The oracle to compute the distance between pi and all the possible pj s. |r� is an ancillary register.
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Quantum algorithm for MMNG‑based DBSCAN. The proposed algorithm divides the database into 
subsets first and then applies the quantum DBSCAN algorithm to each subset. Note that different subsets have 
a different Eps in our algorithm. For a specific subset, we select the average MinPts distance as the Eps of the 
subset.

The algorithm analysis
In this section, we briefly analyze the complexity of our algorithm first and then present the success probability 
of our algorithm.

The complexity. Dürr et al.27 proved that the complexity of quant_find_smallest_values is O
√
cn . It is easy 

to see that the complexity of algorithm 1 is O(N
√
MinPts ∗ n).
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For algorithm 2, there are |NEps(p)| + 1 targets for each point. According to the original version of Grover’s 
algorithm, algorithm 2 needs to interrogate the oracle approximately 

√

N
|NEps(p)|+1

 times. It can easily be perceived 
that the smaller |NEps(p)| is, the more queries are needed. In the worst case scenario, when |NEps(p)| = 0 , the 
queries of the oracle are approximately 

√
N  times. In other words, the complexity of algorithm 2 is O(

√
N).

For algorithm 3, we need to calculate the Eps-neighborhood of every point. This means that algorithm 3 needs 
to call algorithm 2 N times. Thus, we can ensure that the complexity of algorithm 3 is smaller than O(N

√
N) , 

even though the |NEps(p)| s are different for different points.
In other words, the complexity of our proposed algorithm is approximately O(N

√
MinPts ∗ n).

The success probability. Dürr et al.27 proved that quant_find_smallest_values is able to obtain c nearest 
neighbors with a high probability. It is easy to infer that algorithm 1 can obtain subsets with a high probability.

It is noteworthy that |NEps(p)| s are different from point to point, which means that there are different numbers 
of targets when algorithm 2 is dealing with different points. As a result, the success probabilities are different 
when calculating different Eps-neighborhoods. By referencing the former work, the success probability of algo-
rithm 2 can be calculated via Eq. (3) after T iterations.

We already know that T ≈
√

N
|NEps(p)|+1

 . Usually, MinPts is far less than N , and |NEps(p)| are numbers close 
to MinPts . As a result, it can be inferred that the success probability of algorithm 3 is high.

Our proposed method is a combination of algorithm 1 and algorithm 3, thus success probability of the pro-
posed method is high.

Performance evaluation
To show the effectiveness of the proposed algorithm, performance evaluation based on two databases is con-
ducted. To compare our algorithm with the classic DBSCAN method and the NaNG method, we use the two 
synthetic sample databases depicted in Fig. 2.

The experimental results on database 1 are shown in Fig. 3. A total of 399 objects are included in database 
1. In the figure, the black squares represent the points that are detected as outliers. The experimental result of 
DBSCAN on database 1 is undesirable, and the accuracy is approximately 74.6%. The experimental result of 
NaNG is better than that of DBSCAN, with an accuracy of 90.73%. Our proposed method has the best perfor-
mance on database 1, with an accuracy of approximately 95.74%.

The experimental results on database 2 are shown in Fig. 4. As shown in Fig. 4a, database 2 includes 320 
objects and 8 clusters. As shown in Fig. 4b, the result of DBSCAN is tolerable with an accuracy of 92.5%. From 
the result shown in Fig. 4c, we can see that NaNG mistakenly combines two clusters into one. The accuracy of 
NaNG is 87.5%. As shown in Fig. 4d, the performance of the proposed method is the same as DBSCAN with 
an accuracy of 92.5%.

Conclusion
Inspired by the mutual neighbor method and quantum computing, in this work, we present a quantum MMNG-
based DBSCAN. Compared to the original DBSCAN, the proposed method performs better on databases with 
different local-density clusters. Furthermore, the proposed method is dramatically faster than its classical 
counterpart.

(3)P = sin2((2T + 1) arcsin

√

|NEps(p)| + 1

N
)

Figure 2.  Sample databases.
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