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Effects of interobserver 
and interdisciplinary segmentation 
variabilities on CT‑based radiomics 
for pancreatic cancer
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Vipin Dalal4, Michael A. Hollingsworth5, Chi Lin1* & Dandan Zheng1*

Radiomics is a method to mine large numbers of quantitative imaging features and develop predictive 
models. It has shown exciting promise for improved cancer decision support from early detection 
to personalized precision treatment, and therefore offers a desirable new direction for pancreatic 
cancer where the mortality remains high despite the current care and intense research. For radiomics, 
interobserver segmentation variability and its effect on radiomic feature stability is a crucial 
consideration. While investigations have been reported for high‑contrast cancer sites such as lung 
cancer, no studies to date have investigated it on CT‑based radiomics for pancreatic cancer. With three 
radiation oncology observers and three radiology observers independently contouring on the contrast 
CT of 21 pancreatic cancer patients, we conducted the first interobserver segmentation variability 
study on CT‑based radiomics for pancreatic cancer. Moreover, our novel investigation assessed 
whether there exists an interdisciplinary difference between the two disciplines. For each patient, 
a consensus tumor volume was generated using the simultaneous truth and performance level 
expectation algorithm, using the dice similarity coefficient (DSC) to assess each observer’s delineation 
against the consensus volume. Radiation oncology observers showed a higher average DSC of 
0.81 ± 0.06 than the radiology observers at 0.69 ± 0.16 (p = 0.002). On a panel of 1277 radiomic features, 
the intraclass correlation coefficients (ICC) was calculated for all observers and those of each discipline. 
Large variations of ICCs were observed for different radiomic features, but ICCs were generally higher 
for the radiation oncology group than for the radiology group. Applying a threshold of ICC > 0.75 for 
considering a feature as stable, 448 features (35%) were found stable for the radiation oncology group 
and 214 features (16%) were stable from the radiology group. Among them, 205 features were found 
stable for both groups. Our results provide information for interobserver segmentation variability and 
its effect on CT‑based radiomics for pancreatic cancer. An interesting interdisciplinary variability found 
in this study also introduces new considerations for the deployment of radiomics models.

Pancreatic cancer is a critical global health care problem. Its low detectability rate and late-stage onset of symp-
toms contribute to a poor prognosis with a 5-year overall survival rate at 9% for patients diagnosed from 2008 
to  20141. Despite decades of research, pancreatic cancer remains an extremely lethal cancer with the highest 
mortality rate of all major cancers in the  US2. Radiomics, a new big-data based “omics” branch, has introduced a 
new direction to facilitate early cancer detection and personalized precision treatment. While it holds potentials 
to be especially helpful for pancreatic cancer where other research alone yielded limited success, the low contrast 
and poor conspicuity of pancreatic tumor poses a special challenge. Although there have been developments 
in abdominal CT imaging, such as dual- and tri-phase contrast imaging and energy spectrum CTs, which have 
improved the accuracy in defining local tumor extension for pancreatic cancer, tumor segmentation is still 
particularly  challenging3.
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Radiomics has demonstrated the potential to serve as a tool for the detection, characterization, diagnosis, 
and prognosis for many  cancers4–7. With the advancement of machine learning capabilities along with grow-
ing interest in personalized medicine, radiomics analysis has become an exciting and current area of research. 
Radiomics could desirably be applied to pancreatic cancer to aid in early detection and help improve treatment 
efficacy. The typical radiomic workflow begins with the acquisition of medical images, from which a volume of 
interest, which is often the tumor, can be segmented for feature extraction. These radiomic features are the input 
data for statistical or machine learning algorithms to select, integrate, and build predictive models. A critical 
branch of radiomics research relates to the reproducibility of radiomics  analysis8. These include challenging 
issues such as the lack of standardized feature extraction parameters, motion induced effects, volume delineation 
variation, image acquisition/reconstruction variability, and other factors that lead to non-inherent  variability9–11. 
Uncertainties in segmentation are particularly critical since it is one of the upstream steps in the radiomics 
workflow, therefore affecting all downstream processes. Among these uncertainties relating to segmentation are 
interobserver variability which has been relatively well-researched for other cancer types such as lung cancer, 
and interdisciplinary variability, which we wish to introduce in this work.

The effect of interobserver variability on radiomic feature stability and reproducibility has been studied in 
cancer sites such as lung, breast, glioblastoma, and  liver12–22. One can expect that the interobserver variability is 
organ dependent and hence plays a role of varying dominance in the radiomics reproducibility, and therefore 
needs to be separately characterized for low contrast regions such as the  pancreas23–26 than high contrast regions 
such as the lung. In this work, we investigated the segmentation and resulting radiomic feature variations due 
to the interobserver variability. Contrast enhanced CT images were used for the study as it remains the standard 
and most used imaging modality for visualizing the  pancreas26.

In this study, our expert observers included both radiation oncologists and radiologists. These two disci-
plines also represent the dominating disciplines from which the vast majority of radiomic investigations were 
 conducted27–31. Exploring whether an interdisciplinary segmentation variability exists for radiomic research 
would also be interesting and illuminating. Interdisciplinary variation on segmentation is a new concept and an 
area of limited study. A recent publication from Nq et al. shows there is significant specialty-dependent varia-
tion in contouring post-operative tumor cavities for targeting adjuvant oral cancer  therapy32. To date, no study 
has explored the effects of interdisciplinary segmentation variability in the context of radiomics. Thus, in this 
study we aim to investigate the robustness of radiomic features due to both interobserver and interdisciplinary 
segmentation variability using contrast-enhanced CT for pancreatic cancer. The study aims both to contribute to 
the discussion of reproducibility related challenges in the radiomics approach, and to pave ways for radiomics-
based applications in pancreatic cancer decision making.

Results
Segmentation variability. Interobserver and interdisciplinary segmentation variability were observed. 
Figure 1 illustrates two example cases delineated by all observers with varying degrees of agreement between 
observers. For the case on the left, a high volume agreement was observed among observers. For the patient on 
the right, a low agreement was observed. Anecdotally, on this patient, the three radiation oncology observers 
delineated significantly larger volumes than the three radiology observers. For the patient cohort overall, the 
radiology observers were also found to contour more conservatively than the radiation oncology observers, 
yielding a mean volume of. 35.6 ± 15.0  cm3 versus 54.1 ± 15.9  cm3 (p < 0.0001).

The dice similarity coefficient (DSC) was calculated per patient to quantify the agreement between each 
observer contour with the consensus contour. Figure 2 shows the distribution of DSC values with mean and 
standard deviations within each discipline for each patient CT image. The mean DSC for radiation oncology 
observers and radiology observers were 0.81 ± 0.06 and 0.69 ± 0.16, respectively. Using the grading scale defined 
in the color legend of Fig. 2, 6 cases of high agreement (DSC > 0.85) were observed for radiation oncology, with 
no average DSC values falling below medium agreement (DSC < 0.7), compared to the 4 cases of very low agree-
ment from radiology contours (DSC < 0.5). As shown in the distribution plot in Fig. 2, the radiation oncology 
group showed both a higher average agreement with the consensus segmentation (indicated by higher average 
DSCs) and a higher agreement with each other (indicated by the tighter standard deviations), when compared 
with the radiology group. A paired two-tailed independent T-test calculated a p-value of 0.0038 indicating a 
statistical significance of the different DSC values between the two disciplines’ observers.

Radiomic feature robustness. A total of 1277 features were analyzed for robustness using the intraclass 
correlation coefficient (ICC) (2,1) calculated both with all 6 observers and separately with the observers of a 
single discipline. Of these, 143 were extracted from the original image as described in the methods section: 24 
first-order, 17 shape, 22 intensity–volume histogram (IVH), and 80 texture features. As examples, the ICC values 
from radiation oncology contours for first order and shape features are shown in Fig. 3. ICC values from both 
discipline for all other original features are presented in Supplementary Figures S1–S7.

Comparing the single-discipline observer ICCs, varying degrees of difference were observed for different 
types of original radiomic features between radiation oncologist observers and radiology observers. For either 
discipline, relatively low ICCs were observed for some features. Overall, radiomic feature ICCs were lower within 
the radiology observers than the radiation oncology observers, indicating poorer robustness. Applying ICC ≥ 0.75 
as the threshold for features considered robust, 48/143 (34%) original features were robust based on radiation 
oncology ICCs and 35/143 (24%) were robust based on radiology ICCs.

To observe the overall distribution of ICC values and compare between the two disciplines for all radiomic 
features, Fig. 4 shows the spread of single-discipline ICC values for all features based on image filters. Similar 
to the ICC values for the original features shown in Fig. 4, ICC values derived from either discipline also varied 
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widely for all image types. The higher-order images included Laplacian of Gaussian (LoG), and 8 permutations 
of 3D wavelets (LLL, HLL, LHL, HHL, LLH, HLH, LHH, and HHH for low or high-pass in each of the three 
cardinal directions, respectively). The radiation oncology group showed higher average ICCs than the radiology 
group for all feature categories. Comparing different feature categories, wavelet features showed higher ICCs than 
original and LoG features, and LoG features showed the lowest ICCs. Out of 1277 features, 448 features (35%) 
and 214 features (17%) of radiation oncology and radiology derived features were considered robust, respectively. 
205 of these features were robust for both disciplines.

The ICC statistics calculated for all features are also listed in Tables 1 and 2 for the radiation oncology and 
the radiology group, respectively. The feature count and number of robust features are reported for each feature 
class within each image filter type. As with Figs. 3 and 4, varying robustness were observed for different features 
and for different feature classes. The top three features with the highest ICCs within each image filter category 
are listed in Tables 3 and 4 for radiation oncology and radiology groups, respectively. Generally, these top robust 
features tend to come from certain texture categories such as those based on the run length matrix and the size 
zone matrix.

A Wilcoxon Signed-rank Test was used to measure the statistical difference between radiation oncology and 
radiology based ICC values for each image filter. All filters indicated a significant difference with p-values < 0.0001.

Feature ranking correlation between two disciplines. To evaluate relative feature robustness 
assessed by either discipline, we plotted the original feature ranking within each feature type for the two disci-
plines in Fig. 5. In other words, in Fig. 5a, for first order features, we plot out their robustness ranking based on 
radiation oncology observers and radiology observers. The feature rankings are similarly plotted out for other 
feature classes comparing the two disciplines. A perfect agreement between the two disciplines would result 
in a 45-degree linear regression of  R2 = 1. Texture features included gray-level co-occurrence matrix (GLCM), 
gray-level run length matrix (GLRLM), gray-level size zone matrix (GLSZM), neighboring gray tone differ-

Figure 1.  Visualization of contours drawn by all 6 observers. 2D and 3D views of patients with high volume 
agreement (a,c) and low agreement (b,d).
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Figure 2.  Dice Similarity Coefficient. Center vertical plot shows the mean DSC values (solid dot) with standard 
deviations (line through dot) for each CT image, separated discipline. Tables adjacent to the plot indicate the 
numerical values of the mean and standard deviation. DSC values were obtained by pair-wise comparison of the 
observer contour and STAPLE consensus contour. The legend illustrates the distribution of thresholds used to 
identify different levels of agreement.

Figure 3.  ICC for First order and Shape Features for radiation oncology derived contours only. Features with 
ICC values > 0.75 were considered robust. Plots of other feature classes are included in Supplement Figures S1–
S7 with ICC values from both disciplines.
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ence matrix (NGTDM), and neighboring gray-level dependence matrix (NGLDM). Among different feature 
classes, the highest degree of robustness ranking agreement was observed for intensity and histogram and shape 
features, with a  R2 value of 0.93. Shape features also showed a good agreement with a  R2 value of 0.74. Texture 
features showed poorer agreements, with the worst agreements seen for GLCM features and GLSZM features.

Discussion
To our knowledge, this is the first study addressing the degree of interobserver and interdisciplinary variation 
in tumor delineation and its effect on CT-derived radiomic feature stability in pancreatic cancer. Using the con-
sensus contours generated based on six expert observers using the Simultaneous Truth and Performance Level 
Estimation (STAPLE) algorithm, the DSC values between individual observer’s and the consensus contours show 
considerable interobserver delineation variation for pancreatic cancer. Furthermore, significant interdiscipli-
nary differences are observed between radiation oncology and radiology observer DSCs. These results are also 
reflected in the large variance of ICC values regardless of image filter and the statistically significant variance 
between disciplinary-based derived features. Not surprisingly, lower overall ICC values were observed for radi-
omic features derived from contours with lower DSC values with the consensus volume. This correlation suggests 
that radiomic feature robustness, and therefore, subsequent radiomic analyses, could be strongly influenced by 
interobserver delineation variability. But as the radiomic feature showed widely varying degrees of robustness 
against the interobserver delineation variability, excluding the unstable features in radiomic feature selection 
appear important for pancreatic cancer model development.

While Belli et al. assessed radiomic feature robustness due to interobserver variation in pancreatic cancer, 
FDG-PET/CT based contouring was  used20. Thus, no direct comparison can be drawn with our study as the first 
of its kind to assess feature robustness due to interobserver variation from contrast-enhanced CT imaging. For 
low-contrast tumors such as pancreatic cancer, inter-observer delineation uncertainty could be quite different 
based on anatomy (CT imaging) versus on take-up (PET imaging). Therefore, it is not surprising that our study 
found lower ICCs than what was previously reported in the PET study. In Luisa Belli et al.’s study evaluating 
interobserver variability for 73 radiomic features from PET/CT images, 47% of radiomic features were considered 
robust using an ICC cutoff of 0.80. When considering only features from the non-filtered image in our study, 34% 
(Radiation Oncology) and 24% (Radiology) were considered robust with an ICC cutoff of 0.75. This difference 
can be attributed to the utilization of PET imaging, which likely improved tumor conspicuity. Comparing our 
results for pancreatic cancer with previous studies investigating radiomic feature robustness against segmentation 
variability in other sites such as breast, non-small cell lung cancer, glioblastoma, and liver, the ICCs are also con-
siderably  lower12–22. In comparison, Pavic et al. found 90% and 56% of radiomic features considered stable with 
an ICC cutoff of 0.80 despite interobserver variation in non-small cell lung cancer and head and neck squamous 

Figure 4.  Comparison of ICC of radiomics based on image filter. ICC values for each discipline for radiomic 
features extracted from each image filter applied illustrates the distribution of ICC values based on image filter 
type.
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cell cancer,  respectively12. The results indicate that although all these studies confirm that contour variability 
impacts radiomic feature stability and features show varying degrees of robustness, interobserver variability will 
likely be more dominating among different sources of uncertainty to impact radiomic feature reproducibility for 
pancreatic cancer than for other high-contrast cancers such as lung cancer.

Interestingly, our investigation also revealed a significant interdisciplinary delineation variation. This is to our 
knowledge the first study to investigate the existence of a specialty difference in segmentation for radiomics. Our 
results agree with previous report from Nq et al. on radiotherapy target delineation for post-operative head and 
neck cancer  patients32 that a specialty difference does exist. We observe that the tumor volumes from the radia-
tion oncology group tend to be larger than those from the radiology group. Despite our efforts to standardize the 
contouring experience, this could have resulted from radiation oncologists’ tendency to “not miss the target” in 
their training despite the common contouring guideline in this study to exclude any uncertain area. In addition, 
we found higher consistency among the radiation oncology group than among the radiology group, possibly 
stemming from the practice difference that volume segmentation is a routine activity in radiation oncology, but 
in radiology volume labeling is more important than whole volume segmentation. Among different classes of 
original radiomic features, the relative agreement between the two disciplines is better for first-order features 

Table 1.  Statistic summary table of radiation oncologist derived stable features. Total count of first order, 
shape, gray-level co-occurrence matrix (GLCM), gray-level run length matrix (GLRLM), neighboring gray 
tone difference matrix (NGTDM), and neighboring gray-level dependence matrix (NGLDM), gray-level 
size zone matrix (GLSZM), and IVH features with respective robust features counts are listed. Feature 
definitions and calculation provided by Computational Environment for Radiological Research (CERR)35, as 
recommended by the imaging biomarker standardization initiative (IBSI)36.

Filter Feature class Total Robust % Robust Filter Feature class Total Robust % Robust

Original

First order 24 10 41.7

HLL

First order 24 5 20.8

Shape 17 6 35.3 GLCM 26 6 23.1

GLCM 26 3 11.5 GLRLM 16 6 37.5

GLRLM 16 6 37.5 NGTDM/NGLDM 22 6 27.3

NGTDM/NGLDM 22 4 18.2 GLSZM 16 5 31.3

GLSZM 16 3 18.8
IVH 22 5 22.7

IVH 22 16 72.7

Total 143 48 33.6 Total 126 33 26.2

LoG

First order 24 9 37.5

LHH

First order 24 11 45.8

GLCM 26 1 3.8 GLCM 26 8 30.8

GLRLM 16 6 37.5 GLRLM 16 8 50.0

NGTDM/NGLDM 22 4 18.2 NGTDM/NGLDM 22 4 18.2

GLSZM 16 3 18.8 GLSZM 16 4 25.0

IVH 22 6 27.3 IVH 22 13 59.1

Total 126 29 23.0 Total 126 48 38.1

HHH

First order 24 16 66.7

LHL

First order 24 6 25.0

GLCM 26 8 30.8 GLCM 26 8 30.8

GLRLM 16 8 50.0 GLRLM 16 7 43.8

NGTDM/NGLDM 22 5 22.7 NGTDM/NGLDM 22 5 22.7

GLSZM 16 5 31.3 GLSZM 16 4 25.0

IVH 22 14 63.6 IVH 22 5 22.7

Total 126 56 44.4 Total 126 35 27.8

HHL

First order 24 9 37.5

LLH

First order 24 12 50.0

GLCM 26 9 34.6 GLCM 26 12 46.2

GLRLM 16 8 50.0 GLRLM 16 7 43.8

NGTDM/NGLDM 22 6 27.3 NGTDM/NGLDM 22 5 22.7

GLSZM 16 5 31.3 GLSZM 16 6 37.5

IVH 22 9 40.9 IVH 22 16 72.7

Total 126 46 36.5 Total 126 58 46.0

HLH

First order 24 14 58.3

LLL

First order 24 11 45.8

GLCM 26 5 19.2 GLCM 26 5 19.2

GLRLM 16 8 50.0 GLRLM 16 7 43.8

NGTDM/NGLDM 22 6 27.3 NGTDM/NGLDM 22 4 18.2

GLSZM 16 5 31.3 GLSZM 16 3 18.8

IVH 22 11 50.0 IVH 22 16 72.7

Total 126 49 38.9 Total 126 46 36.5
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and shape features than the texture features. These novel findings are important as vast majority of the current 
radiomic models are developed based on delineated volumes either from radiology or radiation oncology. Such 
interdisciplinary delineation uncertainties should be considered when the segmentation is done by a different 
specialty in model deployment than in model development. Some studies have suggested the use of semiauto-
matic segmentation to improve radiomic feature robustness against volume  delineation14–16. However, the current 
semiautomatic segmentation methods’ effectiveness in low contrast regions such as that of pancreatic cancer in 
CT imaging may be more challenging.

There are some limitations to our study to consider. Intraobserver variability was not investigated in our 
study. The threshold ICC value of 0.75 was selected based on literature investigating radiomic feature robustness 
due to interobserver variation in other tumor  sites12–21. With ICC thresholds between 0.7 and 0.9 seen in the 
literature, our study chose a threshold of 0.75 on the lower end, adding a small conservative margin to account 
for the increased difficulty in contouring pancreatic cancer compared to those in the aforementioned studies. The 
significance of this threshold with respect to its effect on radiomics analysis, however, has not been investigated. 
Additionally, our study evaluated feature robustness, but its effect on the latter phases of radiomics analysis and 
how best to address it were not included. Also, this investigation is based solely on CT images while MRI and 

Table 2.  Statistic summary table of radiologist derived stable features. Total count of first order, shape, 
gray-level co-occurrence matrix (GLCM), gray-level run length matrix (GLRLM), neighboring gray tone 
difference matrix (NGTDM), and neighboring gray-level dependence matrix (NGLDM), gray-level size zone 
matrix (GLSZM), and IVH features with respective robust features counts are listed. Feature definitions and 
calculation provided by Computational Environment for Radiological Research (CERR)35, as recommended by 
the imaging biomarker standardization initiative (IBSI)36.

Filter Feature class Total Robust % Robust Filter Feature class Total Robust % Robust

Original

First order 24 9 37.5

HLL

First order 24 2 8.3

Shape 17 2 11.8 GLCM 26 3 11.5

GLCM 26 0 0.0 GLRLM 16 6 37.5

GLRLM 16 6 37.5 NGTDM/NGLDM 22 4 18.2

NGTDM/NGLDM 22 3 13.6 GLSZM 16 3 18.8

GLSZM 16 2 12.5
IVH 22 3 13.6

IVH 22 13 59.1

Total 143 35 24.5 Total 126 21 16.7

LoG

First order 24 2 8.3

LHH

First order 24 2 8.3

GLCM 26 0 0.0 GLCM 26 0 0.0

GLRLM 16 2 12.5 GLRLM 16 3 18.8

NGTDM/NGLDM 22 1 4.5 NGTDM/NGLDM 22 4 18.2

GLSZM 16 1 6.3 GLSZM 16 3 18.8

IVH 22 3 13.6 IVH 22 3 13.6

Total 126 9 7.1 Total 126 15 11.9

HHH

First order 24 6 25.0

LHL

First order 24 5 20.8

GLCM 26 0 0.0 GLCM 26 3 11.5

GLRLM 16 4 25.0 GLRLM 16 6 37.5

NGTDM/NGLDM 22 2 9.1 NGTDM/NGLDM 22 4 18.2

GLSZM 16 3 18.8 GLSZM 16 3 18.8

IVH 22 5 22.7 IVH 22 3 13.6

Total 126 20 15.9 Total 126 24 19.0

HHL

First order 24 8 33.3

LLH

First order 24 2 8.3

GLCM 26 2 7.7 GLCM 26 0 0.0

GLRLM 16 6 37.5 GLRLM 16 5 31.3

NGTDM/NGLDM 22 5 22.7 NGTDM/NGLDM 22 2 9.1

GLSZM 16 3 18.8 GLSZM 16 2 12.5

IVH 22 5 22.7 IVH 22 3 13.6

Total 126 29 23.0 Total 126 14 11.1

HLH

First order 24 5 20.8

LLL

First order 24 5 20.8

GLCM 26 0 0.0 GLCM 26 0 0.0

GLRLM 16 3 18.8 GLRLM 16 6 37.5

NGTDM/NGLDM 22 4 18.2 NGTDM/NGLDM 22 2 9.1

GLSZM 16 3 18.8 GLSZM 16 2 12.5

IVH 22 2 9.1 IVH 22 15 68.2

Total 126 17 13.5 Total 126 30 23.8
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PET images also provide additional information and are sometimes fused to CT for pancreatic tumor evalua-
tion. However, as CT remains the dominating radiological imaging modality in clinical practice for pancreatic 
cancer, we chose to focus the current study on CT-based radiomics. In our study, CT scans of limited scanner 
types and acquisition parameters were selected to isolate the observer variability from variabilities of imaging 
factors. Similarly, a fixed window/level setting was imposed in our study, ensuring different observers’ contours 
were not affected by varying window/level settings individual observers may choose. Yet by doing so, our findings 
reflect the results obtained with our specific image acquisition, reconstruction, and display parameters, and may 
need validation before generalized to other cases. In addition, our radiomic feature results from 5 mm isotropic 
voxels could be affected by edge and partial volume effects, though the tumor volumes are relatively large with 
a mean volume of 50.4  cm3.

Overall, the results of our investigation contribute to the conversation necessitating more rigorous evaluation 
of volume reproducibility prior to radiomic feature analysis. Our site-specific findings for pancreatic cancer are 
important as feature robustness against segmentation uncertainty will likely play a more dominating role in the 
reproducibility of radiomics for such cancers. The novel discovery on interdisciplinary variations also introduces 
new considerations for the deployment of radiomics-based predictive models.

Methods
Study cohort. Under the approval of the Institutional Review Board of University of Nebraska Medical 
Center (IRB#091-01-EP and IRB#127-18-EP), the diagnostic contrast-enhanced CT scans from 21 pancreatic 
cancer patients were used for this study. The patients whose images were investigated in this study were all 
enrolled with informed consents in the Rapid Autopsy Pancreas Program at University of Nebraska Medical 
Center. To date, the program has collected unique tissue specimens within hours of death from over a hundred 
enrolled pancreatic cancer patients over the past decade. Retrospective analyses in this study were performed in 
accordance with the relevant guidelines and regulations as approved by the Research Ethics Committee of Uni-
versity of Nebraska Medical Center. From the patients with available contrast-enhanced CT images at the time 

Table 3.  ICC values of top 3 features for radiation oncologist derived contours per filtered image. Feature 
definitions and calculation provided by Computational Environment for Radiological Research (CERR)35, as 
recommended by the imaging biomarker standardization initiative (IBSI)36.

Filter Rank ICC value Feature

Original

1 0.979299 rlmFeatS_rlv

2 0.976673 ivhFeaturesS_Ix40

3 0.976017 ivhFeaturesS_I50

LoG

1 0.866159 ngldmFeatS_hde

2 0.856930 ngldmFeatS_gln

3 0.852354 rlmFeatS_gln

HHH

1 0.962168 szmFeatS_szv

2 0.931689 szmFeatS_lae

3 0.919034 rlmFeatS_lre

HHL

1 0.974001 szmFeatS_lae

2 0.972917 szmFeatS_szv

3 0.972160 rlmFeatS_lre

HLH

1 0.976052 szmFeatS_szv

2 0.975441 szmFeatS_lae

3 0.950179 rlmFeatS_lre

HLL

1 0.993785 szmFeatS_szv

2 0.993507 szmFeatS_lae

3 0.976073 rlmFeatS_rlv

LHH

1 0.949382 rlmFeatS_lre

2 0.944623 rlmFeatS_rlv

3 0.944030 szmFeatS_szv

LHL

1 0.983789 rlmFeatS_rlv

2 0.976357 rlmFeatS_lre

3 0.969907 szmFeatS_szv

LLH

1 0.972301 rlmFeatS_rlv

2 0.960775 rlmFeatS_lre

3 0.960107 ngldmFeatS_ldlge

LLL

1 0.980815 firstOrderS_median

2 0.980274 ivhFeaturesS_I50

3 0.978090 ivhFeaturesS_Ix30
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of diagnosis, we selected the maximum number of patients imaged with the same line of CT scanners from a 
single vendor and acquired with the same acquisition protocol and slice thickness to minimize the effect of other 
uncertainty-contributing factors. This resulted in the 21 patients used in the study. These 21 patients included 1 
stage IIA, 2 stage IIB, 1 stage III, and 17 stage IV patients.

Image acquisition and volume segmentation. For the 21 patients included in the study, the image 
acquisition was performed using one of the following three CT scanner models: Lightspeed VCT, Lightspeed 
Pro 16, and Lightspeed RT16 (GE Healthcare, Boston, Massachusetts, USA). Patients received ISOVUE injec-
tion with bolus triggering arterial phase imaging about 30 s and venous phase about 60 s after injection. A slice 
thickness of 5 mm was used for all patient acquisitions, and the in-plane resolution was between 0.6 and 0.9 mm.

Six expert observers, comprised of three radiation oncologists and three radiologists, each contoured the 
entire cohort. The three radiation oncologists have 21, 8, and 6 years of experience within their specialty, respec-
tively, and the three radiologists have 19, 7, and 4 years of experience within their specialty, respectively. All 
observers in the study are experts in assessing/treating pancreatic tumors as their clinical and/or research speciali-
zation. For each patient, the tumor was contoured using the iPlan software (Brainlab AG, Feldkirchen, Germany). 
To standardize the delineation for individual observers, the following segmentation instructions were given:

• Tumor: Only contour what you feel certain is the gross tumor. Where it is uncertain, exclude.
• Exclude major vessels, stents, markers, and lymph nodes, if applicable.
• A window width of 400 with level at 50 has been preset for all cases. Do not change the window/level.
• Use only the assigned CT for contouring. Do not rely on the help of MR, or other CT data.
• Complete contours independently.

Table 4.  ICC values of top 3 features for radiologist derived contours per filtered image. Feature definitions 
and calculation provided by Computational Environment for Radiological Research (CERR)35, as 
recommended by the imaging biomarker standardization initiative (IBSI)36.

Filter Rank ICC value Feature

Original

1 0.963231 rlmFeatS_rlv

2 0.951147 szmFeatS_szv

3 0.943067 szmFeatS_lae

LoG

1 0.848925 ivhFeaturesS_VabsX0

2 0.790617 ngldmFeatS_hde

3 0.784417 ivhFeaturesS_Vx30

HHH

1 0.967928 szmFeatS_lae

2 0.940211 szmFeatS_szv

3 0.811597 ngldmFeatS_gln

HHL

1 0.930171 szmFeatS_szv

2 0.925153 ngtdmFeatS_busyness

3 0.900616 ngldmFeatS_hdlge

HLH

1 0.965352 szmFeatS_szv

2 0.954827 szmFeatS_lae

3 0.907794 szmFeatS_lalgle

HLL

1 0.970873 szmFeatS_szv

2 0.970260 rlmFeatS_rlv

3 0.967913 szmFeatS_lae

LHH

1 0.952443 szmFeatS_lae

2 0.949873 szmFeatS_szv

3 0.836125 rlmFeatS_lre

LHL

1 0.961645 szmFeatS_lae

2 0.960349 szmFeatS_szvL

3 0.957630 rlmFeatS_rlv

LLH

1 0.946158 rlmFeatS_rlv

2 0.945846 szmFeatS_szv

3 0.945052 szmFeatS_lae

LLL

1 0.959245 ngldmFeatS_gln

2 0.955016 szmFeatS_szv

3 0.949218 ivhFeaturesS_I50
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All contours were visually inspected by a non-observer investigator. In a couple of instances, an individual 
contour deviated substantially from that of other observers’. The observer was asked to review their contour, with 
the option to edit if so chose, while still blinded from other observers’ contours.

Consensus volume generation and segmentation variability assessment. For each patient, a 
consensus volume was created using the STAPLE algorithm as a ground truth  surrogate33. The STAPLE algo-
rithm creates a consensus volume based on the volume delineations from all 6 observers.

The dice similarity coefficient (DSC) was used to quantify the degree of volume overlap between two 
 volumes34. The calculation of the DSC value is defined in Eq. 1,

where of A and B are the two volumes for which the DSC is to be calculated, and ∩ indicates the intersection 
of the two volumes. The DSC is between 0 and 1, with 1 indicating two identical contours and 0 indicating two 
completely different contours.

Because the DSC requires a pair-wise comparison, it was calculated for each observer contour to quantify 
the overlap with the consensus volume. A value of 1 indicates complete spatial overlap with the consensus 
volume, whereas a DSC of 0 indicates no overlap. For illustration purposes, the following scale was used to cat-
egorize the level of volume agreement: DSC ≥ 0.85 [High Agreement], 0.85 > DSC ≥ 0.70 [Medium Agreement], 
0.7 > DSC ≥ 0.5 [Low Agreement], DSC < 0.5 [Very Low Agreement]. All DSC values were calculated using the 
Computational Environment for Radiological Research (CERR) in Matlab  R2018b35.

Image processing and radiomic feature extraction. For this study, a panel of 1277 radiomic features 
were calculated using an adapted version of CERR implemented in Matlab R2018b. These features consisted 
of: first order (n = 24), shape (n = 17), texture (n = 80), and intensity–volume histogram (IVH) (n = 22), on the 
original image and with 9 filters applied: Laplacian of Gaussian (LoG, n = 126), and 8 permutations of 3D wave-
lets (LLL, HLL, LHL, HHL, LLH, HLH, LHH, and HHH totaling n = 1008). As the shape features stay invariant 
with image filters, they were excluded in counting LoG and wavelet features. Individual calculated values can be 
found in the Supplementary Dataset for all features extracted using CERR, which followed the recommenda-

(1)DSC =
2|A| ∩ |B|

|A|+|B|

Figure 5.  Ranked feature robustness. Features were ranked based on their relative robustness within each 
feature class for each discipline to indicate potential trends. A slope of 1 would suggest that the relative stability 
of features tend to be equivalent for both disciplines.
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tions provided by the image biomarker standardization initiative (IBSI)36. Before feature extraction, the voxels 
were made isotropic by resampling the images to 5 × 5 × 5   mm3 voxels using sinc interpolation. Images were 
discretized using a bin width of 25 and the texture matrices were calculated for all three dimensions (resulting in 
26 directions, or 13 symmetrical directions) with a voxel offset of 1 for neighboring voxels.

Radiomic feature robustness evaluation. The intraclass correlation coefficient (ICC) was used to quan-
titatively evaluate the robustness of radiomic features due to interobserver variations. An ICC (2,1) was selected 
to account for two-way random effects with single measurements when assessing the absolute  agreement37–39. 
ICC values were also calculated separately based on discipline (radiation oncology vs. radiology) to assess inter-
disciplinary effects.

Radiomic features with ICC values greater than 0.75 were considered reproducible and robust. All ICC values 
were calculated using the ‘irr’ package in  RStudio40.

Ethics approval. The study was approved by the Institutional Review Board of University of Nebraska Med-
ical Center (IRB#091-01-EP and IRB#127-18-EP).

Conclusion
Volume segmentation variability affects radiomic feature stability for CT-based radiomics studies in pancreatic 
cancer, as has been shown for other cancer sites. Considerably lower interobserver ICCs were found than for 
high-contrast cancer sites, suggesting a more dominating role segmentation uncertainty plays in radiomics 
for pancreatic cancer. A novel interdisciplinary variability is also observed on segmentation, introducing new 
considerations for the deployment of radiomics-based predictive models.
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