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KBoost: a new method to infer 
gene regulatory networks 
from gene expression data
Luis F. Iglesias‑Martinez1*, Barbara De Kegel1,2 & Walter Kolch1,3

Reconstructing gene regulatory networks is crucial to understand biological processes and holds 
potential for developing personalized treatment. Yet, it is still an open problem as state‑of‑the‑art 
algorithms are often not able to process large amounts of data within reasonable time. Furthermore, 
many of the existing methods predict numerous false positives and have limited capabilities to 
integrate other sources of information, such as previously known interactions. Here we introduce 
KBoost, an algorithm that uses kernel PCA regression, boosting and Bayesian model averaging for 
fast and accurate reconstruction of gene regulatory networks. We have benchmarked KBoost against 
other high performing algorithms using three different datasets. The results show that our method 
compares favorably to other methods across datasets. We have also applied KBoost to a large cohort 
of close to 2000 breast cancer patients and 24,000 genes in less than 2 h on standard hardware. Our 
results show that molecularly defined breast cancer subtypes also feature differences in their GRNs. 
An implementation of KBoost in the form of an R package is available at: https:// github. com/ Luisi glm/ 
KBoost and as a Bioconductor software package.

Gene regulatory networks (GRNs) are models that describe how transcription factors (TFs) orchestrate the 
expression of other  genes1–3. In GRNs the nodes are TFs and genes, and the edges represent regulatory interac-
tions. TFs bind to the promoters of genes to activate or silence the production of  mRNA4. By doing so, TFs help 
control gene expression and thus modulate or enable cellular  processes5. Most existing approaches of studying 
gene regulation focus on the effect of a single TF on the rest of the genes. However, TFs can regulate the expres-
sion of other TFs and thus a perturbation of a single TF can propagate information throughout the whole sys-
tem. The potential for a single TF to control a system depends on certain network features: a TF that regulates 
many genes will obviously have a large influence, but the contrary is not necessarily true. Even if a TF regulates 
only a small number of genes directly, it can still play a major role in the system if these genes in turn regulate 
many others. This is the concept of closeness centrality in graph theory. Therefore, understanding a system’s 
GRN architecture can reveal the TFs that are important for a specific phenotype and thus can explain molecular 
pathogenesis and reveal potential drug targets.

Several methods have been developed to predict GRNs using gene expression  data2,3,6–9. These methods for-
mulate the problem of inferring a GRN as an unsupervised classification problem. Typically, a GRN is formulated 
as a weighted graph, trained on unlabeled data, whose edge values represent the predicted probability that each 
TF regulates other genes (including other TFs).

Several groups have used different algorithms based on different mathematical formulations to infer GRNs 
from gene expression data. These include Bayesian networks, correlation metrics, mutual information methods 
and parametric and non-parametric regression. A seminal paper published in 2012 showed that correlation, 
mutual information and Bayesian networks tended to perform far worse than methods based on  regression3. 
For this reason, in this work we focused only on regression based GRN inference methods.

Regression based GRN inference methods build a mathematical model of the expression levels of a target 
gene given the expression levels of different TFs. The central assumption in these methods is that if the expres-
sion level of a TF predicts the expression level of a target gene it is likely regulating it. The model goodness of fit 
is used to estimate the probability that the TFs in a model regulate the target gene. That is, if the expression of a 
TF poorly predicts the expression of a gene, then it is not likely to regulate it and vice versa. Some of the popular 
regression based GRN inference algorithms are summarized in Fig. 1.
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Parametric GRN inference algorithms use a mathematical formulation that describes gene regulation using 
a predefined expected form. The most popular algorithms belonging to this class are linear regression based. In 
other words, they assume that the expression of a target gene is a linear combination of the expression levels of 
the TFs that regulate  it8–11. PLSNET and TIGRESS both use a linear regression  approach8,9. PLSNET uses a form 
of partial least squares known as  SIMPLS8, while TIGRESS uses the least angle regression algorithm (LARS)9. 
LARS is an effective approach for obtaining different solutions for the linear regression coefficients with different 
absolute  norms12. This algorithm takes an iterative approach: at each step, the residuals between the response 
variable and the linear regression model are compared with the explanatory variables, and because the models 
are trained iteratively on the residuals it can be described as a boosting  algorithm12. TIGRESS couples LARS 
with stability selection and uses the frequency with which each TF is chosen in iterations of LARS as a proxy for 
the predictive probability that a TF regulates a  gene9. The effectiveness of linear model-based approaches relies 
on how well a target gene’s expression levels can be approximated using linear functions.

For this reason, nonparametric regression methods have been proposed. In particular, regression trees 
have been very successful for GRN inference in different  datasets2,6,7. Regression trees separate the explana-
tory variables into regions and give the response variable a value depending on what region of the explana-
tory variables each observation resides  in13,14. The GENIE3 method uses the regression version of the random 
forest  algorithm2,13—this algorithm iteratively samples different observations and explanatory variables and 
builds regression trees with a fixed depth. The different trees’ predictions are then combined to form the final 
 prediction13. GENIE3 runs the random forest algorithm once per target gene. At each step, the variable impor-
tance of each TF is calculated as the proportion of explained variance of the target gene. The GENIE3 algorithm 
won two important GRN inference challenges, namely the DREAM 4 multifactorial sub-challenge and the 
DREAM 5  challenge2. The datasets for these challenges are now widely used benchmarks to test the performance 
of different GRN inference algorithms. Besides the random forest approach, regression tree models can also be 
trained using a stochastic gradient boosting approach. In the context of GRN inference, ENNET and GRNBoost2 
are based on regression tree stochastic gradient  boosting6,7. Stochastic gradient boosting is a form of a gradient 
based function optimization applied on model  space14. Very generally speaking, tree boosting is similar to LARS 
except that it uses tree models instead of linear  models12.

Here we present KBoost, a method that uses kernel PCA (Principal Component Analysis) regression and 
gradient boosting to reconstruct gene regulatory networks. Kernel PCA regression (KPCR) is a nonparamet-
ric regression technique that does not require the data to follow a strict  form15,16. This is accomplished by 

Figure 1.  Regression-based Gene Regulatory Network Inference Algorithms. Schematic describing how 
different regression based GRN inference methods work. These methods are based on different machine 
learning algorithms. We show six methods based on different machine learning algorithms that differ on the 
model shape and the way models for different TFs are combined. They were selected because they represent 
major types of machine learning methods used for GRN reconstruction and because of their high performance 
in the DREAM 4 and DREAM 5 challenges. PLSNET uses partial least squares and fits a linear model between 
TFs and targets. TIGRESS uses a linear model with different lasso parameters They both rely on the assumption 
that the expression of a gene is proportional to the expression levels of the TFs that regulate it. GRNBoost2 and 
ENNET use boosting to learn different tree models between TFs and targets. GENIE3 also uses tree models, 
however they iteratively resample different subsets of observations and potential TFs per target and create 
an ensemble of tree models. Unlike linear models, tree models do not rely on any assumption between the 
relationship of a TF and a target, however they are not continuous models.
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transforming the explanatory variables, in our case the TF expression levels, using a kernel function. The kernel 
function yields a symmetric matrix that corresponds to the dot product of nonlinear features that are a function 
of the explanatory variables. For many kernel functions these implicit nonlinear features correspond to polynomi-
als of the explanatory  variables17. In fact, the radial basis kernel function (RBF) is the dot product of an infinite 
number of polynomials without having to calculate them  explicitly18. Using polynomials for regression is an 
attractive approach, as according to the Weierstrass approximation theorem any continuous real function can be 
uniformly approximated by polynomials. Furthermore, kernel PCA lets us obtain the principal components of 
this large number of polynomials by using the kernel matrix with much smaller dimensions. Thus, with KPCR 
we can use the first principal components of a large number of implicit features to approximate any continuous 
function—in our case the relationship between a TF and a target gene.

For simplicity, instead of calculating KPCs of the expression levels of multiple TFs, we build an ensemble of 
models of KPCs. This is done through gradient boosting, which iteratively combines predictions from different 
models, in our case KPCRs from different  TFs7,14. For each gene, we start by selecting a TF whose KPCs predict 
its expression levels the best according to the posterior. Then, we search among every TF’s KPCs to see which can 
predict the residuals, that is the difference with the original prediction and the actual gene expression values. At 
the end of each iteration, we update the predictions, by adding the model fit on the residuals. This greedy model 
search that allows us to drastically reduce the running time. The posterior probabilities of the models queried 
are used to estimate the GRN. Because of this Bayesian formulation, we can include information from previous 
experimental data and increase the accuracy of our  predictions11,19. We tested KBoost against other algorithms 
on several benchmark datasets. The results show that KBoost performs better than other algorithms even in the 
absence of prior information.

Methods
KBoost overview. The aim of KBoost is to provide a fast and scalable algorithm for the accurate inference 
of GRNs (Fig. 2). It takes mRNA expression (microarray or RNA-seq) and, optionally, previously found TF-
target interactions (e.g. ChIPseq) as input. KBoost uses KPCR and boosting coupled with Bayesian model aver-
aging (BMA) to estimate the probabilities of genes regulating each other, and thereby reconstructs  GRNs10,11,20. 
We use a greedy approach to sample the model space. That is, for every gene we build a mathematical model that 
predicts its expression using the kernel PCA of the expression levels of a likely subset of TFs. We then compare 
different KPCR TF-gene models and estimate the probability that a TF regulates a gene using BMA. The model 
fit is used as a proxy of the probability that a set of TFs regulate a specific gene. If there is information from other 
sources on likely TF targets, it can be combined with the model fit in the form of a prior. The output of KBoost 
is then an estimate of the probability that each TF regulates each gene.

Modelling gene expression. We formulate the data as n independent observations x = [x1, . . . , xn]
T , each with 

real-valued measurements of G genes: xi = (x
(1)
i , . . . , x

(G)
i ) . We assume that each gene’s j expression, x(j)i  , is a 

linear combination of non-linear functions of the expression of a subset of the gene’s TFs, noted as Aj , plus some 
random noise ε(j)i  , which comes from a normal distribution with zero mean and variance σ 2

j :

Figure 2.  Overview of KBoost. KBoost uses KPCR in a boosting framework to infer GRNs from gene 
expression data. KBoost uses a list of predefined TFs and builds KPCR models to predict the expression of other 
genes (including TFs). These models are combined using gradient boosting. The residuals are used to estimate 
the probability that a TF regulates a gene.
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Gene regulatory network inference as unsupervised classification. The gene regulatory network, C , would then 
be defined as a directed graph with G nodes, where each node is a gene. We write C  as a G × P matrix, where P 
is the number of genes in G that are TFs. The entry Cj,p gets the value 1 if TF p regulates gene j and 0 otherwise. 
As many other algorithms, we formulate the problem of estimating C from x as an unsupervised classification 
problem, where the fit of different subsets of TFs in Eq. (1) is used to estimate the posterior probability that any 
TF regulates any gene; in other words, how well different combinations of TFs, Aj , fit the data x(j)i  . We can then 
consider all the combinations of TF subsets Aj = (A

(1)
j , . . . ,A

(2P)
j  , where  A(d)

j  contains the integer indexes of the 
genes that are TFs and are part of subset d . The predictive probability of an element of Cj,p to be 1:

Here, P
(
A
(d)
j

)
 is the marginal likelihood of the model in Eq. (1) given the subset A(d)

j  , and π
(
A
(d)
j

)
 is the prior 

that the TFs in this subset A(d)
j  regulate gene j . We formulate the prior probability of a subset of TFs A(d)

j  to regu-
late a gene, j , as coming from a binomial distribution:

Here, the parameters of the prior are in a matrix W = [w1, . . . ,wG]
T with the same dimensions as the gene regu-

latory network C . For simplicity the marginal likelihood, P
(
A
(d)
j

)
 , is obtained by assuming 

∑
p∈Aj

f (x
(k)
i ) to be 

fixed. This assumption facilitates the inference process and reduces the computation time required in KBoost. 
We give the variance of the noise Jeffreys’ prior, 

(
σ 2
j

)
∝ 1

σ 2
j
 . This yields the following expression for the marginal 

likelihood:

Greedy model selection and boosting. So far, we have omitted the details of two crucial tasks, first how we calcu-
late 

∑
p∈Aj

f
(
x
(k)
i

)
 , and second how we go through the different subsets A(d)

j  . For the second task, we chose a 
greedy approach where we iteratively select the TF subsets with the highest posteriors P

(
A
(d)
j

)
 and expand them 

for each gene. This choice is motivated by two goals: (1) to reduce the computational burden of calculating 
P
(
A
(d)
j

)
 for all possible combinations of TFs, and (2) to reduce the number of false positives. Genes that are 

regulated by the same set of TFs will have a high correlation between their expression levels. We assume that for 
each gene j , there are several A(d)

j  which yield a relatively high P
(
A
(d)
j

)
 due to coregulation and thus we perform 

a greedy search keeping only the TFs that yield the highest P
(
A
(d)
j

)
 at each boosting iteration. This is similar to 

the LARS procedure, except that in Eq. (2) we include all explored models, like in the Occam Razor version of 
 BMA12,21. Therefore, Eq. (5) uses only the subsets Âj explored by our greedy search, i.e.:

Kernel principal components. Regarding the task of calculating 
∑

p∈Aj
f
(
x
(k)
i

)
 , we chose to use KPCR because 

it has three important advantages in a boosting framework. First, KPCR is a kernel-based regression method 
which can approximate any potential shape that the relationship between a TF a target gene might have. We use 
the RBF kernel function which is the exponential of minus the squared Euclidean distance between observations 
divided by a width hyperparameter. KPCR is a technique that allows to compute the principal components in the 

(1)x
(j)
i =
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f (x
(p)
i )+ ε

(j)
i .
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infinite dimensional feature space directly from the kernel matrix. A more detailed description is presented in 
the appendix. Second, unlike other kernel regression methods, which would need an n× n kernel matrix per TF, 
in KPCR we only need a few principal components per TF. This means a substantial reduction in memory usage 
while trying out different subsets A(d)

j  . Finally, the boosting framework allows us to effectively combine principal 
components from kernels of different TFs. The formulation is shown below.

For each TF p , we first calculate the RBF kernel with width parameter γ:

Then, we normalize the covariance matrix of the infinite dimensional features implicitly:

here, 1nn is an n× n matrix with all the values equal to 1n . Next, we perform an eigendecomposition of K :

where α are the eigenvectors and � is a diagonal matrix with the eigenvalues in descending order The first z KPCs 
are then obtained by

In KBoost we select KPCs by using a threshold on their corresponding eigenvalues. The KPCs are then nor-
malized so that they have unit norm. After obtaining g

(
x
(p)
i

)
 , the matrices K (p) and K (p) can be overwritten and 

thus this procedure allows us to reduce the amount of memory required. Note that the columns of g
(
x
(p)
i

)
 are 

orthogonal to each other. This means that for a model with one TF, A(d)
j = {p} , we can fit the model in Eq. (1) 

by:

here, β̂(p)j  are the coefficients of the KPC regression multiplied by a constant 0 < ν ≤ 1 , and �∗(p) is a diagonal 
matrix whose entries are the reciprocals of the eigenvalues that correspond to the KPCs. The constant ν is known 
as a shrinkage parameter. We propose using ν to counteract the effect that the number of observations n has on the 
marginal likelihood. Since the marginal likelihood changes exponentially to the power of (n− 1)/2 , the resulting 
GRNs would change dramatically depending on n . Namely, with a large n , most TFs posterior probability would 
be close to zero while a few would be close to one. This can lead to an overestimation of the confidence we have 
on the predicted GRN. By shrinking the estimates of β̂(p)j  , we introduce a heuristic measure that will make the 
resulting sum of squares less different between TF subsets, A(d)

j  , and thus reduce the effect of n.

Boosting. The last equation (Eq. 10) shows how we fit the model in Eq.  (1) in the case that A(d)
j  contains 1 

TF. For simplicity we then follow a greedy boosting approach that is very similar to the least angle regression 
method. In KBoost, we first fit every single TF subset A(d)

j  (i.e. only one TF in each model) and calculate their 
unnormalized posteriors. Then, we select the TF with the highest unnormalized posterior, p∗ , and calculate its 
residuals, ε(j) . Next, we form new subsets by iteratively adding a TF, and fit the TFs to the residuals:

Similarly, to the previous step, we calculate their unnormalized posterior and select the TF with the highest 
posterior to expand next (Fig. 3). When we use a ν under 1, there is a possibility that the same TF will be chosen 
more than once. This might reflect a TF having a very strong relationship with a particular target gene. At the 
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end we estimate P
(
Cj,p = 1|x

)
 by performing BMA on all explored models. In KBoost, the number of iterations 

represents also the maximum number of TFs per gene to be considered. The resulting network is tuned using 
the heuristic proposed by Slawek and  Arodz7, in which we multiply each column p of P

(
Cj,p = 1|x

)
 by the sam-

ple variance of the whole column. This has the effect of preserving the sparse outdegree distribution found in 
most biological networks. KBoost is available as an R package at: https:// github. com/ Luisi glm/ KBoost and as a 
Bioconductor software package.

Performance assessment. We compared KBoost against five other GRN reconstruction meth-
ods that were chosen because of their high performance in previous benchmarking exercises, such as the 
DREAM 4 and DREAM 5 challenges. Specifically, the algorithms included are GENIE, PLSNET, ENNET, 
TIGRESS, and  GRNBoost22,6–8. All algorithms were run using their default parameters, including KBoost 
( if n > 10 : v = 10

n , else v = 0.5, , γ = 60 and 3 iterations). We used three different datasets to assess the com-
parative performance of our algorithm:  IRMA22, the in silico networks from the DREAM 4 multifactorial sub-
challenge2, and the DREAM 5 dataset, which contains three sets of gene expression data—one from a simulated 
network and two from real-life  networks3. Before the analysis we standardized each gene’s expression to a sample 
variance of one and a sample mean of zero. For this comparison, we did not use any prior information on the 
relationships between TFs and potential targets. Therefore, we gave every TF a probability of 0.5 of regulating 
any gene, so that every possible combination of TFs had the same prior probability.

Figure 3.  Gene Expression Modelling with KPCR and Boosting. The procedure starts by selecting the TF 
whose KPCR model has the highest posterior for each gene. Then we combine different KPCR models by 
boosting. At each boosting iteration we fit a new KPCR model to each gene expression’s residuals instead of the 
actual values. We then select the TF whose KPCR model has the highest performance in each case and update 
the KPCR model ensemble.

https://github.com/Luisiglm/KBoost
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Algorithm 1. KBoost

Input: Zero-centered and unit variance gene expression data for  genes in  samples,  a subset of  which are TFs, 
shrinkage factor maximum number of iterations , RBF-kernel parameter , and a matrix with the weights of 
the prior probability that a TF j regulates gene i, . 
Output: A GRN , with the posterior probability that each TF regulates each gene in the system. 

For  in the indexes of G that are TFs do: 

     Calculate the feature-centralized RBF kernel ( )

     Perform the eigen decomposition of 

     Calculate the KPCs for ,  ( ) ( ) ( )

End for  

Initialize  and ∗ ∗ ∗ ], ∗ = (∅) (at each iteration new subsets will be created). 

For t ite do:

     For  in the indexes of G do: 

For p in indexes of G that are TFs and  in case  is a TF: 

                    Create a new subset ∗ ⋃ .  

                    Calculate the regression coefficients  β
( )

∗( )

                    Calculate expression estimate  ∑ = ∑ ∗ )β
( )

                    Calculate the unnormalized posterior probability )

End for 

Update ( )
]

        Define a new ∗ ( ) ( )

End for  

End for 

Perform the Bayesian Model Averaging =

∑
( )

 

∑
( ) .  

Perform Slawek and Arodz Adjustment =  C, p ∑  - ∑ ))

Benchmarking consisted of comparing a predicted GRN with the real GRN using common performance 
metrics such as the area under the precision recall curve (AUPR) and the area under the receiver operator curve 
(AUROC). Both methods work by changing a threshold of probability from close to 0 to 1. Regulatory interac-
tions with a probability higher than the threshold are kept while those below the threshold are discarded. The 
inferred regulatory interactions are compared with the real GRN. To obtain AUPR we calculate the precision 
(number of correctly predicted interactions divided by the total number of predicted interactions) and the recall 
(number of correctly predicted interactions divided by the total number of actual interactions) at each threshold. 
Then, both precision and recall are plotted and the area under the curve is calculated. Similarly, for AUROC, at 
each threshold we calculate the recall and the false positive rate (number of incorrectly predicted interactions 
divided by the actual number of non-interactions). The recall is plotted against the false positive rate and the 
area under the curve is calculated. The AUROC value ranges from 0 to 1; 0.5 represents the number that would 
be achieved by random guessing and 1 is the perfect  score23. Besides using the AUROC and AUPR, we also use 
the specific scores developed for the DREAM 4 and DREAM 5 challenges. The authors of the DREAM 4 and 
DREAM 5 challenge devised a score to benchmark different methods on their datasets. They calculated these 
scores using the mean of the log10 of the empirical P-value to guess a network randomly of the same accuracy 
as the one inferred by each specific  method3. For consistency, we used the DREAM 4 and DREAM 5 evaluation 
scripts to compare the different algorithms.



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:15461  | https://doi.org/10.1038/s41598-021-94919-6

www.nature.com/scientificreports/

Results
Performance assessment of KBoost. IRMA dataset. The IRMA dataset is a small experimental syn-
thetic network in yeast, which is composed of five genes that regulate each other and are responsive to galactose 
and  glucose22. To implement IRMA in vivo, yeast cells were transduced with expression vectors that contained 
five single TF promoters linked to TF encoding genes. The five genes used were ASH1, GAL80, SWI5, GAL4 
and CBF1. The network can be activated by the addition of galactose and silenced by glucose. Thus, this dataset 
contains two small steady state sub-datasets: IRMA switch on, and IRMA switch off, respectively. The expression 
of the five genes was measured by q-PCR. Both IRMA switch on and IRMA switch off contain 24  observations22. 
We used the IRMA switch off dataset to select the default values of the parameters for KBoost, and these were 
kept fixed for the rest of the benchmark performance assessments (see “Supplementary data S1”). The results 
show that KBoost performs similarly well in both datasets (Table 1). Furthermore, it had the highest perfor-
mance in both metrics for the IRMA switch off dataset.

DREAM 4 multifactorial challenge dataset. The DREAM 4 dataset contains several different network inference 
challenges. We focused only on the multifactorial sub-challenge as it more closely resembles gene expression 
data from  patients2. This challenge consists of five simulated steady-state expression profiles of 100 genes in 100 
samples that were obtained by perturbing all genes simultaneously. The expression levels in the dataset corre-
spond to steady state levels after perturbations with added normal and log-normal noise to resemble a real-life 
microarray experiment. The results show that KBoost, using the default parameters, generally achieved the high-
est performance, compared to state-of-the-art algorithms (Table 2). GENIE3, the original sub-challenge winner, 
had obtained a score of 37.5, whereas KBoost scores 55.93. This score is also clearly higher than that achieved by 
the other algorithms, which were developed after GENIE3. The results show that for several networks KBoost 
achieved the highest AUROC and AUPR.

DREAM 5 dataset. The DREAM 5 dataset contains three sets of gene expression data, one from a simulated 
network (Net 1) and two from real-life networks. The three gene expression sets contain data simulated or 
obtained from different kinds of experiments such as drug perturbations, genetic perturbations (gene deletions 
or overexpression), time series sets and steady-state sets. The first network is a simulated network with 195 TFs 
and 1643 genes. The second network is from Escherichia coli with 334 TFs and 4511 genes (Net 3), and the third 
network is from Saccharomyces cerevisiae and has 333 TFs and 5950 genes (Net 4)3. The results show that KBoost 
compares favorably to most algorithms and has a similar overall performance as ENNET, a tree gradient boost-
ing algorithm (Table 3). The results also show that most algorithms did not perform well on the experimental 
networks, Net 2 and Net 3.

Running time. The boosting framework of KBoost allows us to dramatically reduce the number of computa-
tional operations. That is because KBoost adds only one TF at a time, and the maximum likelihood solution to 
the regression of KPCs of only one TF does not require an inversion, since KPCs coming from one kernel are 

Table 1.  IRMA dataset benchmark. The best performance in each column is in bold.

GRN inference method

IRMA switch on IRMA switch off

AUROC AUPR AUROC AUPR

KBoost (2020) 0.67 0.31 0.83 0.52

GRNBoost2 (2019) 0.58 0.21 0.63 0.29

PLSNET (2016) 0.74 0.34 0.76 0.51

ENNET (2013) 0.56 0.25 0.82 0.49

TIGRESS (2012) 0.61 0.28 0.71 0.39

GENIE3 (2010) 0.67 0.30 0.82 0.46

Table 2.  DREAM 4 dataset benchmark. a Winner of the DREAM 4 challenge which included 11 algorithms. 
The best performance in each column is in bold.

GRN inference 
method

Net1 Net2 Net3 Net 4 Net 5

ScoreAUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

KBoost (2020) 0.74 0.15 0.85 0.31 0.84 0.25 0.82 0.27 0.85 0.32 55.93

GRNBoost2 (2019) 0.64 0.08 0.65 0.10 0.70 0.17 0.69 0.14 0.72 0.11 20.78

PLSNET (2016) 0.70 0.13 0.83 0.28 0.79 0.21 0.82 0.21 0.78 0.18 49.08

ENNET (2013) 0.73 0.17 0.81 0.26 0.81 0.29 0.82 0.29 0.82 0.28 52.66

TIGRESS (2012) 0.61 0.06 0.60 0.08 0.60 0.06 0.69 0.09 0.67 0.11 12.66

GENIE3 (2010)a 0.75 0.16 0.73 0.16 0.78 0.23 0.79 0.21 0.80 0.20 37.72
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orthogonal. The resulting worst case computational complexity is governed by the eigendecomposition of the 
KPCA O(p · (n3)) n the number of observations and p the number of TFs. This might seem extreme but typically 
GRN inference datasets have at most a few hundred of observations.

We ran all algorithms on the same desktop with an  Intel® Core™ i7-8700 CPU with 370 GHz, 6 cores and 
12 logical cores, and 32 GB of RAM. The results show that KBoost is much faster for all datasets compared to 
all the other algorithms. The summary of all the benchmark analysis is shown in Table 4. KBoost has the best 
performance for all datasets except for the IRMA switch on dataset, where it performed second best. However, 
KBoost dramatically shortens running times, particularly for the DREAM 5 dataset.

Effect of an informative prior network. For several organisms, many years of research have linked certain TFs 
with specific genes. This information can be included into KBoost in the form of the prior W . In the previous 
sections, we used a W with 0.5 for every of its element, giving every TF-gene relationship the same prior prob-
ability. In this section, we explore what could happen in a real-life setting, if the user had prior information from 
previous research studies linking certain TFs to certain genes. We used the gold standards of the DREAM 4 
multifactorial dataset as prior networks and added some noise by randomly modifying different fractions of the 
edges. We gave the edges present in the prior networks a weight of 0.6 and the edges that were absent a weight 
of 0.4. The results show that even with a prior network with relatively high levels of noise (up to 50% of the 
edges were added or deleted from the original network) the average AUPR and AUROC are higher than when a 
noninformative prior was used (Fig. 3). All the posterior networks had a higher AUPR than the corresponding 
prior networks, while for the AUROC only the prior with 5% of the edges modified had a higher AUROC in the 
prior than the posterior network. In general, this shows the potential to increase the accuracy and precision of 
the predictions by including prior information (Fig. 4).

Application to the METABRIC dataset. To examine the usefulness of KBoost to biological research we applied 
KBoost to the METABRIC dataset of breast cancer downloaded from  cBioportal24. This dataset contains data 
for 1904 patients, of which 1898 have been stratified into subtypes. Breast cancer was one of the first cancer 
types where gene expression profiles were used for a molecular stratification of cancer subtypes, which correlate 
with disease phenotypes, prognosis and treatment  response25,26. Studies have identified 4 major breast cancer 
subtypes (luminal A, luminal B, HER2-enriched and basal), a claudin-low subtype and a normal-like group. 
The claudin-low is sometimes described as a particularly aggressive form of the basal subtype  subtype27,28. We 
wanted to test whether the subtypes have characteristic GRNs that can be used to distinguish them. For this, 
we reconstructed a network for each of the six subtypes using KBoost with a prior based on the GRN obtained 
from ChIP-Seq experiments on several  TFs29. We gave the edges seen in the prior network a prior probability of 
0.6, while for TFs in the prior network but not on our system, we gave 0.4 probability to the edges that were not 
observed in the ChIP-Seq. The dataset contains microarray experiments with expression levels for 24,368 genes. 
To identify TFs we overlapped the list of 24,368 genes in METABRIC with a previously published list of human 
 TFs30. KBoost was ran on a desktop with an  Intel® Core™ i7-8700 CPU with 370 GHz, 6 cores and 12 logical cores, 

Table 3.  DREAM 5 dataset benchmark. a Winner of the DREAM 5 challenge which included 351 algorithms. 
b In the original DREAM 5 dataset, Net 2 and 3 are labeled 3 and 4. The best performance in each column is in 
bold.

GRN inference method

Net1 Net2b Net3b

ScoreAUROC AUPR AUROC AUPR AUROC AUPR

KBoost (2020) 0.88 0.43 0.57 0.04 0.51 0.02 > 300

GRNBoost2 (2019) 0.82 0.33 0.63 0.10 0.52 0.02 54.30

PLSNET (2016) 0.85 0.24 0.57 0.06 0.51 0.02 37.03

ENNET (2013) 0.85 0.44 0.61 0.05 0.51 0.02 > 300

TIGRESS (2012) 0.75 0.29 0.58 0.06 0.51 0.02 22.63

GENIE3 (2010)a 0.82 0.29 0.62 0.09 0.52 0.02 40.74

Table 4.  Results summary of running time and performance. The best performance in each column is in bold.

GRN inference method

IRMA on IRMA off
Total running 
time (mins)

DREAM 4 M 
challenge

Total running 
time (mins) DREAM 5

Total 
running 
time (mins)AUROC AUPR AUROC AUPR

KBoost (Matlab, 2020) 0.67 0.31 0.83 0.52 0.001 55.93 0.025 > 300 8.6

GRNBoost2 (Python, 2019) 0.58 0.21 0.63 0.29 0.12 20.78 0.42 54.30 68.48

PLSNET (Matlab, 2016) 0.74 0.34 0.76 0.51 0.02 49.08 1.63 37.03 141.36

ENNET (R, 2013) 0.56 0.25 0.82 0.49 0.001 52.66 0.86 > 300 382.46

TIGRESS (Matlab, 2012) 0.61 0.28 0.71 0.39 0.06 12.66 0.65 22.63 455.77

GENIE3 (Matlab, 2010) 0.67 0.30 0.82 0.46 0.003 37.72 1.60 40.74 806.75
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and 32 GB of RAM. The resulting network was filtered by keeping edges with a posterior probability higher than 
0.2. This threshold was found by using the F1 metric on the IRMA Off dataset. The whole dataset of 24,368 genes 
by 1345 TFs and 1898 patients was run in 104 min. This is less than what most algorithms took for the DREAM 
5 challenge which is significantly smaller.

The results show that KBoost reconstructed GRNs that distinguished the five main subtypes, Normal-like, 
Luminal A, Luminal B, HER2 enriched, and Basal/Triple negative breast cancer (TNBC) (Fig. 5 and Table 5). 
KBoost. We analyzed the GRNs using the closeness centrality measure, which is an indication of the number of 
genes a TF regulates directly or indirectly.

Discussion
Inferring GRNs from gene expression data is an important task in bioinformatics. KBoost represents a novel 
algorithm that uses KPCR, boosting and BMA coupled with greedy model selection. Both boosting and BMA 
have been previously used in this setting. ENNET and GRNBoost2 use regression tree boosting, while TIGRESS 
uses a least angle regression which can be considered a form of boosting. On the other hand, BMA has mainly 
been used with linear regression. KPCR has advantages over using regression trees and linear regression. Both 
KPCR and regression trees do not need the relationship between a TF and its target gene to be linear, unlike 
linear regression. However, regression trees produce discontinuous functions which can be added together after 
several iterations to approximate a continuous function by using random forests or boosting. In contrast, KPCR 
directly yields continuous functions.

We show that KBoost has a very competitive performance using three different datasets. KBoost had the 
highest score on the multifactorial subset of DREAM 4 and the IRMA switch off dataset and tied for first place 

Figure 4.  Effect of an Informative Prior into KBoost on the DREAM 4 Multifactorial Dataset The red line 
represents the average of the prior networks, the green line the average results with a non-informative prior 
and the black line the average of the posterior networks with an informative prior. The results highlight the 
advantage of having prior information even if it is limited to a few TF—target gene pairs. It also shows that when 
the prior information is not accurate it can have a detrimental effect on performance.

Figure 5.  Closeness Centralities of Breast Cancer Subtypes. The peaks correspond to the closeness centrality 
of different TFs among the subtypes. The results show that breast cancer subtypes have differences in their 
underlying GRNs.
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with ENNET in DREAM 5. Furthermore, though we did not use any prior information for the benchmarking, 
we show that in the presence of prior information the performance of KBoost can increase dramatically. This 
is particularly relevant as there are several datasets with predicted or observed TF binding sites, ChIP-seq net-
works and other forms of prior information available. In terms of running time, the advantage of using KBoost 
is especially clear, as it was the fastest among all algorithms across all datasets. In addition, we were able to run 
KBoost on the METABRIC dataset containing over 24,000 genes with over 1300 TFs and over 1800 patients in 
less than two hours on a standard desktop computer.

We compared the GRNs from different breast cancer subtypes using the closeness centrality. Closeness cen-
trality is a measure of a node’s importance in a network and is calculated using the number of other nodes to 
which it is directly and indirectly connected. Different subtypes showed differences in TF centrality. The patterns 
can easily be distinguished by the naked eye and correlate with increasing aggressiveness. According to the cur-
rent transcriptome based  classification24,28 the following phenotypes can be discerned: normal or normal-like is 
the most benign phenotype that may simply reflect normal breast tissue due to a low tumor cell content in the 
samples; luminal A and luminal B, which are relatively benign; HER2 enriched, which is more aggressive; and 
basal which has the worst prognosis. In the claudin-low subgroup, the gene FOXM1 had the highest closeness 
centrality. FOXM1 regulates the cell cycle and is required for the proliferation of normal breast epithelia but also 
promotes the proliferation of malignant cells and is often overexpressed in breast  cancer31. The Luminal A and B 
GRNs were similar. In both GRNs, the TF with highest closeness centrality was REPIN1/AP4. This gene is a zinc 
finger protein that has been previously associated with enhanced proliferation, migration, and cisplatin resistance 
in breast cancer  cells32. Interestingly, REPIN1/AP4 also was reported to reduce breast cancer cell  proliferation33, 
which may be related to the slow growing phenotype of luminal A/B breast cancers. The gene AKAP8L had the 
highest closeness centrality in HER2 enriched breast cancer. Previous studies have found AKAP8L to be associ-
ated with metastasis suppression in Luminal A, B and HER2 enriched breast  cancer34. For the basal subtype, the 
gene TBX21 had the highest closeness centrality. This gene is often overexpressed in breast cancer indicating poor 
 prognosis35. Finally, we found the gene TSC22D1 (TGFβ stimulated clone-22) to be important for the normal-
like subtype GRN. TSC22D1 seems to have a dual role. It was identified as tumor suppressor in several cancer 
types including breast  cancer36. However, it also was described that its expression correlates with tamoxifen 
resistance and breast cancer  recurrence37. TSC22D1 functions in the TGFβ pathway, which can suppress tumo-
rigenesis in early stages but promote it in later  stages38. Together these networks highlight the gene expression 
differences between the breast cancer subtypes that might contribute to their observed differences in outcome. 
As this molecular classification of breast cancer subtypes is based on gene expression  data25,26, it is not surprising 
that the subtypes differ in their GRNs. However, the identification of the TFs responsible is useful. It suggests 
pathogenetic mechanisms, and the dimensionality reduction associated with classifying molecular phenotypes 
based on GRN reconstruction facilitates the analysis and identification of potentially actionable targets.
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