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Efficient quantum gates 
and algorithms in an engineered 
optical lattice
A. H. Homid1, M. Abdel‑Aty2, M. Qasymeh3* & H. Eleuch4,5

In this work, trapped ultracold atoms are proposed as a platform for efficient quantum gate circuits 
and algorithms. We also develop and evaluate quantum algorithms, including those for the Simon 
problem and the black-box string-finding problem. Our analytical model describes an open system 
with non-Hermitian Hamiltonian. It is shown that our proposed scheme offers better performance (in 
terms of the number of required gates and the processing time) for realizing the quantum gates and 
algorithms compared to previously reported approaches.

Ultracold atoms in optical lattices enjoy high degrees of controllability and long decoherence time. For example, 
the exotic interactions in many-body systems of matter can control the optical lattice and probe high order quan-
tum phenomena1,2. Furthermore, ultracold atoms in optical lattices can incorporate various types of interactions. 
These include lattice defects, electron–electron interactions, electron–phonon interactions, and spin-orbital 
coupling (i.e., SOC)3. Therefore, several reports have investigated the use of ultracold atoms in optical lattices to 
study strongly correlated quantum systems4–8.

Normally, ultracold atoms in optical lattices adhere superfluid state and provide lattice disorders. However, 
mott-insulator regime can be obeyed for small tunneling rates between adjacent atoms, and uniform lattice 
structure can be obtained9,10. Interestingly, such a structure provides promising platform for quantum gates and 
quantum algorithms11,12.

In Refs.13–19 quantum gates have been realized using optical lattices. Furthermore, in Refs.20–22 trapped atoms 
in optical lattices have been functioned to achieve quantum gates and algorithms. We consider in this work 
the case of trapped ultracold atoms that incorporate spin-orbital coupling and Zeeman splitting. Accordingly, 
we show that quantum gates and algorithms can be realized based on our scheme with better performance (in 
term of processing time) as compared with the previously reported approaches. For instance, we investigate the 
realization of controlled-not gate and Toffoli gate circuit using the proposed scheme. Also, Simon algorithm23 
and black-box string finding algorithm are proposed and evaluated. It is shown that the number of required 
gates (and the processing time needed) to implement such gates and algorithms is significantly smaller than 
previously reported realizations.

The outline of the manuscript is as follows: In “The model”, we introduce model and the Hamiltonian. In “New 
circuits in engineered lattices”, we present the quantum gate circuits and discuss their performance. “Quantum 
algorithms” is dedicated for the quantum algorithm schemes. Finally, “Conclusion” includes the concluding 
remarks.

The model
We consider a system of bosonic (or fermionic) ultracold atoms that are trapped in a square optical lattice and 
subjected to spin-orbital coupling (SOC) and Zeeman field (ZF) mechanisms24–27. We take in the considera-
tion the following effects: (i) an anisotropic Dzyaloshinskii–Moriya interaction (DMI) in three dimensions; (ii) 
an engineered dissipation causing the decay of the dipole of only boson atoms and the decay of dipole–dipole 
interaction of the boson and fermion atoms. Analytically, the dissipation of the dipole–dipole interaction and 
3D DMI have not been previously studied for interacting atoms inside a lattice.

The setup of the physical system and the related Hamiltonian are detailed in the Supplementary Informa-
tion (Supplementary Section S1). Using the iso-spin operators, 2�Sv =

∑
k,k

′ â†vkσ̂kk′ âvk′ , with σ̂kk′ indicates the 
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elements of Pauli matrices for each corresponding spin operator and âvk represents the atom lowering operator 
of spin state k at site v, the the non-Hermitian Hamiltonian can be expressed as follow:

where ℘ is the number of sites, �Sv = {Ŝxv , Ŝ
y
v , Ŝ

z
v} is the vector of spin operators, τ refers to the transpose, 

J = diag{Jx , Jy , Jz} is the matrix of the exchange couplings, �Dvj = (Dx ,Dy ,Dz) indicates the coefficients vector 
of DMI, fz is the coefficient of Zeeman field, γ1 is the dissipation parameter of the dipole for Boson atoms, γ2 
represents the dissipation parameter of the dipole-dipole interaction of the Boson and Fermion atoms, and ℵ 
is a constant. Here, γ1 < γ2 and fz  = Jz . More details can be found in Supplementary Section S1 of the Sup-
plementary Information.

We note that the coupling rates (i.e., Jx , Jy and Jz ) in the Hamiltonian (1) can be controlled by adjusting 
the SOC, ZF and the tunneling parameters. For instance, in the absence of SOC and ZF mechanisms, the Jx , Jy 
are positive (negative) and Jz is negative (positive) for the bosonic (fermionic) atoms. However, in the case of 
incorporating the SOC and the ZF mechanisms, all possible combinations of the coupling rate values can be 
found. In other words, in the absence of the SOC and ZF effects, the trapped atoms behave as ferromagnetic and 
antiferromagnetic mediums for bosonic and fermionic atoms, respectively. In contrast, for the case of having the 
SOC and ZF effects, one can design the behaviour of the ultracold trapped atoms to be either antiferromagnetic 
or ferromagnetic mediums for any type of the atoms. Interestingly, the SOC, ZF and tunneling parameters can 
be controlled by several operational parameters including the intensity of the laser Raman beams, the external 
magnetic field and by adjusting the Feshbach resonance (via tuning the ratio between the scattering lengths)28.

New circuits in engineered lattices
In this section, we construct efficient new circuits for controlled not (CN) and controlled-controlled not (CCN) 
gates based on the proposed scheme of trapped ultracold atoms. As opposed to all previously reported CN and 
CCN gates13–19, our proposal is considering a full Heisenberg chain with Zeeman field and DMI effect. Realizing 
CN and CCN gate based on the Hamiltonian (1) require a series of quantum gates. Similarly, earlier reported 
approaches for two-atom gates implement several one-atom gates13–19. It is important to note here that the 
single-atom gates can not be neglected in our proposed schemes as the single-atom gate forms a basic block for 
the proposed circuit schemes. Thus, the single-atom gates must be taken into account along with the two-atom 
gates when the cost of our proposed gate is evaluated. On the other hand, the SOC effect can be cancelled in 
ultracold atoms by controlling the laser beams and having very weak coupling with the lattice atoms. The dissipa-
tion in this case is omitted. This scenario has been demonstrated in Refs.7,8. However, in this work, we consider 
a generic approach in which the laser beams are strongly coupled with the atoms and the dissipation is existing. 
Nevertheless, the considered laser beams are yet functional to be tuned to omit dissipation. Importantly, we will 
show that by including the SOC effect, the cost of the quantum gates can be optimized for smaller values than 
the case of omitted SOC effect.

Proposed circuit of CN‑gate.  In the proposed scheme to construct the CN-gate circuit, two counter-
propagating laser beams are applied to the ultracold atoms to create a non-defective square optical lattice (per-
fect crystal) with one atom occupying a site. The proposed circuit can be constructed using two ultracold atom 
pairs in the lattice (e.g., site v and j). The operation of the CN gate can be represented schematically in Fig. 1a.

As can be seen from the Supplementary Information (see Supplementary Section S2), atoms’ transitions in 
the proposed configuration can be functioned to form several quantum gates. These include the square root of 
−SWAP and controlled-z gate ( ±i

√
SWCZ ), the square root of the imaginary Pauli-Y and the square root of 

the imaginary Pauli-Z ( 
√
−PYZ ), the square root of the minus identity operator ( 

√−I2 ), the square root of the 
imaginary Pauli-Z ( 

√
iPZ ) and Pauli-Z ( PZ ). Furthermore, a combined transitions can be functioned to realize 

CN-gate, see Fig. 1b.
The performance of the obtained CN-gate circuit can be assessed by calculating the quantum cost (i.e, the 

number of required gates or the realization time) of the circuit and compared it with the cost of previously 
reported CN-gate realizations13–18. In Table 1, we present the quantum cost for our CN-gate along with previ-
ously reported approaches. It is clear that the number of the required gates (or realization time) for our circuit 
is less than those required by previous approaches. The considered work in Table 1 is for the case of including 
DMI effect. However, in absence of DMI effect7,8, the realization of all other approaches will require notably more 
gates. Nonetheless, our proposed circuit can be achieved in the absence of DMI effect with slightly more gates 
(see part 2D presented by Supplementary Information). Hereby, our results demonstrate an encouraging sign of 
providing a more efficient approach as compared to previously reported approaches that do not implement the 
DMI effect. This is a significant advantage of our proposal. We note that a large number of related recent studies 
can be found in the literature. However, all of these studies are based on the native circuits of Refs.13–18. Therefore, 
our work has been devoted to present two new circuits of CN and CCN gates that have an enhanced performance 
(in terms of the number of required gates and the processing time) compared to the circuits of Refs.13–18.

(1)

Ĥ =
℘∑

v,j=1

�Sv · J · �Sτj +
℘∑

v,j=1

�Dvj · (�Sv × �Sj)−
℘∑

v=1

fz Ŝ
z
v − iγ1

℘∑

v=1

Ŝ+v Ŝ
−
v

− iγ2

℘∑

v,j=1

(Ŝ+v Ŝ
−
j + Ŝ−v Ŝ

+
j )− 4iγ2

℘∑

v �=j

(Ŝ+v Ŝ
−
j )(Ŝ

+
j Ŝ

−
v )+ ℵÎ ,
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Proposed circuit of CCN‑gate.  The circuit of CCN-gate can be realized by utilizing three atoms (i.e., v, 
j and k) inside the lattice. Such interaction can take place by incorporating two pair interactions: atoms v and 
j and atoms j and k. It then follows that the CCN-gate is similar to CN-gate but with extra procedures, such as 
including the square root of controlled-z ( 

√
CZ ) gate and its inverse. The corresponding configurations of the 

CCN-gate is shown in Fig. 2.
The main advantage of our CCN-gate configuration is requiring less number of gates (and thus processing 

time) as compared to previously reported circuits15,16. For the sake of fair comparison between our CCN-gate 
and previous work, let us consider the CN-gate as one gate. Consequently, one can see that our proposed scheme 
requires 15 gates to construct the CCN-gate circuit for adjacent interacting atoms, while the required gates is 
even less than 15 for nonadjacent interacting atoms. However, for the reported work in Refs.15,16 with DMI 
effect, 18 and 17 gates are required for nonadjacent interacting atoms, and 34 and 25 for adjacent interacting 
atoms, respectively. Moreover, in absence of DMI effect, the number of required gates is much larger for the 
approaches in Refs.15,16, that for example require five and four gates for two-atom circuits, such as CN and SWAP 
gates, respectively.

Challenges and obstacles.  In this subsection, we address the non-ideal effects that would arise in the 
proposed scheme. One of these effects is the dissipation which causes an instability of the spin currents of the lat-
tice atoms. On the other hand, the instability of the Mott-insulator, caused by the inaccuracy of the laser beams 
application to the atoms, leads to superfluid regions and local fluctuations due to atom-hole defects29. These 
unwanted dynamics can be suppressed by tuning the tunneling and temperature via adjusting the laser beams 

Figure 1.   The proposed configuration of the CN gate circuit: (a) The operation layout of CN-gate setup. (b) The 
equivalent configuration of the CN circuit.

Table 1.   CN-gate quantum cost (and realization time) for the current work and previous proposals.

CN circuits Refs. Required gates Required times
√
iPZ , 

√
−PYZ , PZ, 

√−I2  , ±i
√
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and utilizing proper experimental parameters29. The dissipation can be controlled by adjusting the Raman laser 
beams that are applied to the lattice.

The impact of dissipation on the gates’ performance can be described by the concept of fidelity. Interestingly, 
the fidelity in the proposed system and thus the robustness for each circuit to errors can be externally controlled. 
Using fidelity, one can compare the performance of the gates with and without dissipation. The gates fidelity 
can be defined by30:

where U−1
1  is the inverse of the circuit function without dissipation, U2 is the circuit function with dissipation. 

The CCN gate is controlled by the three interaction times. Our calculations show that the dissipation is mainly 
attributed to the dipole and dipole–dipole interactions.

Figure 3 displays the fidelity of the CN and CCN gates as a function of different dissipation rates. From this 
Figure, we note that the fidelity of the CN and CCN circuits can be at its maximum of 100% in absence of dissi-
pation. In contrast, one can note that the fidelity is slightly decreased yet with acceptable levels (i.e., 75% ∼ 90%) 
in the presence of weak dissipation values (around 0.1). For larger dissipation rates, grater than 0.6 for CN and 
0.2 for CCN gates, we observe that the fidelity is greatly decreased and the prediction of the success rates is not 
exceeding 31% and 12% for the CN and the CCN gates, respectively. Here, it is clearly seen that the fidelity of the 

(2)Fav(t, γ , γ1, γ2) =
2℘ + |Tr{U−1

1 U2(t, γ , γ1, γ2)}|2
2℘(2℘ + 1)

,

Figure 2.   The proposed configuration of the CCN gate. Here, the cost for each of 
√
CZ and 

√
CZ

†
 is three gates.

Figure 3.   Gates fidelity against dissipation rates for CN and CNN gates.
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CCN-gate is more sensitive to dissipation as compared to the CN-gate. Also, in Fig. 4a,b, we evaluate the fidelity 
of the CN gate versus the interaction time and dissipation. We note that the fidelity of the CN can be maintained 
at its maximum of 100% in the absence of dissipation for the interaction times t = π(4j1+1)

4θ , j1 = 0, 1, 2, ... . Inter-
estingly, even in the presence of dissipation, and for γ

ζ
< 0.02 and γ2

θ
< 0.02 , the CN fidelity is slightly decreasing 

and can be maintained above 80%, given that the interaction times are properly chosen according to the above 
criterion. While for greater dissipation, such as γ

ζ
> 0.2 and γ2

θ
> 0.2 , the fidelity is significantly decreasing 

reaching levels below 21%. For instance, as can be seen from Fig. 4c,d, even at the interaction times t = π(1)
4θ  

and π(5)4θ  , the fidelity of the CN gate is gradually decreasing for larger dissipation rates until collapsing when the 
success rate is not exceeding 21%. Similarly, we illustrate in Fig. 5 the fidelity of the CCN gate against dissipa-
tion. The success of the realization of the CCN gate is gradually decreasing when the dissipation rates increase. 
For example, the success rate of the CCN realization is reaching levels of no more than 12% at dissipation rates 
greater than 0.2 for γ1

θ
 and 0.1 for γ

θ
 , which is significantly below the rates for the CN-gate. On the other hand, 

it is worthy to mention that the dissipation can be experimentally controlled through manipulating the Raman 
coupling with the lattice atoms. For instance, for weak Raman laser coupling with the lattice atoms, the dissipa-
tion is extremely small and can be neglected.

Finally, we point that recent numerical and experimental studies have demonstrated the feasibility of con-
trolling dissipation in optical lattices with trapped ultracold atoms. For example, in Refs.31,32, it was shown that 
quantum gases can be manipulated to control dissipation and properly probing ultracold atoms. Also, in Ref.33, 
it was shown that a direct imaging of the vortex rings by phase slips can be used to control the microscopic 

Figure 4.   The CN gate fidelity versus the interaction time and dissipation rates. (a) Non-interacting atoms 
versus dissipation and interaction time. (b) Interacting atoms versus dissipation and interaction time. (c) 
Interacting and non-interacting atoms versus dissipation at t = π

4θ
 . (d) Interacting and non-interacting atoms 

versus dissipation at t = 5π
4θ

.

Figure 5.   The CCN gate fidelity against dissipation.
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dissipation dynamics of the ultracold atoms. Furthermore, in Refs.34–36, it has experimentally shown that the 
dissipative dynamics of the open quantum systems can be precisely controlled.

Quantum algorithms
The CN and CNN gates combined with other gates (such as the one-atom gates of iPY, 

√−I2 and Hadamard 
( H ) gates) can be employed to design novel schemes to realize quantum algorithms. Such algorithms can be 
used to solve quantum tasks including Simon, search, Shor, Fourier and Deutsch–Jozsa problems, and others. 
In quantum algorithms, the off-diagonal elements of the matrices that describe the CN and CCN gates are equal 
when dissipation is not taken into account. However,the diagonal elements are different once the dissipation is 
considered. While most previous reported schemes for quantum algorithms did not include dissipation, we will 
develop quantum algorithms taking dissipation into account.

Novel algorithm to solve Simon’s problem.  In this section, a novel algorithm will be developed using 
our proposed scheme to solve Simon problem (SP) to find a specific string or state (s).

Physical scheme.  To realize Simon problem algorithm, a non-defective lattice is prepared as in the following: 
First, the lattice is prepared so that only single atom occupies a site, and all atoms are prepared in |0� = | ↓� state. 
Second, the adjacent atoms in the ℘1 and ℘2 sites are prepared to contain n-atom. Third, an external Raman 
beams with proper Rabi frequencies and detuning are sent to ℘1 and ℘2 to couple them and generate the required 
quantum transitions. The steps to achieve the algorithm is detailed in the following:

•	 The atoms at ℘1 and ℘2 sites are prepared with state |φ1� = |0�⊗n
1 |0�⊗n

2 .
•	 External laser beams are subjected to the non-interacting atom occupying ℘1 , and ZF effect is generated along 

x-axis. Consequently, the atom at evolution time = π�√
2ζ

 can generate 
√−I2 gate. Thus, the occupied atoms of 

|0�⊗n
1  i ns i d e  ℘1 s i t e s  u n d e rgo  t h e  t r ans for m at i ons :  Ig = √−I2 ⊗ · · · ⊗ √−I2  ,  s o 

|φ1� ⇒ |φ2� = ( −i√
2
)n
∑

u∈{0,1}n |u�1|0�⊗n
2 .

•	 External laser beams are sent to atoms occupying ℘1,℘2 sites. First, the beams are tuned to be sent to non-
interacting atom in ℘1,℘2 to generate 1D ZF and 2D ZF effects. During the transition for each atom in the 
site, each atom can undergo the transformations and arise non-dissipative one-atom gates at specific pulses 
of time. Second, the beams are applied to couple the interacting atoms at ℘1,℘2 sites and producing 1D SOC 
and 1D ZF. Consequently, each of the two interacting atoms can undergo dissipative transitions. Thus, one 
get |φ2� ⇒ |φ3� = ( −i√

2
)n
∑

∁∈{0,1}n
∑

q∈{0,1}n D
q

∁
(γ1, γ2)|q�1|∁�2 , with Dq

∁
 denotes the damped coefficients 

d u e  t o  a p p l i e d  d i s s i p a t i v e  g a t e s  a c r o s s  s i t e s .  A n a l y t i c a l l y,  t h i s  m e a n s 
BF(γ1, γ2)|φ2� =

∑
∁

∑
q D

q

∁
(γ1, γ2)|q�1|∁�2�u1, 0⊗n

2 |φ2� = |φ3�.
•	 The coupled beams are adjusted so that each non-interacting atom of state |q�1 are producing ZF effect. It 

then follows that atoms undergo the transformation which generate 
√−I2

† gate at time 3π�√
2ζ

 . Consequently, 
t h e  a t om s  o f  |q�1 w i l l  u n d e r g o  t h e  t r an s for m at i on s  

√−I2
† ⊗ · · · ⊗ √−I2

†  ,  i . e . 
|φ3� ⇒ |φ4� = I†g|φ3� = ( 12 )

n
∑

∁∈{0,1}n
∑

w∈{0,1}n R
w
∁
(γ1, γ2)|w�1|∁�2 , where the factors Rw

∁
 are dependent 

on Dq

∁
.

•	 Finally, the measurement of the atoms at ℘1 and ℘2 sites decides the required string s.

The proposed algorithm above can be represented schematically as in Fig. 6. According to the above-configu-
rations, we can construct 95 new circuits of BF(γ1, γ2) across the confined atoms into ℘1 and ℘2 sites (see Sup-
plementary Section S3A presented by Supplementary). The circuits of BF can represent various types of new 
oracles. After constructing these circuits, one needs to do a measurement or observation of the ℘2 sites to know 
some queries.

Figure 6.   The proposed scheme to solve the Simon problem in the presence of dissipation, where BF(γ1, γ2) 
indicates the dissipative quantum circuits or black-boxes (oracles). For more details on the design of various 
types of BF(γ1, γ2) , see Supplementary Information.
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Problem simulation with dissipation.  Dissipation impact on Simon’s problem has not previously been stud-
ied. To take the dissipation into account, the first three steps of algorithm can be formulated by an unknown 
obfuscated circuit or oracle between two registers, n and  , and we are required to compute a Boolean func-
tion F : {0, 1}n → {0, 1} , with  ≥ n . The domain of F (or the first register n) is equivalent to the atoms states 
at ℘1 sites, while the co-domain of F (or the second register  ) is equivalent to atoms states at ℘2 sites. Our 
goal is to give some properties about F to find s. Thus, for all uj2 , uj3 ∈ {0, 1}n and F(uj3) ∈ {0, 1} , we observe 
that if u1  = u2  = u3  = ... then F(u1) = F(u2) = F(u3) = ... , where uj2 ≡ q , F(uj3) ≡ ∁ and j2, j3 = 1, 2, ...  . 
Therefore, F has only promised one property that for each 2n inputs states of the first register have mapped 
to only one output state through the second register. This means that F is a 2n − to− 1 type function. As a 
result, due to the dissipation, the evaluation of F that is known previously for individually being 1− to− 1 
or 2− to− 1 will fail. Hence, the function F can simultaneously possess the two classes through the dissi-
pation. In other words, when there exists s ∈ {0, 1}n , we find that F(uj3) = F(uj2) if and only if uj3 = s⊕ uj2 
and uj3 = uj2 , where ⊕ corresponds to addition modulo 2. So, we can simultaneously give a decision about 
the two cases of s (s = 0 and s �= 0, where 0 ≡ 0⊗n) . Thus, after performing the algorithm to solve the 
problem, if F(uj3) = η1 , the probability to observe each string of w to determine, s = 0 , will be given by: 

Pr(s=0) = |(−1)q·wDq
η1 (γ1,γ2)|2

22n
=

∑2n

k1=1 |D
q
k1
(γ1,γ2)|2

22n
 . For two various possible states of the first register and any 

state η2 ∈ ∁ , if F(u3) = η2 = F(u5) , the probability to measure this part of the first register to decide, s  = 0 , will 

be given by: Pr(s  =0) = |(−1)u3 ·wDu3
η2 (γ1,γ2)+(−1)u5 ·wDu5

η2 (γ1,γ2)|2
22n

=
∑

k1
{|Du3

k1
(γ1,γ2)|2+|Du5

k1
(γ1,γ2)|2}

22n
 . However, we find 

that, Dj5
k1
(0, 0) = 1 for any j5 . So, the values of probabilities to observe w for deciding s are 12n and 1

2n−1 of the two 

cases of F . Thus, the absence case of dissipation coincides with the previous studies of Simon problem.

Deciding of string.  In the following, we define the procedures needed to find string s. After performing the 
first three steps of the proposed algorithm above, each 2n various states through ℘1 sites correspond to only one 
state through ℘2 sites. So, every two various states across ℘1 with only one state through ℘2 can be demonstrated 
by the superposition, ( −i√

2
)n{Du1

η2
(γ1, γ2)|u1�1 +Du2

η2
(γ1, γ2)|u2�1}|η2�2 . We predict that the coefficients for any 

two different states of the first register, say Du1
η2

 and Du2
η2

 , can be identical after performing specific BF(γ1, γ2) . 
Thus, after applying I†g gates to the register of ℘1-site, such a superposition will become 
1
2n

∑
w(−1)u1·w{Du1

η2
(γ1, γ2)+ (−1)s·wDu2

η2
(γ1, γ2)}|w�1|η2�2 , where u2 · w = (s⊕ u1) · w , 

w = {w1,w2, ...,w2n } ∈ {0, 1}n and w1  = ...  = w2n . To be able to perform any measurement of the first register, 
s · w = 0 must be satisfied, to avoid reaching zero due to the equality of Dq

∁
 coefficients. Hence, the measurement 

for each element through the first register always results in some state of wl that satisfies the constraint s · wl = 0 
(modulo 2), l = 1, 2, ..., 2n . So, after the measurement for each state of w, we find that the linearly independent 
equations of the form: s · w1 = 0 , s · w2 = 0 , ..., s · wl = 0 . We know that s · wl = s0wl0 ⊕ s1wl1 ⊕ · · · ⊕ sj1wlj1 , 
where s0,..., sj1 and wl0,..., wlj1 are the bits of strings s and wl , respectively. One solution of such equations is the 
trivial solution, say w1 = 0 , therefore, there are l − 1 non-trivial linearly independent solutions that are sufficing 
to decide s = 0 and s  = 0 . Thus, it is easy to show that �(n) queries to the black-box in a polynomial-time can 
be covered to compute the different values of s. In other words, following the performance of the steps of the 
algorithm, we need 2, 3, 4 non-trivial solutions and so on through the first register (i.e., we need 2, 3, 4 various 
states of w) to determine s of the 2-, 3-, 4-atom algorithm and so on, respectively. For more details to decide s 
analytically (see Supplementary Part 3B shown by supplementary).

Finally, we note that our proposed algorithm to solve Simon problem can be applied to many other different 
tasks. This include studying machine learning models37,38, and observing the insecurity of commonly-utilized 
cryptographic symmetric-key primitives39. Furthermore, our algorithm can also be used to study quantum 
communication systems.

Conclusion
We proposed and thoroughly investigated the scheme of employing trapped ultracold atoms in optical lattice 
to function as viable platform for quantum CN and CCN gates. The trapped ultracold atoms are subjected to 
spin-orbital coupling and Zeeman field splitting. A non-Hermitian Hamiltonian is derived considering weak 
tunneling and strong interaction strength (in comparison to the SOC and ZF effects). The obtained Hamiltonian 
framework encompasses the Heisenberg model, 3D anisotropic Dzyaloshinskii–Moriya interactions, and dis-
sipation. Consequently, CN and CCN gates have been developed and evaluated. It is shown that the proposed 
scheme provides an efficient gates’ performance as compared to previously reported gates. This includes the 
number of gates (and processing time) required to realize the CN and CCN gates circuits. Furthermore, quantum 
algorithms have been evaluated using the proposed scheme and new oracles (and deciding string algorithm) 
were developed. Finally, we note that our developed circuits can also be applied to many other problems, such 
as search, Shor, Fourier and Deutsch–Jozsa problems, just to mention a few examples.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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