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We make magnitude-related decisions every day, for example, to choose the shortest queue at the
grocery store. When making such decisions, which magnitudes do we consider? The dominant theory
suggests that our focus is on numerical quantity, i.e., the number of items in a set. This theory leads
to quantity-focused research suggesting that discriminating quantities is automatic, innate, and is
the basis for mathematical abilities in humans. Another theory suggests, instead, that non-numerical
magnitudes, such as the total area of the compared items, are usuvally what humans rely on, and
numerical quantity is used only when required. Since wild animals must make quick magnitude-
related decisions to eat, seek shelter, survive, and procreate, studying which magnitudes animals
spontaneously use in magnitude-related decisions is a good way to study the relative primacy of
numerical quantity versus non-numerical magnitudes. We asked whether, in an animal model, the
influence of non-numerical magnitudes on performance in a spontaneous magnitude comparison task
is modulated by the number of non-numerical magnitudes that positively correlate with numerical
quantity. Our animal model was the Archerfish, a fish that, in the wild, hunts insects by shooting a jet
of water at them. These fish were trained to shoot water at artificial targets presented on a computer
screen above the water tank. We tested the Archerfish’s performance in spontaneous, untrained
two-choice magnitude decisions. We found that the fish tended to select the group containing larger
non-numerical magnitudes and smaller quantities of dots. The fish selected the group containing
more dots mostly when the quantity of the dots was positively correlated with all five different non-
numerical magnitudes. The current study adds to the body of studies providing direct evidence that
in some cases animals’ magnitude-related decisions are more affected by non-numerical magnitudes
than by numerical quantity, putting doubt on the claims that numerical quantity perception is the

most basic building block of mathematical abilities.

Across the animal kingdom, humans and other animals must quickly make magnitude-related decisions to sur-
vive. For example, for fish, joining the larger school of fish may provide additional protection against predators
and hence may be the difference between life and death. How do animals make such decisions? Until recently, the
dominant theory suggested that all animals have an innate sense of number'~*. Accordingly, in such decisions,
the fish in our example will roughly estimate the number of fish in each school when deciding which school to
join. This decision will be based solely on numerical quantity. Yet other theories suggest that such a decision may
require integrating information available for multiple magnitudes, both numerical and non-numerical, such as

the space taken by the fish, their density, etc., to reach a decision*™®.

In that context, one of the most significant current discussions is whether, in such magnitude-related deci-
sions as described above, discrete numerical quantity (i.e., the number of items in a set) is extracted from a set of
items automatically, intuitively, and early in the processing stage'~*, or whether non-numerical magnitudes are
extracted early and automatically, while numerical quantity is extracted later in the process, in a more purposeful

and effortful way, and only when the task calls for it*-°.

Since animals are required to make quick magnitude-related decisions to eat, seek shelter, survive and procre-

ate, studying which magnitudes animals spontaneously use in magnitude-related decisions e.g.,

714 is a good way

to study the relative primacy of numerical quantity versus non-numerical magnitudes. Studies that employ this
approach share some commonalities. First, they usually use biologically relevant stimuli. For example, schools
of fish (to ask which school a fish would prefer to join to survive), pieces of food (to ask which cluster of food
the animal would prefer'®), or stimuli that were previously associated with food'®!, etc. Second, these studies
usually use a small number of items, ranging from 1 to 20, but mostly up to 8 items per group. Third, and most
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important, most of these studies focus on whether the animal can discriminate between numerical quantities
while attempting to control for the possible influence of non-numerical magnitudes. ’Controlling’ non-numerical
magnitudes is problematic; it is impossible to have two groups of items that differ only in number, but not in
non-numerical magnitudes (for a detailed discussion please see®). For example, Stancher et al.'® asked whether
frogs can spontaneously discriminate between quantities (1-8 larvae), and reported that frogs were able to
discriminate between quantities when 1 was compared to small quantities. In contrast, with higher quantities
frogs may have used either numerical quantity or non-numerical magnitudes. In the study, movement, volume,
total surface, and weight were controlled (e.g., overall total surface similar in both the to-be-compared groups
of larvae). Importantly, some of the controls were made when the numerical quantity 1 was compared to 2 or
more. Hence, there may be a specific preference to 1 versus ‘many’ or vice versa. Second, it is unclear whether
and how other non-numerical magnitudes that are not mentioned in the manuscript were controlled, such as
density or convex hull for example. In another example, Yang et al.® asked whether cuttlefish can discriminate
between different numerical quantities of prey (shrimps). In one experiment, all the shrimps in the two plates
the fish had to choose between, were of the same size. Therefore, the plate with the larger number of shrimps
also contained a larger surface area of shrimps. In a follow-up experiment, the authors equated the density of the
shrimps on each plate. However, this meant that the larger number of shrimps was spread over a larger area, so
in these cases, the convex hull was correlated with the number of shrimps. The authors concluded that cuttlefish
could discriminate between numerical quantities, although an alternative explanation that was not ruled out is
that the fish used total surface area or convex hull to choose the larger group.

Sometimes, the attempt to reduce the influence of non-numerical magnitudes creates a situation where the
variability of the numerical quantity is small (only a small number of quantities are used), while the variability
in non-numerical magnitude is much greater. For example, in an attempt to test whether chicks can discriminate
5 versus 10 or 10 versus 20, Rugani et al.'® randomized the size of the elements presented to the chicks. While
there is not enough information about the condition such randomization of size created, the variability of non-
numerical magnitudes was much higher than the variability of numerical quantity, which could make numerical
quantity the more salient magnitude in this situation.

Importantly, some studies have demonstrated that animals use non-numerical magnitudes alone, or a com-
bination of numerical and non-numerical magnitudes, in magnitude comparison tasks. Sometimes different
studies with the same species reported contradicting findings. For example, in 2011, Gomez-Laplaza and Gerlai'’
concluded that angelfish can discriminate between different numerical quantities of same-size food items, based
on the number of food pieces. Recently, however, the same research group'* repeated the experiment in three dif-
ferent versions: when only one item of food was presented on each plate, the fish have shown a preference for the
larger item. When the number of food items was different but the total surface area was equal, fish preferred the
plate where the food items were physically larger. When numerical quantity and size were negatively correlated,
namely, the larger the amount, the smaller the food, the fish have shown no preference. Therefore, the authors
concluded that non-numerical magnitudes also play an important role when angelfish makes magnitude-related
decisions. Similar conclusions as to the importance of non-numerical magnitudes were found in different ani-
mals, such as crickets'?, large carnivores'?, amphibians®, and fish?..

To summarize, the picture emerging from previous findings is that many species of animals spontaneously
use both numerical quantity and non-numerical magnitudes to make a magnitude-related decision that may
greatly impact their survival. These studies usually employ relatively small quantities, and biologically relevant
stimuli, and were limited in their ability to account for the influence of non-numerical magnitudes. In addition,
the spotlight in most studies was directed towards numerical quantities, and non-numerical magnitudes were
more often controlled’ than studied.

Against this background, we would like to turn the spotlight to non-numerical magnitudes, and systematically
study how both numerical quantities and non-numerical magnitudes may influence the decision in a spontaneous
magnitude comparison task, when the relationship between numerical quantities and non-numerical magnitudes
is manipulated within the same block and the same subjects.

More specifically, we asked whether the influence of non-numerical magnitudes on performance in a spon-
taneous magnitude comparison task is modulated by the number of non-numerical magnitudes that positively
correlate with numerical quantity. A similar question was investigated by Leibovich and Ansari*?. In this study,
human adults were asked to select the group comprised of more dots, while their brains were being scanned in
an MRI machine. In addition to the number of dots, five non-numerical magnitudes were recorded: The total
surface area of the dots, their average diameter, total circumference, density, and convex hull (the total area of
the dots and the space between them). The authors manipulated the number of non-numerical magnitudes that
were congruent (i.e., positively correlate) or incongruent (i.e., negatively correlate) with numerical quantity;
in congruity level one, only one non-numerical magnitude was congruent with numerical quantity and the
remaining four non-numerical magnitudes were incongruent with numerical quantity. In congruity level four,
four out of five non-numerical magnitudes were congruent with numerical quantity. The activity of the right
inferior frontal gyrus (rIFG) positively correlated with the level of congruity. Accordingly, the authors suggested
that the rIFG supports the accumulation of non-numerical magnitudes that positively correlates with numerical
quantity in such comparison tasks.

In the current study, we tested the Archerfish’s (Toxotes sp.) performance in spontaneous, untrained two-
choice magnitude decisions, using a similar approach to the one employed in Leibovich and Ansari’s study?.
This allowed us to add to the current body of knowledge in several ways. First, we used stimuli that are not bio-
logically relevant (groups of dots), allowing us more control over the non-numerical properties of our stimuli.
In addition, this is as close as we could have got to test untrained magnitude preference in general, and notin a
specific biological context such as foraging or shelter seeking, which might be influenced by instinctual behaviors
elicited by the biologically relevant context. With that being said, we still use the hunting response of the fish
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Congruitylevel | Convexhull | Density | Total surface | Average diameter | Total circumference
1 IC IC IC IC C
2a C IC IC IC C
2b IC C IC 1C C
3 C IC C IC C
4a IC C C C C
4b C C C IC C
5 C C C C C

Table 1. Different congruity levels. C congruent with number, IC incongruent with number. The congruent
magnitudes are in bold font.

for this task (shooting water at the stimuli), and the fish are being rewarded by food. For this reason, the study
is not completely context-free. Second, we used a larger number of items (between 5-35 per group), thereby
expanding the discussion to larger quantities. Third, since in congruity levels 2 and 4, different non-numerical
magnitudes were manipulated (see Table 1), we were also able to ask whether it is the number of non-numerical
magnitudes, or some specific non-numerical magnitudes, that influence performance.

Ray-finned fish and mammals diverged more than 400 million years ago. Therefore, studying fish can teach us
which behaviors already existed early in the evolutionary process and were conserved throughout it, or whether
a behavior may have been important enough to emerge independently in different species®. Archerfish in the
wild hunt by shooting a jet of water at insects, causing them to fall into the water?. These fish can be trained
to respond to artificial targets presented on a computer monitor in an experimental setting. Accordingly, they
can be used as the fish equivalent of a human subject reporting psychophysical decisions by pressing a key**?*.

Archerfish do not possess any brain structures homologous to the mammalian frontal or parietal cortex that
are known to be involved in numerical cognition. This does not rule out the existence of an analogous structure,
though. A recent study by Messina et al.?® examined the brain structures involved with size and number percep-
tion in Zebrafish. The fish were habituated to either numerical quantity, shape, or size. Following the habituation,
the expression of genes in response to a regulatory signal (i.e., immediate early genes) was tested in several brain
regions. In some brain regions, i.e., the telencephalon and thalamus, the modulation of the tested immediate
early genes was mainly the result of habituation to numerical quantity. In other regions, i.e., the retina and the
optic tectum (which are earlier in the visual pathway), the modulation of the tested immediate early genes was
mainly the result of habituation to changes in physical size, namely, the total surface area. Although the Zebrafish
brain and the Archerfish brain are different, the study of Messina et al. is a great demonstration of magnitude
processing in brain regions not homologous to the cortex, and that non-numerical magnitudes are processed
by more primary regions than numerical quantity.

Nevertheless, it seems that the hunting method of the Archerfish requires some degree of basic magnitude
discrimination; because hunting requires the fish to come up to the surface of the water where they are exposed
to predators, and because insects can fly out of reach at any moment, the fish must quickly choose which insects
to hunt. In such decisions, it is conceivable that different non-numerical magnitudes, such as the physical size
of the insect or the number of insects in the same area, can be among the factors Archerfish take into considera-
tion during hunting.

Results

We separately tested eight fish. One fish (#6) was excluded from data analysis due to a failure to respond to
more than 50% of the trials in every session. Each fish swam freely in a water tank during the task. The fish were
previously trained to respond to targets presented on a screen positioned 50 cm above the water level (Fig. 1).
Each trial started with a ‘Prime’: a flickering of two fixation boxes, indicating the place where the target stimuli
will soon appear. This was done to attract the fish’s attention to the screen. Six hundred ms after the prime
disappeared two groups of dots appeared, each inside a frame. The fish then had to choose one of the groups by
shooting water at it. The stimuli remained on screen until the fish responded or 15,000 ms have passed. After
each trial, there was a 10,000 ms break in which the fish was rewarded with a food pellet if it responded, regard-
less of which stimulus was selected, and the screen was wiped clean of the water. The experiment was recorded
with 120 frames-per-second video cameras (Fig. 1).

The stimuli the fish saw (see examples in Fig. 2a) were taken from the same stimuli set of Leibovich and
Ansari®. There were five levels of congruity between numerical quantity and non-numerical magnitudes
(Tables 1, 2). Total circumference was always congruent with numerical quantity, so there was no congruity
level 0. The fish were rewarded for selecting any of the groups because the aim was to test spontaneous preference.
Each fish completed 12 sessions (one session a day) of 40 trials each. Fish 5 completed twice the trials because
we wanted to check that the lack of differences between the different combinations of non-numerical magni-
tudes is not non-significant due to a low number of trials. We got the same pattern in fish 5 as in the other fish,
but for consistency, we analyzed only the first 12 sessions. In total each fish underwent 480 trials, 120 trials per
congruity level (x 2 for Fish 5). The proportion of selecting the larger numerical quantity was tested for every
fish and every congruity level.
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Figure 1. Apparatus and procedure. (A) A computer monitor is placed on a glass shelf about 50 cm from

the water level. The fish respond by shooting a jet of water at one of the targets. The stimuli in this Figure are
illustrations. (B) Procedure: a trial starts with three rapid flashes of squares in the fish’s preferred color, to attract
the fish’s attention to the location where the targets will appear. Then the stimuli appear until response or until
15,000 ms have passed. Then in a 10,000 ms break, the fish is rewarded with a food pellet for responding, and
the water is wiped from the glass. (C) The experiment was recorded by two synced high speed (120 Hz) video
cameras, one camera records the fish, and the other records the screen. Part (C) was modified from Karoubi,
Leibovich, and Segev, 2017%.

Response is affected by the level of congruity. One-way ANOVA for every fish (with session num-
ber as the random factor) revealed that the proportion of selecting the larger numerical quantity significantly
increased with the number of non-numerical magnitudes congruent with numerical quantity in all fish, except
for fish 4 (Fig. 2). The same analysis and results were obtained at the group level (i.e., with fish as a random
factor). A similar pattern of results was also observed when employing Bayesian statistics, by calculating Bayes
Factors (BF) (Table 3).

Importantly we found that in congruity levels 1-4 selecting the larger numerical quantity was significantly
below chance level, suggesting that fish preferred the group containing larger non-numerical magnitudes over
the group containing a larger number of dots. This was true for all fish except fish 1 and 2 that only in congru-
ity level 3 selected the larger numerical quantity significantly above chance level (one-tailed one-sample t-test
[proportion of selecting the larger numerical quantity>0.5] mean =0.67, p=0.004 and mean =0.06, p=0.003 for
fish 1 and 2, respectively), but in congruity levels 1, 2 and 4 selected the larger numerical quantity below chance
level. For fish 3-8 one-tailed one-sample t-test [proportion of selecting the larger numerical quantity>0.5] for
congruity levels 1-4: p>0.24). In congruity level 5, however, all fish except for fish 2 significantly preferred the
group containing the larger number of dots (one-tailed one sample t-test [proportion of selecting the larger
numerical quantity > 0.5] for congruity level 5: p <0.002. This pattern is also depicted in Fig. 2b.

The effect of adding congruent non-numerical magnitudes from 1-4 is linear with a shallow slope.

The plot in Fig. 2b shows a shallow slope and a linear trend up until C4, with a great change in slope in C5,
which is where all non-numerical magnitudes are congruent with numerical quantity. This pattern made us ask
whether the influence of the non-numerical magnitudes on performance was cumulative, or whether it is only
the full congruity that influences performance. To answer this question, we calculated for each fish a fit to a linear
function (R?) and a slope and tested whether the slopes are significantly greater than zero. The results of the indi-
vidual level analysis are depicted in Table 4. All but two fish had very high fit with a linear trend. The slopes were
small, and significantly different from zero (one-sample t-test against zero: t(6) =3.75, p=0.005, Cohen’s d=1.42).
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Figure 2. Non-numerical magnitudes influence magnitude-related decisions. (A) Examples for each congruity
level and combination of non-numerical magnitudes. Please see Table 1 for reference as to the different
combinations. (B) Results—the proportion of selecting the larger numerical quantity as a function of congruity
level. The x-axis represents the congruity level between non-numerical magnitudes and numerical quantity.
Congruity level one; only one out of five non-numerical magnitudes positively correlated with numerical
quantity. The other four non-numerical magnitudes are negatively correlated with numerical quantity.
Congruity level five: full congruity: all five non-numerical magnitudes positively correlated with numerical
quantity. Each dot color represents one fish, and the black thick line represents the mean across fish. The gray
area in the plot represents performance below chance level (for selecting the larger numerical quantity).

Incongruent magnitudes (mean

Congruitylevel |CH |AD |Den |TC |TS | Congruent magnitudes (mean ratio) | ratio)
1 083 |0.53 |0.89 |0.77 |0.73 |0.77 0.74
2a 049 |0.59 |044 |0.68 |0.89 |0.59 0.64
2b 0.71 |0.57 |0.85 |0.72 |0.83 |0.78 0.7

2 (mean) 045 |0.58 |0.65 |0.7 0.86 | 0.69 0.67
3 056 |0.65 |0.62 |0.62 |0.9 0.7 0.64
4a 0.75 043 |0.07 |0.19 |0.09 |0.19 0.75
4b 0.9 068 |091 |0.59 |0.83 |0.81 0.68
4 (mean) 083 |055 |049 (039 |046 |05 0.71

5 048 |043 (023 |0.17 |0.08 |0.28 NA

Table 2. Average ratio of non-numerical magnitudes by congruity. Congruent magnitudes are the non-
numerical magnitudes of the dot set that are congruent (positively correlate) with numerical quantity, and
incongruent magnitudes are the non-numerical magnitudes of the dot set that are incongruent (negatively
correlate) with numerical quantity. The values in the cells are the average ratio of the non-numerical

ratio magnitude (smaller/larger magnitude). CH convex hull, AD average diameter, Den density, TC total
circumference, TS total surface area.
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Fish df F pvalue |n’p |BFy,

1 4,32 3.89 0.011* | 0.33 | 18.49

4, 36 7.46 <0.001* | 0.45 | 455.52
4,36 |16.45 <0.001* | 0.65 | 2.017e+6
4, 36 1.98 0.12 0.18 | 0.056
3,33 |17.53 <0.001* | 0.45 | 3,018,887
4,36 |20.13 <0.001%* | 0.69 | 2.26le+7
4, 36 4.15 0.007*]0.32 |18

All fish 4,24 |16.03 <0.001* | 0.73 | 94,925

o | N|wv A w|N

Table 3. Results of one-way ANOVA: individual level and group level. The dependent measure was the
proportion of choosing the larger quantity. The independent measure was congruity level (1-5).

Fish number Slope | R?

1 0.052 | 0.19
2 0.037 | 0.7

3 0.034 | 0.89
4 0.026 |0.89
5 0.095 |0.83
7 0.034 |0.93
8 0.003 | 0.024
Mean across fish | 0.044 | 0.86

Table 4. Slope and lienar fith for C1-C4. The slope is the ‘m’ value in the function y=mx+n. R? refers to the
fit to the linear function.

Congruity level Congruity type Mean difference t P BF(;
2 aversus b 0.011 0.27 0.8 0.36
4 aversus b 0.067 0.41 0.7 0.38

Table 5. Comparison within the same congruity level. The congruity types (a-b) are detailed in Table 1.

The combination of non-numerical magnitudes, not their identity, contributes to the deci-
sion. The design of the stimuli allowed us to also test the influence of the identity of the non-numerical
magnitudes on selecting the group containing more dots. Specifically, there were two combinations of congruity
level 2 stimuli: in congruity level 2a both convex hull and total circumference were congruent with numerical
quantity. In congruent level 2b density and total circumference were congruent with numerical quantity. Hence,
this combination allowed us to ask whether convex hull or density carry more influence in the fish decision.
(Table 1) we also had two combinations of congruity level 4. The difference between congruity levels 4a and 4b
was that in congruent level 4a the average diameter of the dots was congruent with numerical quantity, and in
congruity level 4b, the convex hull was congruent with numerical quantity (for the other congruent non-numeri-
cal magnitudes see Table 1). Analysis at the group level, with fish as a random factor, revealed that the proportion
of selecting the group with the larger number was similar within the same congruity levels, suggesting that the
influence of the identity of the non-numerical magnitudes in our data was not significant (Table 5).

Discussion

What do animals compare when they compare magnitudes? Our results demonstrate that when Archerfish
make magnitude-related decisions, without training and without selective reward that motivates them to select
one stimulus over the other, they use both numerical quantity and non-numerical magnitudes. Specifically, the
chance of a fish selecting the group containing more dots moderately increases with the number of non-numerical
magnitudes congruent with the number of dots and dramatically increases when all non-numerical magnitudes
are congruent with numerical quantity. The identity of the specific non-numerical magnitudes that we were
able to test (i.e., convex hull vs. density, and average diameter vs. convex hull), did not significantly influence
performance. Our pattern of results supports the Approximate Magnitude System theory®, suggesting that both
non-numerical magnitudes and numerical quantities are taken into account when making magnitude-related
decisions, even in non-primate vertebrates. Note that up until congruity level 4, most fish selected the larger
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numerical quantity below chance level, and only in congruity level 4, the chance of selecting the group containing
more dots was above chance level. This increase up to 4 was linear with a very moderate slope (see Fig. 2b). Only
fish 1 and 2 selected the larger numerical quantity above chance level at congruity level 3. But in congruity level
4 they selected the larger numerical quantity blow chance level (and non-numerical magnitudes above chance
level). Fish 1 was also the only fish that performed at chance level in congruity level 5. What can account for the
differences in the patterns of fish 1 and 2?

Individual differences between fish in our data may be attributed to unknown differences in individual
fish’s life history and ecology. All fish were wild-caught and acquired through pet trade, as these species do not
reproduce in captivity. Furthermore, they cannot be externally sexed. We, therefore, do not know much of their
individual life histories such as the population of origin, developmental history, habitat, or sex.

Another interesting finding is the moderate linear increase in the proportion of selecting the larger numerical
quantity in congruity levels 1-4 relative to the spike in congruity level 5 when all non-numerical magnitudes are
congruent with numerical quantity. This pattern suggests a moderate yet significant modulation of performance
by the number of non-numerical magnitudes congruent with numerical quantity. The sharp increase in selecting
the larger numerical quantity in congruity level 5 is also important. It suggests that it is not just having one more
non-numerical magnitude congruent with the numerical quantity that is responsible for this pattern, but it may
be that there are no non-numerical magnitudes that are incongruent with numerical quantity. This interpretation
of the pattern supports the primacy and role of non-numerical magnitudes relative to numerical quantities, at
least with this set of stimuli and in that context.

Another factor that influences performance in such tasks, is the ratio between the different magnitudes.
Namely, the more dissimilar two magnitudes are, the easier it is to distinguish between them, a principle also
known as Weber—Fechner law?’. In the case of the current work, we calculated these differences as the ratio
between the smaller divided by the larger magnitude. For example, the ratio of 0.1 between two densities sig-
nifies a much obvious difference compared with a ratio of 0.8. In the case of numerical quantity, we kept the
ratio constant at 0.4, as we know from previous studies that in such a ratio it is easy to distinguish between two
magnitudes. In the case of non-numerical magnitudes, we tried to compare the mean ratio of the non-numerical
magnitudes that were congruent with numerical quantity to those that were incongruent with numerical quantity
(see Table 2). In most congruity levels we reached this goal and the differences between the mean ratio of con-
gruent and incongruent non-numerical magnitudes were minimal. Also, the ratio between the non-numerical
magnitudes was always higher than 0.4, making the non-numerical magnitudes less distinguishable than numeri-
cal quantity. Yet, under these conditions, that supposedly favor numerical quantity discriminability, fish did not
select the larger numerical quantity up to a full level of congruity. However, in congruity level 4, the ratio between
the congruent non-numerical magnitude was 0.19 in 4a, but 0.81 in 4b. One would expect to find higher propor-
tions of responding to the larger numerical quantity in 4b compared to 4a, but this was not the case, since the
differences between performance for congruity levels 4a and 4b were not significant (Table 5). Accordingly, we
suggest that in our data, the congruity and the number of non-numerical magnitudes congruent with numerical
quantity were more influential than the ratio between the different magnitudes.

One of the questions that we were able to partially investigate is whether the identity or the number of the
non-numerical magnitudes influences performance. Analyzing the differences between congruity levels 2a and
2b, and congruity levels 4a and 4b, allowed us to compare the influence of convex hull versus density, or convex
hull versus average diameter (in congruity levels 2 and 4, respectively). We found that the identity of the non-
numerical magnitudes that were congruent with numerical quantity did not affect performance. However, the
BFs for these effects were very modest for (null) effect. Hence, the lack of difference within the same congruity
level can be an issue of power. It is worth mentioning that to try and overcome this problem, we attempted to
run twice the trials on fish 5 but got the same results with similar BF values. We would like to argue that a dif-
ferent study, whose aim is to create only these within-congruity-level differences, will be necessary to further
explore this issue.

Our results also converge with and expand previous human studies demonstrating that the influence of non-
numerical magnitudes is modulated by positive or negative correlations with numerical quantity®>?. Note that
in magnitude comparison studies with human adults, the experimenter is always required to give some specific
instructions to participants. Hence, task instructions (even vague ones) tend to focus participants’ attention on
one or more stimulus properties, and hence the selection is never fully spontaneous and undirected. In humans,
the closest instruction-free designs, are habituation and looking-time tasks, that are popular in studying the
processing of numerical quantities e.g.,>*=*". In such tasks, a numerical quantity is shown in different patterns
multiple times and then replaced by a new numerical quantity, while the neural response or looking time is
measured. If a change was detected, neural activity and looking time are expected to increase (ibid). However,
in such studies, no decision is made by the participants. Moreover, the neural response to a change in magnitude
does not guarantee that participants were aware of the change and would act on this change if asked to make a
magnitude-related decision. In other words, a neural response can be made regardless of conscious awareness of
the presented change. Fortunately, fish do not require task instructions. Hence, with our untrained fish, we were
able to glance at a spontaneous decision regarding magnitudes, which is close to impossible in humans. It is our
opinion that studies aiming to learn about the primacy of numerical quantities and non-numerical magnitudes
in magnitude-related decisions should aspire to such un-directed performance.

The contribution of our study, compared with other studies employing spontaneous magnitude comparison
tasks, is three-folds. First, we used artificial stimuli (groups of dots), without any biological relevance. This
allowed us to manipulate non-numerical magnitudes more flexibly and therefore evaluate their role in the
decision process in more detail. In addition, it also allows expanding the context of the task. Namely, mag-
nitude discrimination, at least in humans, is context-dependent e.g.,*>*. Given the multiple tasks magnitude
discrimination may be required for (hunting, mate selection, avoiding predators, shelter-seeking), it is possible
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that for different tasks, different magnitudes will guide an animal’s decision. Using artificial stimuli enabled us
to demonstrate magnitude-related capabilities under a more general context (which is not necessarily what the
animals are doing in the wild, but a proof of concept for what the animal can do, generalized across ecological
constraints). With our results in mind, it would be interesting to try and use the same design with biologically
relevant stimuli under different tasks, and see, for example, whether the animal’s use of magnitudes will differ
while seeking shelter or hunting for prey.

Second, as mentioned in the introduction, most studies used between 1-8 items. In humans, it is debatable
whether small (usually < 5) and large numerical quantities are processed by the same system e.g.,***. Since a
suggestion for dichotomy exists, it is important to test the influence of non-numerical magnitudes in both small
and large numerical quantities. Our study, using groups of 5-35 dots, expands the previous findings to larger
magnitudes.

Third, and maybe most important, our study turns the spotlight toward non-numerical magnitudes, magni-
tudes that are often ‘controlled’ for but are usually not at the center of the study. As previously claimed e.g.., it is
impossible to completely eliminate the influence of non-numerical magnitudes on performance in magnitude
comparison tasks. This would mean to have, for example, an array of 10 dots and 20 dots that the only difference
between them is their numerical quantity. Such a situation is improbable and mathematically impossible, not to
mention artificial since in the environment of humans and other animals, numerical quantities and magnitudes
are often confounded, correlated or anti-correlated. For these reasons, we claim that it is very important to study
how non-numerical magnitudes are involved in the comparison process. The current study took this question one
step forward by not only asking whether non-numerical magnitudes influence performance or not, but show-
ing that (1) this influence, in an untrained animal, is moderated by the number of non-numerical magnitudes
positively correlated with numerical quantity, and (2), that the number of non-numerical magnitudes, not their
identity, influence performance. Since this is the first attempt to ask these questions in an untrained animal,
and since it is well-known that the way the stimuli are built can greatly impact performance e.g.,*>*, replication
studies with the same and different stimuli that were composed in different ways are necessary to confirm or
restrict the results and conclusions of the current study. We hope that this work will inspire similar research with
different animals and different types of stimuli.

Many studies in humans have demonstrated a correlation between performance and magnitude (especially
number) discrimination tasks, and more sophisticated and formal arithmetic skills e.g.,””-**. Combining these
findings with studies demonstrating that animals can discriminate magnitudes, leads to the conclusion that
discrimination of numerical quantity lies at the base of arithmetic abilities in the phylogenetic sense. However,
the current study adds to the body of studies providing direct evidence that in some cases animals’ magnitude-
related decisions are more affected by non-numerical magnitudes than from numerical quantity, putting doubt
on the claims that numerical quantity perception is the most basic building block of math.

Materials and methods

Subjects. Two species have been used in the study, Largescale Archerfish (Toxotes chatareus Hamilton, 1822)
and Banded Archerfish (Toxotes jaculatrix Pallas, 1767). Our own data demonstrate that there is no significant
difference between the two species in the performance in our tasks. The experiment was conducted in accordance
with the University of Haifa’s and the State of Israel’s laws on animal care and experimentation (approval number
591/18). The experiment was performed in accordance with the relevant guidelines and regulations of Israel’s
laws on animal care. All the experimental protocols were approved by Haifa University’s ethics committee. Each
fish was swimming freely in its tank during the task. The experiment ran on eight fish (fish #6 was excluded as
mentioned in the Results section). All fish were naive to the stimuli. All fish were previously trained to respond
to a target presented on a screen placed 50 cm above the water level of their water tank. To find the fish’s preferred
color, fish were presented with a red square and a black square side by side and were rewarded when responding
to either one. When the fish demonstrated a clear preference to one of the colors, namely, responded over 90% of
the time to the same color, the preferred color was established and used in the experiment.

Stimuli. The stimuli for the current study were taken from the same stimuli set used by Leibovich and
Ansari*2. To fit the stimuli to fish, the background was always white, and the color of the dots was matched with
the fish’s preferred color (either red or black). The dots were generated using the MATLAB code provided by
Gebuis and Reynvoet®. Using this code, we have recorded the five different non-numerical magnitudes men-
tioned above. Each array contained 5-35 dots. To ensure that the fish can perceive all the visual stimuli pre-
sented, the minimum dots’ size used in the experiment was 0.2°. This is larger than the Archerfish’s visual acuity,
as demonstrated by their ability to detect visual structures with a minimum angle of resolution in the range of
0.075°-0.15°%.

Numerical ratio. It is known that comparing two groups of dots when the numerical ratio is closer to 1 (e.g.,
8 and 9) is more difficult than when the ratio is closer to zero (e.g., 6 and 30). This well-established phenomenon
is known as the ratio effect e.g.*=**. Hence, to keep the difficulty level similar, we kept the numerical ratio con-
stant between 0.4 and 0.42.

Congruity levels. We manipulated the number of non-numerical magnitudes that are congruent with
numerical quantity (i.e., congruity level). The congruity level ranged from 1 to 5. In congruity level 1, only one
of the five non-numerical magnitudes was positively correlated (i.e., congruent) with numerical quantity, and
the rest were negatively correlated (i.e., incongruent) with numerical quantity. In congruity level 5, all non-
numerical magnitudes were congruent with numerical quantity (see Table 1 for more details).
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We ensured that the average ratio between the congruent non-numerical magnitudes will differ minimally
from the average ratio between the incongruent non-numerical magnitudes at every congruity level (Table 2).
This was necessary because the ratio between the irrelevant non-numerical magnitudes might also affect
performance*:. Note that the average ratio of the congruent non-numerical magnitudes was close to the average
ratio of the incongruent non-numerical magnitudes. The only exception is congruity level 4a where the average
ratio of the congruent magnitude was 0.19 and the incongruent magnitude was 0.75. We discuss the implication
of this difference in the discussion. Examples of the stimuli can be seen in Fig. 2a.

Each group of dots was framed with a 256 x 256 PX square in the fish’s preferred color. The squares were
positioned at the same height, 192 PX apart (end to end). Both groups appeared randomly closer to the top-
right, top-left, bottom-right or bottom-left corners of the screen. In total, we had 240 pairs of dot arrays: 60 for
each congruity level (1-5). In 50% the larger numerical quantity of dots appeared on the right-hand side of the
screen. The stimuli were divided into six blocks of 40 stimuli each so that each block contained 10 trials per
congruity level.

Apparatus. The experiment ran using OpenSesame 3.1*%, on a Windows 7 computer. The screen resolution
during the experiment was set on 1024 X 768 px. The display was duplicated onto a 21-inch screen placed 42 cm
above the water tank. Two synchronized high-speed cameras recorded the fish and the screen at a rate of 120 Hz.
The videos were used to verify the fish’s response.

Procedure. Each session included one block of 40 trials. Each fish was tested in 12 sessions (5 sessions per
week, for two weeks) to provide a total of (12x40=) 480 trials. The order of the trials within the block was
random. Each trial began with a ‘prime’: a flashing pair of squares aim to attract the fish attention to the loca-
tion of the target to come. The squares (128 x 128 PX each) appeared within a 256 x 256 frame for 300 ms and
disappeared for 300 ms three times. After a blank screen showing only the frames, dot arrays appeared where
the location of the flashing squares appeared before. The dot arrays disappeared once the fish responded or
when 15,000 ms have passed. Between each trial, there was a 10,000 ms blank screen. At this time, the fish was
rewarded with a food pellet (for responding to any of the dot arrays) and the screen was cleared of water by the
experimenter. Each session lasted about 12 min.
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