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Application of RR‑XGBoost 
combined model in data calibration 
of micro air quality detector
Bing Liu1*, Xianghua Tan1, Yueqiang Jin1, Wangwang Yu2 & Chaoyang Li3

Grid monitoring is the current development direction of atmospheric monitoring. The micro air quality 
detector is of great help to the grid monitoring of the atmosphere, so higher requirements are put 
forward for the accuracy of the micro air quality detector. This paper presents a model to calibrate 
the measurement data of the micro air quality detector using the monitoring data of the air quality 
monitoring station. The concentration of six types of air pollutants is the research object of this 
study to establish a calibration model for the measurement data of the micro air quality detector. 
The first step is to use correlation analysis to find out the main factors affecting the concentration of 
the six types of pollutants. The second step uses Ridge Regression (RR) to select variables, find out 
the factors that have significant effects on the concentration of pollutants, and give the quantitative 
relationship between these factors and the pollutants. Finally, the predicted value of the ridge 
regression model and the measurement data of the micro air quality detector are used as input 
variables, and the Extreme Gradient Boosting (XGBoost) algorithm is used to give the final pollutant 
concentration prediction model. We named the combined model of ridge regression and XGBoost 
algorithm RR-XGBoost model. Relative Mean Absolute Percent Error (MAPE), Mean Absolute Error 
(MAE), goodness of fit (R2), and Root Mean Square Error (RMSE) were used to evaluate the prediction 
accuracy of the RR-XGBoost model. The results show that the model is superior to some commonly 
used pollutant prediction methods such as random forest, support vector machine, and multilayer 
perceptron neural network in the evaluation of various indicators. The model not only has a good 
prediction effect on the training set but also on the test set, indicating that the model has good 
generalization ability. Using the RR-XGBoost model to calibrate the data of the micro air quality 
detector can make up for the shortcomings of the data monitoring accuracy of the micro air quality 
detector. The model plays an active role in the deployment of micro air quality detectors and grid 
monitoring of the atmosphere.

Air pollutants are composed of a mixture of gaseous, volatile, semi-volatile and particulate matter, and their 
composition is relatively complex. The concentration of air pollutants is affected by many factors, including 
meteorological conditions, different time periods, industrial activities, and traffic intensity. In recent years, 
researchers have paid more and more attention to the relationship between air pollution and various human 
diseases, especially lung disease and cardiovascular disease1,2. According to statistics, outdoor air pollution 
causes more than 3 million premature deaths worldwide every year. If outdoor air pollution emissions remain 
unchanged, the premature death caused by outdoor air pollution may double by 2050, and it is estimated that 
6.6 million premature deaths will be caused each year3,4. Therefore, the monitoring of air pollutant concentration 
has received more and more attention from relevant departments.

Air quality monitoring platform.  In response to the problem of pollutant concentration monitoring, 
some countries have set up air quality monitoring stations (national control points) in their key areas. The 
national control point is excellent in the accuracy of pollutant concentration monitoring, but its maintenance 
and construction costs are high, resulting in a small number of settings, and the pollutant concentration in most 
areas cannot be monitored. In addition, the release of national control point data is lagging, making it difficult 
for relevant departments to timely control pollution sources through pollutant data.
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In order to overcome the deficiencies of national control points in air quality monitoring, micro air quality 
detectors (self-built points) are often used to monitor the concentration of pollutants. The electrochemical sen-
sor module is an important part of the micro air quality detector. When there is a detectable gas, the gas and 
the electrochemical sensor produce oxidation or reduction reactions, and a weak current is generated, which is 
output on the electrode. The output current has a linear relationship with the gas concentration. Detecting the 
output current of the electrode can calculate the concentration value of the gas.

The micro air quality detector is easy to install, and its cost is low, which is conducive to grid deployment. 
In addition, the self-built point indicator is easy to read, which is conducive to real-time monitoring of air 
quality5–7. Since the electrochemical sensor used in the micro air quality detector is very sensitive to temperature 
and humidity, when the environment changes greatly, the measurement accuracy will be affected to a certain 
extent. In addition, the zero point and range shift of the electrochemical sensor during use for a period of time 
will cause errors in the measurement concentration. Therefore, compared with the monitoring data of national 
control points, the accuracy of the data measured by self-built points needs to be improved.

Introduction to pollutant concentration prediction model.  Air pollutants mainly include O3, 
PM2.5, PM10, CO, NO2, and SO2 (“two dust and four gases”). Many air quality assessment indicators take the 
concentration of "two dust and four gases" as an important basis. At present, a variety of algorithm models have 
been used by scholars at home and abroad to predict the concentration of pollutants in the atmosphere, and 
relatively good results have been achieved. These model algorithms mainly include time series models, chemical 
transmission models, machine learning models, etc.

The time series models used to predict air quality include: Moving Average (MA) model, Autoregressive (AR) 
model, Autoregressive Moving Average (ARMA) model, Autoregressive Integral Moving Average (ARIMA) 
model, fuzzy time series model, etc. Jian et al. used the ARIMA model to successfully predict the concentration 
of PM1.0 in the street area8. Koo et al. used ARIMA and Singh fuzzy time series model and other models to 
predict the air pollution index of Kuala Lumpur, Malaysia in 2017. After comparison, it is found that the Singh 
fuzzy time series model is the most accurate and effective forecasting model9.

The chemical transport model is based on scientific theories and assumptions. It uses numerical methods 
combined with meteorological principles to simulate and describe processes such as the transmission, diffusion, 
and chemical reactions of pollutants in the atmosphere. The chemical transmission model obtains the pollutant 
concentration distribution by inputting the source emission, topography, meteorological data, and operation 
mode of the study area10–12. Because the pollutant formation and transmission process is very complicated, the 
calculation complexity of the chemical transmission model is relatively high, and the model accuracy is not high.

Since the linear regression model is convenient to explain the quantitative relationship between pollutants 
and other variables of the model, the multivariate linear regression model is still a commonly used pollutant 
concentration prediction model13–15. The artificial neural network model combined with an effective training 
algorithm can detect the complex and potentially non-linear relationship between the predictor variable and the 
response variable, and this model has become the current mainstream13,16–18. In addition, prediction methods 
such as Markov chain19–21, support vector machine22–24, and random forest25–27are also commonly used to predict 
the concentration of air pollutants. Because Extreme Gradient Boosting (XGBoost) has excellent computing 
efficiency and prediction accuracy, it has also been widely used in the prediction of air pollutant concentration in 
recent years. Zhai et al. used LASSO, Adaboost, XGBoost and other algorithms to integrate with support vector 
regression, and successfully predicted the daily average concentration of PM2.5 in Beijing, China28. Joharestani 
et al. used Random Forest, XGBoost, and Deep Learning to predict PM2.5 concentration, and the results showed 
that the model performance obtained by using the XGBoost algorithm was the best29.

Material and methods
Data source and preprocessing.  The insufficient measurement accuracy of the micro air quality detector 
is an important factor affecting its promotion. In order to establish the measurement data correction model of 
the micro air quality detector, this study collected two sets of data. The first set of data comes from an air quality 
monitoring station in Nanjing, which is considered accurate data in this study. It contains 4200 samples, which 
records the hourly concentration of six pollutants from November 14, 2018 to June 11, 2019. The second set 
of data is provided by the micro air quality detector and the location of the micro air quality detector is juxta-
posed with the air quality monitoring station. Electrochemical sensors are used in the monitoring equipment 
of the micro air quality detector. 234,717 samples are included in the second set of data, and the time interval 
between each sample does not exceed 5 min. The micro air quality detector not only provides the concentration 
of six pollutants, but also provides five meteorological parameters including wind speed, pressure, precipitation, 
temperature and humidity. Due to the insufficient accuracy of the measurement data of the micro air quality 
detector, it is necessary to establish a pollutant concentration correction model to correct the measurement data.

Before constructing the data correction model of the micro air quality detector, the original data should be 
preprocessed. First, remove the outliers in the measurement data of the self-built points. In this paper, data whose 
measured value is greater than 3 times the average value of the left and right adjacent data or less than 1/3 times 
the average value of the left and right adjacent data are regarded as the outlier. Then calculate the hourly average 
of the self-built point measurement data, in order to correspond with the national control point measurement 
data. For the data whose self-built point cannot correspond to the national control point, this article directly 
deletes them. After preprocessing, a total of 4135 samples were obtained13,24. Table 1 describes the variables 
contained in the samples.
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Data exploratory analysis.  Because the research methods of the six types of pollutants concentration are 
similar, this paper selects O3 concentration as the main research object. The ozone in the atmosphere is divided 
into tropospheric near-ground ozone and stratospheric ozone. What is harmful to the environment and human 
health is near-surface ozone in the troposphere, also known as bad ozone. If humans are exposed to bad ozone 
for a long time, it will cause damage to the respiratory system and immune system.

Before establishing the data correction model of the micro air quality detector, it is necessary to perform 
descriptive statistics on the data in order to grasp the overall trend of the pollutant concentration in the air and 
the measurement error of the micro air quality detector15,30. Because too much sample data is not conducive to 
visually analyzing the change trend of air pollutant concentration and the measurement error of the micro air 
quality detector, we calculated the daily average of the O3 concentration. After the data were averaged, a total 
of 206 sets of data were obtained31. It can be seen from Fig. 1 that the O3 concentration of the self-built point 
and the national control point are in good agreement in the later period, but there is a certain deviation in the 
previous period. The low temperature and huge changes in humidity in autumn and winter interfere with the 
electrochemical sensor, which leads to deviations in the measurement data of the micro air quality detector. In 
addition, the obvious difference in O3 concentration in different time periods can also be seen from Fig. 1. In 

Table 1.   Descriptive statistics of pollutant concentrations and meteorological parameters measured by 
national control points and self-built points.

Input variable Ranges Mean Standard deviation Skewness Kurtosis

PM2.5/(μg/m3) 1–216.883 64.127 37.328 0.988 0.701

PM10/(μg/m3) 2–443.25 102.391 65.267 1.476 2.862

CO/(μg/m3) 0.05–3.895 0.863 0.452 1.463 3.136

NO2/(μg/m3) 0.947–157.136 45.209 28.403 0.653 − 0.259

SO2/(μg/m3) 1–651.3 19.397 18.723 12.781 342.11

O3/(μg/m3) 0.579–259 61.586 40.941 1.091 2.035

Wind speed/(m/s) 0.133–2.387 0.7 0.346 0.862 0.748

Pressure/(Pa) 996.871–1039.8 1018.8 8.889 − 0.093 − 0.599

Precipitation/(mm/m2) 0–312.1 132.084 87.004 0.245 − 0.728

Temperature/(℃) − 3.882 to 37.944 11.882 8.603 0.625 − 0.399

Humidity/(rh%) 10.667–100 68.903 21.931 − 0.487 − 0.756

Figure 1.   Comparison of daily average O3 concentration data between national control points and self-built 
points. Figures are generated using Matlab (Version R2016a, https://​www.​mat- hworks.com/) [Software].

https://www.mat
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order to visually reflect the difference of O3 concentration in different time periods, this paper draws a box plot 
of O3 concentration changes with months.

Figure 2 shows that the highest O3 concentration is in June, and the lowest O3 concentration is in Decem-
ber (no data from July to October). O3 pollution has obvious seasonal characteristics32. Near-ground ozone is 
mostly generated by the secondary conversion of nitrogen oxides and volatile organic compounds under high 
temperature and strong light conditions. The strong solar radiation and high temperature in summer can easily 
cause photochemical smog and secondary ozone production. Continuous high temperature and strong sunshine 
weather is conducive to atmospheric photochemical reaction of nitrogen oxides and volatile organic compounds, 
thereby generating strong oxidants such as near-ground ozone. Therefore, the O3 concentration in summer will 
increase as the temperature rises.

Correlation analysis.  Correlation mainly describes a potential relationship between two attributes. This 
relationship measures the degree to which one attribute contains the other. For the attribute of numerical value, 
the commonly used measure of correlation is the correlation coefficient. Correlation coefficients are divided 
into Pearson correlation coefficients, Spearman correlation coefficients and so on according to the applicable 
data types. The Pearson correlation coefficient measures the degree of linear correlation between two continu-
ous numerical attributes, and the Spearman correlation coefficient mainly describes the degree of correlation 
between hierarchical or ordered attributes. In this paper, the Pearson correlation coefficient (Eq. 1) is selected 
as the evaluation index to measure the correlation between various pollutants and meteorological parameters. 
The absolute value of the correlation coefficient is between [0, 1]. An absolute value of 0 indicates that the two 
attributes are completely unrelated, and an absolute value of 1 indicates that the two attributes are completely 
related. The larger the absolute value of the correlation coefficient, the stronger the correlation.

It can be seen from Table 2 that among the 11 variables, only the NO2 concentration and temperature are 
not significantly correlated, and there is a significant correlation between the other variables. Figure 3 is a scat-
ter plot of correlations between various variables. From the diagonal frequency histogram, it can be seen that 
the concentrations of the six types of pollutants all present a right-skewed distribution, indicating that extreme 
weather with high pollutant concentrations often occurs in this area. Most of the scatter plots between different 
variables are near a straight line, indicating that there is a certain linear correlation between them.

(1)r =

∑n
i=1(xi − x)

(

yi − y
)

√

∑n
i=1(xi − x)2 ·

√

∑n
i=1(yi − y)2

Figure 2.   Compare the concentration of O3 in national control points monthly. Note that there is no data from 
July to October.
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Establishment of sensor calibration model
Introduction to basic principles.  The classical least square estimation has been widely used due to its 
many excellent properties. With the development of electronic computing technology, more and more accumu-
lated experience in dealing with large-scale regression problems show that the results obtained by least square 
estimation are sometimes very unsatisfactory. When the design matrix X is ill-conditioned, there is a strong 
linear correlation between the column vectors of X , that is, there is serious multicollinearity between the inde-
pendent variables. In this case, using ordinary least squares to estimate the model parameters, the variance of the 
parameters obtained is too large, and the effect of ordinary least squares becomes very unsatisfactory.

Aiming at the problem that the ordinary least squares method obviously deteriorates when multicollinearity 
occurs, the American scholar Hoerl proposed an improved least squares estimation method called ridge estima-
tion in 1962. Later Hoerl and Kennard made a systematic discussion in 197033. When there is multicollinear-
ity between the independent variables, then 

∣

∣X ′X
∣

∣ ≈ 0 . We add a matrix kI(k > 0) to X ′X , then the degree to 
which matrix X ′X + kI is close to singularity will be much smaller than the degree to which matrix X ′X is close 
to singularity. Taking into account the dimension of variables, this article first standardizes the data. For the 
convenience of writing, the standardized design matrix is still denoted by X . Equation (2) is defined as the ridge 
regression estimation of β , where k is called the ridge parameter. Since X is assumed to have been standardized, 
X ′X is the sample correlation matrix of the independent variables. β̂(k) as the estimate of β is more stable than 
the least square estimation β̂ . When k = 0 , the ridge estimation β̂(0) is the ordinary least square estimation. 

Table 2.   Pearson linear correlation coefficients between six types of air pollutant concentrations and climate 
(Band * indicates significant correlation at a significant level of 0.05).

Variable PM2.5 PM10 CO NO2 SO2 O3 Wind speed Pressure Precipitation Temperature Humidity

PM2.5 1.00 0.89* 0.66* 0.26* 0.29* − 0.26* − 0.23* 0.89* − 0.70* − 0.16* 0.18*

PM10 1.00 0.63* 0.34* 0.35* − 0.19* − 0.18* 0.38* − 0.10* − 0.03* − 0.09*

CO 1.00 0.30* 0.31* − 0.27* − 0.31* − 0.07* 0.08* − 0.05* 0.22*

NO2 1.00 − 0.34* − 0.26* − 0.36* − 0.10* − 0.14* − 0.02 − 0.11*

SO2 1.00 − 0.28* − 0.19* 0.19* 0.27* − 0.10* 0.11*

O3 1.00 0.39* − 0.45* − 0.12* 0.68* − 0.62*

Wind speed 1.00 0.09* 0.06* 0.07* − 0.32*

Pressure 1.00 0.23* − 0.85* 0.15*

Precipitation 1.00 − 0.14* 0.86*

Temperature 1.00 − 0.49*

Humidity 1.00

Figure 3.   Scatter plot of the variables used for the pollutant concentration prediction model. The graph on the 
diagonal is the histogram of the frequency distribution of each variable.
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Because the ridge parameter k is not unique, the ridge regression estimate β̂(k) is actually an estimated family 
of the regression parameter β . For the selection of the ridge parameter k , the commonly used methods include 
the ridge trace method and the variance inflation factor method.

The XGBoost algorithm is based on an integrated learning method. The integrated learning method com-
bines multiple learning models so that the combined model has stronger generalization ability to obtain better 
modeling effects. XGBoost is an improvement on the boosting algorithm based on the gradient descent tree. It 
is composed of multiple decision tree iterations. XGBoost first builds multiple CART (Classification and Regres-
sion Trees) models to predict the data set, and then integrates these trees as a new tree model. The model will 
continue to iteratively improve, and the new tree model generated in each iteration will fit the residual of the 
previous tree. As the number of trees increases, the complexity of the ensemble model will gradually increase 
until it approaches the complexity of the data itself, at which point the training achieves the best results. Equa-
tion (3) is the XGBoost algorithm model, where ft(xi) = ωq(x) is the space of CART, ωq(x) is the score of sample 
x , the model prediction value is obtained by accumulation, and q represents the structure of each tree , T is the 
number of trees, and each ft corresponds to an independent tree structure q and leaf weight.

XGBoost internal decision tree uses regression tree. For the squared loss function, the split node of the regres-
sion tree fits the residual. For the general loss function (gradient descent), the split node of the regression tree 
fits the approximate value of the residual. Therefore, the accuracy of XGBoost will be higher. Equations (4)–(7) 
are the iterative process of residual fitting. In Eq. (7), ŷ(t−1)

i  is the predicted value of the i-th sample after t-1 
iterations. ŷ(0)i  is the initial value of the i-th sample.

The objective optimization function of the XGBoost algorithm, that is, the loss function (Eq. 8), can be 
obtained according to the iterative process of the residuals. For the general loss function, XGBoost will perform 
a second-order Taylor expansion in order to dig out more information about the gradient, and at the same time 
remove the constant term, so that the gradient descent method can be better trained. Equations (9) and (10) are 
the loss function of the t-th step, where gi and hi are the first and second derivatives.

Different from other algorithms, the XGBoost algorithm adds a regularization term �
(

f
)

 (Eq. (11)) to prevent 
over-fitting and better improve the accuracy of the model. �

(

f
)

 is a function that represents the complexity of 
the tree. The smaller the function value, the stronger the generalization ability of the tree. ωj is the weight on the 
j-th leaf node in the tree f, T is the total number of leaf nodes in the tree, γ is the penalty term of the L1 regular-
ity, and � is the penalty term of the L2 regularity, which is the custom parameter of the algorithm. Therefore, 
the objective function (Eqs. (12)–(14)) are obtained, where Ij =

{

i|q(xi) = j
}

 represents the sample set on the 
j-th leaf node28,34.
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Ridge regression model construction.  Classical least squares estimation is often used to build pollutant 
concentration prediction models. It can also derive the quantitative relationship between the various influencing 
factors and the concentration of pollutants15. However, the factors that affect the concentration of pollutants are 
more complicated, and through the previous correlation analysis, it can be seen that there is a significant cor-
relation between them. If the multiple linear regression model is directly established, multicollinearity will be 
generated, which will cause the model’s regression coefficients to be very unstable, and the model application 
ability will deteriorate. Ridge regression is often used to solve the problem of model multicollinearity. We take 
the national control point O3 as the dependent variable, the pollutant concentration and meteorological param-
eters measured at the self-built point as the independent variables, and establish a ridge regression model with 
the help of SPSS (Version20.0,https://​www.​ibm.​com/​cn-​zh/​analy​tics/​spss-​stati​stics-​softw​are).

In this paper, the ridge trace method is used to select the independent variables introduced into the model 
and the ridge parameter k . In Fig. 4, the abscissa represents the value of the ridge parameter k , and each curve 
represents the standardized ridge regression coefficient of each variable. It can be seen that x4 , x6 , and x10 have 
relatively stable ridge regression coefficients with relatively small absolute values, indicating that these vari-
ables have a small impact on the O3 concentration, and they can be deleted in the actual modeling. In addition, 
although the standardized ridge regression coefficient of x2 is not small, it is very unstable, and rapidly tends to 
zero as k increases. For this kind of variable whose ridge regression coefficient is not stable and the rapid vibra-
tion tends to zero, it can also be eliminated in the ridge regression model.

After completing the selection of the independent variables of the ridge regression model, the next step is 
the selection of the ridge parameter k . We reduce the step length of the ridge parameter k to 0.02, and draw the 
ridge trace diagram of the remaining variables as Fig. 5. It can be seen that when the ridge parameter k = 0.2 , 
the ridge trace of each variable is relatively stable, and the coefficient of determination R2 is not reduced much, 
so the ridge parameter k = 0.2 can be selected. Finally, with the help of SPSS software, use the selected variables 
and ridge parameters to make a ridge regression model. Table 3 shows the unstandardized ridge regression 

(12)fobj = −
1

2

T
∑

j=1

G2
j

Hj + �
+ γT

(13)Gj =
∑

i∈Ij

gi

(14)Hj =
∑

i∈Ij

hi

Figure 4.   The ridge trace diagram of all input variables, where the dependent variable is the O3 concentration 
measured by the national control point.

https://www.ibm.com/cn-zh/analytics/spss-statistics-software
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equations for six types of pollutants. Using these equations, the predicted value of the ridge regression model 
for the concentration of each pollutant can be obtained.

RR‑XGBoost model construction.  The ridge regression model can be used to predict the concentration 
of pollutants, and it can also show the quantitative relationship of the influence of each input variable on the 
concentration of pollutants. However, ridge regression can only show the linear relationship between variables, 
while the nonlinear relationship between various factors and pollutant concentration has not been found. This 
study uses the ridge regression prediction value and self-built point measurement data as input, and uses the 
pollutant concentration value monitored by the national control point as the output. The XGBoost algorithm is 

Figure 5.   The ridge trace diagram of the input variable after the variable selection is completed, where the 
dependent variable is the O3 concentration measured by the national control point.

Table 3.   Ridge regression model of six types of air pollutant concentrations. In the model, the dependent 
variable is the concentration of the six pollutants at the national control point, and the independent variable is 
the variable and time monitored by the self-built point (– represents the variables eliminated in the model).

Independent variable PM2.5 PM10 CO ( ×10
−2) NO2 SO2 O3

Constant 359.559 374.836 684.980 40.691 13.826 160.997

PM2.5 0.48 0.493 0. 375 0.089 – –

PM10 0.162 0.203 0. 141 – 0.022 − 0.043

CO 4.713 21.544 26.741 − 6.764 20.205 –

NO2 0.083 0.307 0. 26 0.298 0.049 − 0.494

SO2 – 0.121 – – – –

O3 – – 0.038 − 0.09 0.082 0.418

Wind speed − 1.107 – − 11.773 − 12.601 − 6.101 19.890

Pressure − 0.336 − 0.319 − 0. 638 – – − 0.121

Precipitation − 0.036 − 0.073 – − 0.028 0.020 –

Temperature – – – − 0.316 0.219 1.143

Humidity − 0.257 − 0.747 0.011 − 0.237 − 0.034 − 0.342

Time – – 0.003 0.005 − 0.007 0.009

k value 0.12 0.18 22 0.38 0.26 0.2

R2 0.896 0.787 48.326 0.497 0.517 0.787
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used to establish a prediction model for the concentration of each pollutant. We call this model the RR-XGBoost 
model. Figure 6 is the flux diagram of the RR-XGBoost model.

Before constructing the Ridge-XGBoost model, first divide all samples into training set and test set randomly 
at a ratio of 8:2 (the other 5 pollutants data sets are also divided in the same way), and normalize all data to the 
range of [0,1] based on experience29,34. The modeling in this paper is implemented using Python language pro-
gramming, the simulation platform is Pycharm, and the Grid Search Method (GSM) is used to find the optimal 
parameter combination.

The XGBoost model has many parameters. If all parameters are optimized, the computer’s memory will be 
challenged and the optimization time will be greatly increased. In this paper, the following four main parameters 
are selected for optimization: (i) the number of gradient boosted trees n_estimators, the larger the parameter, 
the better, but the occupied memory and training time will also increase accordingly, the optimization range 
of this article is 100–300; (ii) the maximum tree depth for base learners max_depth, this parameter is used to 
avoid overfitting, the value range is 3–10; (iii) learning rate learning_rate, the value range is 0.01–0.3; and (iv) the 
minimum sum of instance weight(hessian) needed in a child min_child_weight, which is similar to max_depth, 
used to avoid over-fitting, and the value range is 1–9. The four initial parameters of the XGBoost model are set 
to 100, 6, 0.1, and 1. In addition, GSM needs to set the optimization step distance of each parameter during the 
optimization process (this article takes 10, 1, 0.01, 1).

Table 4 shows the parameters of the XGBoost model determined after using the grid search method. In order 
to show the fitting effect of the RR-XGBoost model more intuitively, this paper draws the fitting effect of O3 con-
centration as shown in Fig. 7. It can be seen that the correlation coefficient between the true concentration of O3 
and the predicted concentration of the model in both the training set and the test set exceeds 0.95. In addition, the 

Figure 6.   The flux diagram of the regression process, where NCP represents the concentration of pollutants 
measured at the national control point.

Table 4.   Six types of pollutant concentration prediction model parameters.

Model parameters PM2.5 PM10 CO NO2 SO2 O3

n_estimators 210 290 290 200 300 300

max_depth 6 7 7 7 10 6

learning_rate 0.10 0.08 0.10 0.06 0.10 0.10

min_child_weight 1 7 1 3 1 7

Figure 7.   The prediction effect of O3’s RR-XGBoost model on the training set and test set.
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regression coefficients of the two regression models (training set regression model and test set regression model) 
are close to 1, indicating that this model performs well in predicting the concentration of pollutants. Figure 8 
is the residual analysis diagram of the RR-XGBoost model. It can be seen that most of the residual values of the 
model are randomly distributed within [-40, 40]. From the residual distribution histogram, it can be seen that the 
residuals are uniformly distributed around zero, and the residuals are roughly normally distributed as a whole.

Discussion
In order to further evaluate the prediction accuracy of the RR-XGBoost model, multilayer perceptron neural 
network, random forest regression and support vector machine were used to compare with this model. This 
study uses four commonly used evaluation indicators to compare each model. The four evaluation indicators 
are relative Mean Absolute Percent Error (MAPE), Mean Absolute Error (MAE), goodness of fit (R2), and Root 
Mean Square Error (RMSE) (Eqs. (15)–(18)). From Tables 5, 6, 7, and 8, it can be seen that the measurement 
accuracy of self-built points is the lowest among all evaluation indicators, which shows that the measurement 
accuracy of the micro air quality detector needs to be improved. Although ridge regression can give the quan-
titative relationship between each variable and the concentration of pollutants, the fitting effect is not particu-
larly good. Random forest regression and XGBoost prediction methods are better in the accuracy of pollutant 
concentration prediction. In particular, the XGBoost prediction method can greatly improve the accuracy of 
pollutant concentration prediction. The model combining ridge regression and XGBoost algorithm presented 
in this study is not only slightly higher in accuracy than the single XGBoost prediction method, but also retains 
the advantages of ridge regression model.

Human activities are one of the important factors affecting the concentration of pollutants. Human activities 
have obvious periodic laws. We choose one week as a cycle to evaluate the correction ability of the RR-XGBoost 
model to the measurement data of the micro air quality detector35. The blue curve in Fig. 9 is the measured value 
of the national control point, the red curve is the measured value of the self-built point, and the black curve is 
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Figure 8.   Residual test of RR-XGBoost model. The residuals vs. data set number plot is seen on the left. The 
histogram of the residuals is seen on the right.
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the predicted value of the RR-XGBoost model. It can be seen that the red curve and the blue curve have a cer-
tain error, but the black curve and the blue curve basically overlap, indicating that the RR-XGBoost model has 
performed a good correction on the measurement data of the micro air quality detector.

Conclusions
Today, the situation of air pollution is still not very optimistic3, and atmospheric monitoring is gradually devel-
oping in the direction of refined monitoring. At present, the most feasible solution for refined atmospheric 
monitoring is grid-based monitoring, that is, multiple air quality monitoring devices are set up within a certain 
distance or range in a monitoring area to measure the specific dust particle concentration and pollutant gas 

Table 5.   MAPE of six types of air pollutant concentrations between self-built points, model forecast values 
and national control point.

Input variable Self-built points Ridge XGBoost RR-XGBoost RFR SVR MLP

PM2.5 0.447 0.186 0.067 0.064 0.087 0.133 0.185

PM10 0.887 0.268 0.061 0.055 0.095 0.107 0.210

CO 0.478 0.332 0.038 0.037 0.083 0.112 0.283

NO2 2.129 0.659 0.092 0.088 0.121 0.170 0.471

SO2 0.685 0.645 0.029 0.029 0.115 0.131 0.530

O3 4.322 1.259 0.177 0.167 0.304 0.373 1.002

Table 6.   MAE of six types of air pollutant concentrations between self-built points, model forecast values and 
national control point.

Input variable Self-built points Ridge XGBoost RR-XGBoost RFR SVR MLP

PM2.5 18.181 7.634 2.552 2.491 3.485 5.821 7.763

PM10 50.151 15.027 3.870 3.477 6.299 7.080 13.184

CO 0.549 0.269 0.036 0.035 0.079 0.110 0.237

NO2 29.838 13.078 2.570 2.441 3.515 4.658 9.991

SO2 12.867 9.299 0.555 0.538 1.736 2.116 7.246

O3 36.63 17.239 3.536 3.267 5.638 7.647 14.396

Table 7.   R2 of six types of air pollutant concentrations between self-built points, model forecast values and 
national control point.

Input variable Self-built points Ridge XGBoost RR-XGBoost RFR SVR MLP

PM2.5 0.551 0.8959 0.986 0.986 0.976 0.933 0.907

PM10 − 1.076 0.7867 0.985 0.987 0.953 0.938 0.827

CO − 0.929 0.4833 1.000 1.000 0.932 0.872 0.708

NO2 − 1.333 0.4967 0.982 0.982 0.942 0.899 0.752

SO2 − 0.726 0.5168 0.997 0.997 0.969 0.958 0.786

O3 0.094 0.7866 0.985 0.986 0.969 0.945 0.864

Table 8.   RMSE of six types of air pollutant concentrations between self− built points, model forecast values 
and national control point.

Input variable Self-built points Ridge XGBoost RR-XGBoost RFR SVR MLP

PM2.5 22.436 10.802 3.992 3.976 5.207 8.649 10.777

PM10 66.263 21.232 6.479 6.032 9.940 11.656 19.126

CO 0.679 0.352 0.079 0.078 0.128 0.175 0.304

NO2 37.183 17.271 4.502 4.507 5.847 7.725 13.216

SO2 26.24 13.882 2.236 2.163 3.513 4.116 9.984

O3 45.673 22.169 5.798 5.669 8.433 11.304 18.603
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concentration. A city will set up dozens to hundreds of monitoring points. Accurate and fine grid air monitoring 
can quickly perceive and locate pollution events, and timely take control measures to achieve a multiplier control 
and governance effect5,7. At present, many places use such micro-stations for the detection and law enforcement 
of sudden pollution situations, and even rank, reward and punish the air quality in the jurisdiction. Therefore, 
higher requirements are put forward for the stability and accuracy of the micro air quality inspection station.

With the development of computer technology, machine learning has entered the latest stage, and machine 
learning has been more widely used in air quality prediction. The XGBoost algorithm is widely used in data mod-
eling due to its excellent computational efficiency and prediction accuracy. Unlike the random forest assigning 
the same voting weight to each decision tree, the generation of the next decision tree in the XGBoost algorithm 
is related to the training and prediction of the previous decision tree. The XGBoost algorithm gives higher learn-
ing weights to the sample which has lower accuracy in the previous round of decision tree training. Therefore, 
its accuracy is generally higher than the random forest algorithm. Compared with other ensemble learning 
algorithms, XGBoost improves the robustness of the model by introducing regular terms and column sampling 
methods. On the other hand, it adopts a parallelization strategy when each tree chooses the split point, which 
greatly improves the speed of the model.

The combined model of ridge regression and XGBoost algorithm given in this paper can not only explain 
the quantitative relationship between input variables and output variables, but also has certain advantages over 
other commonly used air quality monitoring models in terms of model accuracy. A total of 4135 samples were 
introduced into the Ridge-XGBoost model, and the sample time spanned 4 seasons (206 days), which showed 
that the model performed well in terms of stability. Using the RR-XGBoost model to calibrate the data of the 
micro air quality detector can make up for the shortcomings of the data monitoring accuracy of the micro air 
quality detector. The model plays an active role in the deployment of micro air quality detectors and grid moni-
toring of the atmosphere. In future research, we can consider introducing more data to explore the evolution of 
pollutant concentrations on a larger time scale. In addition, in terms of finding the optimal parameters, the grid 
search algorithm used in this study is not efficient enough when there are many parameters. We can try to find 
a more efficient parameter optimization method to introduce more parameters to the model to further improve 
the accuracy of the model.
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