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Machine learning‑based 
prediction of acute kidney injury 
after nephrectomy in patients 
with renal cell carcinoma
Yeonhee Lee1,2, Jiwon Ryu3, Min Woo Kang1, Kyung Ha Seo4, Jayoun Kim4, Jungyo Suh5, 
Yong Chul Kim1, Dong Ki Kim1, Kook‑Hwan Oh1, Kwon Wook Joo1, Yon Su Kim1, 
Chang Wook Jeong5, Sang Chul Lee5, Cheol Kwak5*, Sejoong Kim1,3,6* & Seung Seok Han1*

The precise prediction of acute kidney injury (AKI) after nephrectomy for renal cell carcinoma (RCC) is 
an important issue because of its relationship with subsequent kidney dysfunction and high mortality. 
Herein we addressed whether machine learning (ML) algorithms could predict postoperative AKI 
risk better than conventional logistic regression (LR) models. A total of 4104 RCC patients who had 
undergone unilateral nephrectomy from January 2003 to December 2017 were reviewed. ML models 
such as support vector machine, random forest, extreme gradient boosting, and light gradient 
boosting machine (LightGBM) were developed, and their performance based on the area under 
the receiver operating characteristic curve, accuracy, and F1 score was compared with that of the 
LR‑based scoring model. Postoperative AKI developed in 1167 patients (28.4%). All the ML models 
had higher performance index values than the LR‑based scoring model. Among them, the LightGBM 
model had the highest value of 0.810 (0.783–0.837). The decision curve analysis demonstrated a 
greater net benefit of the ML models than the LR‑based scoring model over all the ranges of threshold 
probabilities. The application of ML algorithms improves the predictability of AKI after nephrectomy 
for RCC, and these models perform better than conventional LR‑based models.

Renal cell carcinoma (RCC) represents approximately 3% of cancers, and is the 3rd most common type of cancer 
in the genitourinary  tract1. During the last two decades, there has been an annual increase of 2% in its incidence 
 worldwide2. In particular, small RCCs with T1 stage account for more than half of the newly diagnosed  cases3. 
The early detection of small RCCs can improve overall survival of patients by curative  nephrectomy4. Along with 
this trend, the American and European guidelines recommend partial nephrectomy (PN) rather than radical 
nephrectomy (RN) for localized tumors in stage T1 as a curative  approach2,5. Despite an increasing tendency in 
performing PN, RN is also carried out, particularly in patients with chronic kidney disease, because of the high 
complication rate, long operation time, and potential morbidities of PN compared to  RN6–8. The worsening of 
postoperative renal function continues to be a great issue in patients who undergo nephrectomy for RCC because 
of their superior survival and large remnant functioning tissues.

The loss of normal kidney tissues after PN or RN may result in an inevitable decline in kidney function despite 
the compensation of  remnants9–11. Compensatory hypertrophy and hyperfiltration of the remaining kidney 
occurs within hours after nephrectomy, and a subsequent decrease in glomerular filtration rates is transient or 
 subclinical12. However, 2–54% of patients experience postoperative acute kidney injury (AKI), which is attribut-
able to several factors, such as elderly age, male sex, preoperative chronic kidney disease, diabetes mellitus, and 
 RN13–20. AKI after nephrectomy for RCC leaves sequelae in the remaining kidneys, which is a strong risk factor 
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for irreversible kidney  dysfunction18–20. Furthermore, there is increasing concern that the transition to chronic 
kidney disease after nephrectomy is associated with both all-cause21,22 and cancer-specific  mortality23.

Although previous studies have focused on postoperative kidney function after nephrectomy in the short- or 
intermediate-to-long  term13,14,16–19, few models for predicting postoperative AKI have been developed. Moreover, 
these studies included patients who underwent certain types of surgery (e.g. laparoscopic or robot-assisted lapa-
roscopic) rather than all kinds of  operations15,20. Preparing for AKI beforehand may not be easy because several 
conditions in addition to operative settings have interactive and complex effects on the risk. The heterogeneous 
features of patients may also make it difficult to accomplish precise prediction. A previous logistic regression 
(LR) model (e.g., the simple postoperative AKI risk [SPARK] index) has suitable performance in predicting 
the risk of postoperative AKI in noncardiac surgery, but its performance has not been validated in the urologic 
 surgery24. To overcome these limitations, we aimed to apply several machine learning models in predicting AKI 
after nephrectomy for RCC, and compared their performance with that of conventional LR models.

Methods
Patient and study design. A total of 4659 patients who were diagnosed with RCC and thus had under-
gone unilateral PN or RN between January 2003 and December 2017 were retrospectively reviewed. Patients 
were excluded if they met any of the following criteria: less than 18 years old (n = 11); metastatic RCCs (clinical 
T stage = 4; N stage > 0; and M stage > 0) (n = 331); previous history of nephrectomy (n = 3); kidney transplant 
recipients (n = 13); staged nephrectomy due to bilateral RCCs (n = 6); congenital single kidney before surgery 
(n = 4); presence of postoperative complications requiring re-operation (n = 3); and incomplete laboratory infor-
mation (n = 184). Accordingly, 4,104 patients were analyzed in the present study. The study was approved by 
the institutional review boards of Seoul National University Hospital (H-1904-005-1021) and Seoul National 
University Bundang Hospital (B-1905-538-404) and was conducted in accordance with the principle of the Dec-
laration of Helsinki. The requirement to obtain informed consent from the patients was waived by the above two 
IRBs.

Study variables. Patient demographics such as clinical and laboratory data were recorded. Preoperative 
and intraoperative data (such as age, sex, body mass index, smoking status, hypertension, diabetes mellitus, his-
tories of myocardial infarction, stroke, peripheral vascular disease, chronic hepatitis B and C, and other cancers, 
medications of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers, type of operation, 
total and ischemic time of operation, estimated amounts of blood loss, intraoperative transfusion) and tumor-
specific data (such as tumor size and clinical T stage) were extracted from electronic medical records. Blood 
laboratory data, such as preoperative serum creatinine, blood urea nitrogen, albumin, and hemoglobin, were 
obtained. For serum creatinine, postoperative values were also obtained. The estimated glomerular filtration rate 
(eGFR) was calculated using the Chronic Kidney Disease Epidemiology Collaboration  equation25. Proteinuria 
was defined as ≥ 1+ on a dipstick test.

The primary outcome was postoperative AKI, defined as an increase in serum creatinine level to ≥ 0.3 mg/
dL within 48 h or ≥ 1.5 times baseline within 7 days after operation according to the Kidney Disease Improv-
ing Global Outcomes  guideline26. If the serum creatinine decreased within the non-AKI range and was at least 
0.3 mg/dL below the peak level, the cases were defined as recovered  AKI27.

Statistical analysis. All analyses were implemented using R software (version 3.6.3; R Foundation for Sta-
tistical Computing). Comparisons of baseline characteristics were performed with the Wilcoxon rank-sum test 
for continuous variables and the chi-square test for categorical variables. The patients were randomly assigned 
to training (70%) and testing (30%) datasets. Using the training dataset, we developed machine learning models 
such as support vector machine (SVM), random forest, extreme gradient boosting (XGBoost), and light gradient 
boosting machine (LightGBM) to predict the risk of AKI. As a reference model, we used multivariable LR analy-
sis (herein termed the LR-scoring model). Variables with a P value of < 0.2 in the univariate model were adjusted 
with a stepwise fashion. The logistic coefficients were used as clinical scores by proportionally assigning points 
and rounding to the nearest integer. For another reference, we used the SPARK index which had been validated 
in patients undergoing noncardiac  operations24. SVM constructs a hyperplane in a high-dimensional space, 
which can be used for classification. Random forest is an ensemble of decision trees created by using bootstrap 
samples of the training dataset and random selection in tree  induction28. For the random forest model, we used 
a grid search strategy to identify the best combination of hyperparameters with the caret package. XGBoost is an 
ensemble approach with a gradient descent–boosted decision tree  algorithm29. We selected a low learning rate 
(0.0001), interaction depth of 5, and a maximum of 3000 iterations. LightGBM is an improvement framework 
based on the gradient descent–boosted decision tree algorithm and is more powerful than the previous XGBoost 
with a fast training speed and less memory  occupation30. To minimize potential overfitting in the above machine 
learning models, we used tenfold cross-validation and out-of-bag estimation during development.

The model performance was assessed with the area under the receiver operating characteristic curve 
(AUROC), accuracy, and F1 score in the testing dataset. To calculate the performance of the SPARK index, we 
used the best threshold point of the curve. The DeLong test was used to compare  AUROCs31. The net benefit over 
a specified range of threshold probabilities in outcome was evaluated using decision curve  analysis32,33. The Hos-
mer–Lemeshow test was used to assess calibration. Two-sided P values less than 0.05 were considered significant.
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Results
Baseline characteristics of the patients. The mean age of the patients was 56 ± 13  years and 2855 
(69.6%) were male. 443 patients (10.6%) had diabetes mellitus. The proportion of patients who underwent PN 
was 66.5%. The median ischemic time during PN was 21 min (interquartile range 16–28 min). Postoperative 
AKI developed in 1167 patients (28.4%) after nephrectomy (423 after PN [15.5%] and 744 after RN [54.1%]; 
817 [28.4%] in the training dataset and 350 [28.4%] in the testing dataset). 41.6% of patients with postoperative 
AKI had fully recovered renal function at discharge. Other baseline characteristics are shown in Table 1. These 
baseline characteristics did not differ between the training and testing datasets.

Model performance in predicting AKI. When adjustment with a stepwise fashion was applied, several 
factors, such as male sex, diabetes mellitus, hypertension, RN, large tumor size, long operation time, intraopera-
tive transfusion, and low eGFR were selected as risk factors for AKI in the LR-scoring model (Table S1). The 
corresponding clinical scores in this LR model are presented in Fig. S1.

We set up two LR-based models, the SPARK index and the LR-scoring model as a reference for comparison 
with the machine learning models. Among the models developed, the LightGBM model had the highest AUROC 
value (0.810 [0.783–0.837]), whereas the SPARK index showed the lowest AUROC value (0.626 [0.607–0.644]) 
(Table 2). All the machine learning models had higher AUROC values than the SPARK index. The LightGBM 
model had a higher AUROC value than the LR-scoring model with marginal significance. Corresponding curves 
supported these results (Fig. 1). When other performance indices, such as accuracy and F1 score, were examined, 
the XGBoost model had the best performance, and the LR-based models, including the SPARK index and the 
LR-scoring model, had the poorest performance. In decision curve analysis (Fig. 2), the net benefit was greater 
for machine learning models than for the SPARK index over all the ranges of threshold probabilities. The Light-
GBM, XGBoost and SVM models had the highest net benefits among the models. The LR-scoring model had a 
negative benefit in > 0.6 of the threshold probabilities. The LightGBM, XGBoost, random forest, and LR-scoring 
models were well calibrated (all P > 0.05), but the other models were not (all P < 0.05) (Fig. 3). Based on these 
results, the LightGBM model was chosen as the best model for predicting postoperative AKI.

Variable ranking analysis. To estimate the contribution degree of each variable in predicting the risk of 
AKI, variable ranking analysis was performed (Fig. 4). Relative values ranged from 0 to 1, which indicated the 
proportional contribution of variables in predicting AKI. Accordingly, type of operation, sex, tumor size, opera-
tion time, and baseline eGFR were highly ranked as the top predictors.

Discussion
It has become more important to precisely predict AKI in patients undergoing nephrectomy for RCC because 
surviving patients with AKI will suffer from subsequent chronic kidney disease and other worse outcomes. The 
present study first applied machine learning algorithms to accomplish the precise prediction of postoperative 
AKI, and the performance and calibration of these models were better than those of the LR-based reference 
models. Based on ranking analysis, certain variables were noted to contribute more to the predictive performance 
of the models. These results indicate that the precise prediction of postoperative AKI is achievable by machine 
learning despite the complex and interactive relationships of several variables.

A meta-analysis of 71 studies suggested that machine learning algorithms did not improve discriminative 
power over traditional LR-based models in predicting various clinical outcomes such as diabetes mellitus, infec-
tion, heart failure, and  cancer34. Nevertheless, one study reported the superiority of machine learning models to 
the LR model in predicting AKI after minimally invasive laparoscopic or robot-assisted laparoscopic nephrec-
tomy for RCC 15. The present study dealing with all operation types supports this result with better model perfor-
mance. Particularly, the performance improvement by the LightGBM model can be acceptable to alert clinicians 
of the risk of postoperative AKI.

Decision curve analysis takes into account the weights of different misclassification types with a direct clinical 
interpretation of the net benefit (i.e., the trade-off between undertreatment and overtreatment in the model)32,33. 
It is useful to compare models where the default strategies predict all-or-none outcomes such as AKI. All the 
machine learning models had greater net benefit over the range of threshold probabilities than the SPARK index. 
The LR-scoring model had a negative value of net benefit in a high range of threshold probabilities. These results 
provide clues on how machine learning models will be applicable to clinical practice.

The ranking analysis showed that certain variables such as nephrectomy type, patient characteristics (e.g., age 
and sex), and laboratory findings (e.g., eGFR and hemoglobin), contributed to the model performance. These 
results support the findings of previous large cohort studies focusing on postoperative  AKI14–19. Only one or 
two variables may not be enough to accomplish a perfect prediction. Accordingly, modeling with at least the top 
variables obtained from the ranking analysis is needed if another model in an independent population should 
be developed.

Although the results were informative, some limitations should be discussed. The study design was retrospec-
tive in nature which may have potential selection bias. The study identified the most important variables with 
respect to predicting mortality, but we could not obtain certain degrees of risk, such as the relative risk, which is 
a common limitation of machine learning algorithms. The study results may not be applicable to some specific 
populations such as patients with metastasis or kidney transplant recipients. Concerns could be raised regarding 
other issues such as the absence of external validation and the effects of unidentified factors.

The application of machine learning algorithms improves the predictability of AKI after nephrectomy for 
RCC, and these models performed better than conventional LR-based models. If machine learning-based 
prediction models are successfully applied in clinical practice, the overall patient outcomes will improve by 
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implementing earlier management. Future studies will explore whether machine learning is also applicable to 
predicting other outcomes after nephrectomy with validating results in independent cohorts.

Received: 1 March 2021; Accepted: 20 July 2021

Table 1.  Baseline characteristics of the study patients. ACEI angiotensin-converting enzyme inhibitor, ARB 
angiotensin II receptor blocker, HALS hand-assisted laparoscopic, LESS laparoendoscopic single-site surgery, 
RBC packed red blood cell, eGFR estimated glomerular filtration rate.

Variables Total (n = 4104) Training dataset (n = 2873) Testing dataset (n = 1231) P value

Age (years) 55.8 ± 12.8 55.7 ± 12.8 56.0 ± 12.8 0.573

Male (%) 69.6 69.7 69.1 0.691

Body max index (kg/m2) 24.7 ± 3.3 24.6 ± 3.3 24.7 ± 3.2 0.668

Current smoking (%) 24.4 24.3 24.8 0.724

Comorbidities (%)

Diabetes mellitus 10.6 10.8 10.0 0.446

Hypertension 25.0 25.2 24.9 0.835

History of myocardial infarction 0.5 0.5 0.4 0.726

History of stroke 1.5 1.3 2.1 0.049

Peripheral vascular disease 0.1 0.03 0.08 0.537

Congestive heart failure 0.3 0.2 0.5 0.203

Hepatitis 4.4 4.5 4.1 0.585

History of cancer 4.5 4.3 5.0 0.309

Chronic obstructive pulmonary disease 1.6 1.9 1.0 0.035

ACEI or ARB (%) 8.4 8.3 8.7 0.693

Radical nephrectomy (%) 33.5 33.4 33.7 0.853

Type of operation (%) 0.425

Open 54.8 54.2 56.4

Laparoscopic 12.6 13.1 11.5

HALS 2.8 2.6 3.2

Robotic 28.9 29.3 28.0

LESS 0.9 0.8 0.9

Clinical T stage (%) 0.692

T1 87.8 87.8 87.7

T2 8.0 8.0 7.8

T3 4.2 4.2 4.5

Tumor size (cm) 3.2 (2.1–5.0) 3.2 (2.1–5.0) 3.2 (2.0–5.0) 0.744

Total operation time (min) 131 (100–174) 132 (100–170) 130 (100–175) 0.652

Bleeding and transfusion amount

Estimated blood loss (mL) 150 (100–300) 150 (100–300) 150 (100–300) 0.602

Intraoperative RBC-transfusion (units) 0.687

 0 96.0 95.8 96.4

 1–2 2.5 2.6 2.5

 3–5 0.9 0.9 0.7

 ≥ 6 0.6 0.7 0.4

Preoperative laboratory findings

Hemoglobin (g/dL) 13.1 ± 1.7 13.1 ± 1.7 13.1 ± 1.7 0.665

Albumin (g/dL) 3.9 ± 0.6 3.9 ± 0.6 3.8 ± 0.6 0.055

Blood urea nitrogen (mg/dL) 14.1 ± 4.7 14.1 ± 4.8 13.9 ± 4.3 0.123

eGFR (mL/min/1.73  m2) 81.7 ± 18.6 81.9 ± 18.5 81.3 ± 19.0 0.342

Creatinine (mg/dL) 1.00 ± 0.28 0.98 ± 0.29 0.98 ± 0.26 0.928

Proteinuria (%) 0.017

0–trace 89.1 89.1 89.1

1+ 7.0 6.4 8.2

2+ 2.8 3.2 2.0

 ≥ 3+ 1.1 1.3 0.7
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Table 2.  Comparison of models for predicting postoperative acute kidney injury after nephrectomy. AUROC 
area under the receiver operating characteristic curve, CI confidence interval, SPARK simple postoperative 
AKI risk, XGBoost extreme gradient boosting, LightGBM light gradient boosting machine. a Compared with the 
SPARK index. b Compared with the stepwise logistic regression model. c The optimal cut off value was 29.5 in 
the present dataset.

Model AUROC (95% CI) P  valuea P  valueb Accuracy (95% CI) F1 score

SPARK  indexc 0.626 (0.607–0.644) –  < 0.001 0.589 (0.574–0.604) 0.669

Logistic regression-scoring 0.775 (0.746–0.804)  < 0.001 – 0.759 (0.734–0.782) 0.837

Support vector machine 0.798 (0.770–0.826)  < 0.001 0.257 0.784 (0.760–0.807) 0.853

Random forest 0.791 (0.763–0.819)  < 0.001 0.447 0.771 (0.747–0.794) 0.851

XGBoost 0.807 (0.780–0.833)  < 0.001 0.144 0.786 (0.762–0.808) 0.856

LightGBM 0.810 (0.783–0.837)  < 0.001 0.084 0.777 (0.753–0.800) 0.851

Figure 1.  Receiver operating characteristic curves of the reference and machine learning models for predicting 
acute kidney injury after nephrectomy. LightGBM light gradient boosting machine, XGBoost extreme gradient 
boosting, SVM support vector machine, RF random forest, LR logistic regression, SPARK simple postoperative 
acute kidney injury risk.

Figure 2.  Decision curve analysis. LightGBM light gradient boosting machine, SVM support vector machine, 
RF random forest, LR logistic regression, SPARK simple postoperative acute kidney injury risk.
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Figure 4.  Importance of each variable in developing models such as light gradient boosting machine (A), 
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