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Dynamic selective auditory 
attention detection using RNN 
and reinforcement learning
Masoud Geravanchizadeh* & Hossein Roushan

The cocktail party phenomenon describes the ability of the human brain to focus auditory attention 
on a particular stimulus while ignoring other acoustic events. Selective auditory attention detection 
(SAAD) is an important issue in the development of brain-computer interface systems and cocktail 
party processors. This paper proposes a new dynamic attention detection system to process the 
temporal evolution of the input signal. The proposed dynamic SAAD is modeled as a sequential 
decision-making problem, which is solved by recurrent neural network (RNN) and reinforcement 
learning methods of Q-learning and deep Q-learning. Among different dynamic learning approaches, 
the evaluation results show that the deep Q-learning approach with RNN as agent provides the 
highest classification accuracy (94.2%) with the least detection delay. The proposed SAAD system is 
advantageous, in the sense that the detection of attention is performed dynamically for the sequential 
inputs. Also, the system has the potential to be used in scenarios, where the attention of the listener 
might be switched in time in the presence of various acoustic events.

For years, neurocognitive scientists have made great profits from segregating the brain into different functioning 
domains. The behavior of an organism aimed toward a task requires the joint operation of memory, executive 
functioning, attention, language, and sensorimotor  units1. Attention is the foundation for all the other cognitive 
functions that deal with the ability to focus on distinct aspects of information or awareness on a given stimulus or 
task, long enough to accomplish a goal and to shift awareness, if appropriate. This means that the human listener 
can shift his attention both consciously and sometimes unconsciously in response to the environment. Auditory 
selective attention is the process in which a person attends to one or a few sounds while ignoring the other ones; 
a phenomenon called the cocktail party problem. The first formal description of the cocktail party problem was 
given by the psychologist Cherry in 1953 by demonstrating various dichotic  experiments2. Cherry conducted 
attention experiments in which participants listened to two different messages from a single loudspeaker at the 
same time and tried to separate them; this was later termed dichotic listening task. It is believed that in a high-
level auditory cognitive process, two interacting critical mechanisms are involved in the identification of sounds 
in a complex auditory scene. These include sound segregation, also called auditory scene analysis (ASA), and 
attentional  selection3. According to the perceptual process of ASA, the sound mixture is decomposed into a 
collection of segments which are subsequently grouped to form coherent streams, a procedure known as object 
 formation4–6. The studies show that attention operates on auditory objects and the desired object is selected by 
the direction of top-down  attention7,8. Nevertheless, there is as yet little understanding as to the role of auditory 
scene analysis and auditory attention in the identification of sound and the argument about the relation of object 
formation and object selection is  ongoing3.

The understanding of neurobiological solutions of the cocktail party problem by the brain, and also the recent 
technological advances make it possible to explore potential applications of selective auditory attention detec-
tion (SAAD). A few examples of practical applications include enhancing the performance of speech separation 
algorithms, cognitive hearing aids, brain-computer interface (BCI) systems, etc. among others.

There are many reports that auditory attention can be detected from brain signals, using various neural signal 
acquisition, including non-invasive magnetoencephalography (MEG)9, electroencephalography (EEG)10, and 
invasive electrocorticography (ECoG)11,12. EEG signals can be considered as the reflection of electrical activ-
ity in the cerebral cortex which contains a wealth of information related to advanced nervous activities in the 
human brain such as learning, memory, and  attention13. The advantages of relatively low cost, easy access, and 
high temporal resolution make EEG signal acquisition a valuable candidate for the study of auditory  attention14.
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Much research has been conducted to study SAAD based on EEG data which is produced from non-speech 
stimuli. In this context, the effects of attention on auditory sound segregation have been investigated using 
event-related potentials (ERPs). These studies show that selective attention may operate in a two-stage process, 
including an early stage of bottom-up stream separation based on acoustical features of sounds, and a later top-
down task-dependent  stage15–17. SAAD generated from non-speech stimuli has been also the focus of studies by 
some researchers in the framework of auditory steady-state response (ASSR). ASSR is a brain activity response 
typically obtained by periodic amplitude modulated sinusoidal tones or click sound trains as auditory stimuli 
18–20. The major disadvantage of the ERP and ASSR methods is that they are unsuccessful for natural continuous 
speech  stimuli21–23 which occurs in real environments. The human auditory system has efficiently evolved to 
attentively focus on a salient stimulus of an auditory scene occurring in cocktail party scenarios where most of 
the sound sources are continuous natural speech.

As one method of decoding the attentional direction employing natural speech, some researchers have con-
ducted SAAD experiments by machine learning techniques using the extracted informative features of EEG 
signals for training  classifiers7,14,22,24. As yet, different informative features have been employed in the design of 
classifiers. Recently, the benefits of connectivity measures for the detection of selective auditory attention were 
introduced by extracting optimized features based on the Granger causality  approach25. The main advantage of 
this method is that the classification of the attentional state is performed from single-trial EEG signals without 
reconstructing the speech stimuli.

Stimulus–response modeling using temporal response functions (TRFs) has made important contributions in 
decoding the auditory attention of a listener in a competing-speaker environment. TRFs could be estimated by 
system identification approaches to quantify the mapping between amplitude envelopes of speech and  EEG26–28. 
Some existing TRF-based techniques attempt to track the attentional state of a listener in a complex auditory 
environment by reconstructing attended and unattended speech in the low-frequency range (1‒8 Hz) using 
high-density  EEGs10,29,30. In this frequency range, EEG corresponds to the spectrum of speech envelope. Here, 
the subject’s attention is detected based on the correlation between the reconstructed speech envelope and the 
actual attended and unattended speech envelopes at the two ears. In a similar study, using limited training data, 
Miran et al.26 developed an algorithm for detecting the attentional state which consists of estimating real-time 
encoding/decoding coefficients, extracting attentional state markers, and implementing a near real-time state-
space estimator. Alternatively, the concept of TRFs has been previously employed in the analysis of the human 
auditory system to describe the properties of such a system using  EEGs28,31,32. Here, in a mapping process from 
speech features to neural data, TRFs could be used to predict EEGs from the attended speech envelopes. Power 
et al.32 proposed the technique of auditory evoked spread spectrum analysis which extracts high-resolution 
temporal responses of two simultaneously presented speech streams in a condition most similar to a natural 
cocktail party environment.

Recently, studies on the use of neural networks in SAAD have introduced new frameworks for decoding the 
listener’s  attention33,34. De Taillez et al. investigated non-linear machine learning methods such as deep neural 
network (DNN) with a novel architecture to replace the linear regression used in previous studies (e.g., O’sullivan 
et al., 2014) with the aim of better decoding of listener’s attention.  In34, inspired by the work of de Taillez et al., a 
convolutional neural network (CNN) is used in the classification architecture. In this research, a different end-
to-end decision network is used as the attention decoder with integrated similarity computation between EEG 
signals and a candidate audio envelope.

In this paper, a novel dynamic SAAD is addressed to model the attention detection as a sequential decision-
making problem with the involvement of time to process sequences of inputs, where dynamic learning methods 
are employed to describe the temporal evolution of the system. Here, a methodology is presented to answer the 
following questions:

(a) Compared with non-dynamic approaches, to what extent are dynamic learning methods effective in the 
analysis of sequential data for the SAAD task?

(b) Does the strategy of trial and error used in agent-based dynamic methods improve the ability of attention 
detection for having intelligent learning machines?

(c) How do such dynamic systems perform in examining the attentional direction of listeners when their focus 
on speech stimuli is switching over time?

In this regard, the dynamic learning approaches of the recurrent neural network (RNN) and reinforce-
ment learning (RL) are incorporated in the detection model. RNN is used to process input sequences and can 
be termed as a DNN in the “temporal”  sense35 to make direct decisions of which speech stream the listener is 
focused on at any moment. In RNN, unlike feedforward neural networks, the outputs of each layer are fed back 
into the inputs of previous layers, which provides the characteristics of a system with  memory36. As a second 
dynamic learning approach, the concept of RL is employed in the attention detection process, formalized by 
the Markov decision process (MDP) framework and solved by Q-Learning (QL) and deep Q-learning (DQL). 
The RL-based system is composed of a set of agents that learn to create successful strategies using rewards in a 
trial and error  procedure37. In an inspiring  study38, the problem of classifying imbalanced data is modeled as a 
sequential decision-making problem which is solved by DQL. Instead of the traditional classification process in 
which extracted features from the input are used to estimate the class label, here, an agent is used to interact with 
the environment. The use of dynamic system architecture in the attention detection task yields the flexibility to 
investigate the attention-switching behavior of listeners and introduces a framework for tracking attention in 
real-time applications while the focus of the listener is shifting between streams over time.
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The organization of the paper is as follows. “Materials and methods” section explains the methodology, 
including the data description and the proposed dynamic selective auditory attention detection model. Here, the 
details of the model, including the structure of probabilistic state-space, and the learning methods are described. 
In “Experiments and evaluations” section, the experiments and evaluations along with discussions are given. The 
concluding remarks and some perspectives for future work are presented in “Conclusion” section.

Materials and methods
Data description. In this work, the publicly available data of 20 normal-hearing subjects are used for the 
evaluation of the  experiments39. Two different stories are presented simultaneously via a headphone to each 
subject: one to the left ear and the other to the right ear, and the subjects are asked to attend aurally to just one of 
the stories, where at the same time the EEG of participants with 128 electrodes are recorded. In each trial, half of 
the subjects are asked to attend to the speech on the left ear and the remaining half to the speech on the right ear. 
Three trials are considered for each person, each having a duration of approx. 60 s. To ensure that the subjects 
have performed their attentional tasks correctly, a questionnaire about the information of the stories is used. The 
EEG signals are recorded at 128 Hz sampling rate, average referenced, and finally preprocessed to minimize the 
presence of 50 Hz line noise, eye blink, and muscle movement artifacts.

Proposed SAAD system. The proposed dynamic selective auditory attention detection model is shown in 
Fig. 1. Here, after the preprocessing of the input signals, the probabilistic state space which is the set of all possi-
ble states of the system is formed. The values of the state variables at a particular time gives the state of the system 
at that time. Next, in the learning stage, based on the computed state variables and the available true labels of the 
attention directions, three different machine learning methods are applied to make the final decision as to the 
attended speaker. Due to the dynamic nature of the learning methods for the proposed SAAD model, there is no 
training stage for the classifier.

Preprocessing. In this stage, EEG signals are filtered with band-pass filters in the range of 2‒30 Hz to obtain 
the useful cognitive information of EEG data in this frequency range. Then, both EEGs and speech stimuli are 
downsampled to the same sampling rate of 64 Hz to decrease the required processing time of later stages.

Probabilistic state space. One of the main goals of computational neuroscience is to develop techniques to 
characterize the dynamic features inherent in cognitive tasks that have rich temporal structures. A complete 
description of a dynamical learning system can be given by a set of variables whose values at a particular time 
yields the state of the system at that time. These variables define the state of the system and the set of all their 
possible values is called the state space of the dynamical  system40. State spaces are highly descriptive for learn-
ing patterns in time series data. The state-space representation gives a suitable and compact way to model and 
analyze systems with multiple inputs and outputs. Probabilistic state-space models (P-SSMs) provide a general 
framework for analyzing stochastic dynamical systems that are observed through a stochastic process. P-SSMs 
describe systems at the time t  with input Xt and output Yt in terms of a Markovian state St , based on an observa-
tion model f  and transition model g 41:

(1)Yt = f (St ,Xt),

(2)St+1 = g(St ,Xt).

Figure 1.  The block diagram of the proposed SAAD system using the dynamic learning methods of RNN, QL, 
and DQL.
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Here, Xt =
[

Xleft(t),Xright(t)
]

 represents the left- and right-ear stimuli and Yt = [Y(t, 1), . . . .,Y(t, n)] is the 
EEG responses measured for n electrodes ( n = 128 ). The computed Markovian state St is fed to the learning 
methods of the successor stage.

Learning methods. RNN. A recurrent neural network is a multi-layer neural network used to analyze sequen-
tial input for classification and prediction purposes. Different from feedforward neural networks, RNNs are not 
limited by the length of input and can use their internal state (i.e., memory) to process sequences of inputs. The 
RNN architecture considers the current input and the output learned from the previous input to make a decision.

The general structure of the RNN learning system is depicted in Fig. 2. As shown, the learning system takes 
some input state S at a particular time t  and feeds that input into the hidden layers having an internal state, h , 
at that time. The values of the hidden states are fed back to the learning model and updated every time RNN 
receives a new input. At each time step, the current hidden state, ht , is updated by the previous state, ht−1 , and 
the current input,St , based on the recurrence  formula42:

where fW is defined typically by “ tanh ”, as the activation function, and a set of weights, W:

The predictions of output ô as the objective of RNN at each time step are computed as:

The parameters Whh , Wsh , and Who are the weights of the RNN architecture which are shared throughout 
the entire network and initialized with random values. RNN uses the backpropagation method to learn from 
sequential training data to correct its prediction. This is achieved by updating the weights using the gradients 
of a computed loss function, L , between prediction, ô , and true value, o . The learning procedure is continued 
until the loss value is reduced to a certain threshold, called the stop threshold, after which the backpropagation 
process stops.

Referring to Fig. 1 and using the learning method of RNN as the classifier in the proposed dynamic SAAD 
system, at each time step t  , the output of probabilistic state space, St , is given to the hidden layers of RNN. At 
this time step, the RNN classifier predicts the class label, ôt , of the attentional direction. The predicted value is 
compared with the true attentional labels, ot , based on a predefined loss function. The internal weights of RNN 
are updated through the backpropagation process as long as the loss function is higher than a certain threshold 
before the state at the next time step is fed into RNN. The values of ôt at the output of RNN are the predicted 
labels specifying the left or right attended speech. The parameters characterizing the detailed structure of the 
RNN learning method are shown in Table 1 (“Experimental setup” section).

Reinforcement learning. Reinforcement learning is a dynamic learning method dealing with the design of 
intelligent agents that learn through trial and error strategy by interacting with their environment. The general 
operation of RL is based on a sequence of states, actions, and rewards. The typical structure of RL consists of an 
environment that represents the outside world and an agent that takes actions based on received observations 

(3)ht = fW (ht−1, St),

(4)ht = tanh (Whhht−1 + WshSt).

(5)ôt = Whoht .

Figure 2.  The block diagram of the RNN learning system is shown in rolled (left) and unrolled (right) 
configurations. The black arrows illustrate the forward propagation path, whereas the red arrows depict the 
backpropagation path. A zoomed view of a sample hidden layer is shown to display the detailed internal 
structure.
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from the environment. The environment includes the current state and a reward that informs the agent of how 
good or bad was the previous action to improve its performance. The RL task can be formalized as Markov deci-
sion process and solved by Q-Learning and deep Q-learning which are described in detail below.

A. Q-Learning
  Almost all RL problems can be formalized as a Markov decision process which is a discrete-time state-

transition system. In MDP, the environment is stochastic and satisfies what is known as the Markov prop-
erty. The Markov property states that given the current state and action, the next state is independent of all 
previous states and actions. MDPs can be described formally with the following components: S denotes the 
state space of the process; A is the set of actions; P is the Markovian transition model, where P(St+1|St ,At) 
is the probability of making a transition to state St+1 when taking action At in the state St ; R represents the 
reward function or feedback, Rt , from the environment by which the success or failure of an agent’s actions 
is  measured43. In MDPs, the behavior of the model is defined by the reward function. Figure 3 depicts the 
interaction between the agent and the environment in an MDP.

  In QL, it is typical to compute a policy as the solution to the Markov decision process. A policy is a map-
ping from state to action (i.e., π : S → A ). It indicates the action At to be taken while in the state St . In the 
simplest case, the objective of RL is to find a policy that maximizes the discounted return Gt for each state 
which is the total discount reward from time-step t43:

where 0 ≤ γ < 1 is the discount rate to balance the immediate and future rewards. Given that the discounted 
return function is stochastic, the expected discounted return, starting from state S , taking action A , and 
following policy π , is given  as44:

(6)Gt = Rt + γRt+1 + γ 2Rt+2 + . . . =
∑

k

γ kRt+k ,

Table 1.  The internal structure of the learning methods used in the proposed SAAD.

Method Parameters Value

RNN

Number of layers 10

Number of hidden units 100

Stop threshold 10–3

Backward time steps 3

Activation function tanh

QL
Discount factor 0.9

Maximum iteration 50

DQL (DNN agent)

Number of layers 5

Number of hidden layers 3

Number of hidden units 100

Batch size 32

Activation function Sigmoid

DQL (RNN agent)

Number of layers 5

Number of hidden units 100

Stop threshold 10–2

Backward time steps 1

Activation function tanh

Figure 3.  The block diagram of MDP in rolled (left) and unrolled (right) configurations. The agent and 
the environment interact over a sequence of discrete-time steps. At each time step, the agent receives a 
representation of the state St of the environment and a reward Rt−1 from the previous interaction to issue an 
action At.



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:15497  | https://doi.org/10.1038/s41598-021-94876-0

www.nature.com/scientificreports/

where Qπ(S,A) is called the “action-value function” and E denotes the expectation operator. The Q-value 
can be learned from a trial and error procedure, in which the agent may need to sacrifice small immediate 
rewards in exchange for the larger long-term ones. To this aim, the action-value function can be written in 
the form of a Bellman expectation equation. Using the Bellman equation, the function is decomposed into 
the immediate reward, Rt , and the discounted Q-value of the successor state, γ Qπ(St+1,At+1):

  This equation expresses a relationship between the value of a state and the values of its successor states. 
The Bellman equation (Eq. (8)) establishes an iterative approach to calculate the optimal policy. The optimal 
policy π∗ is the policy for which Qπ

∗(S,A) > Qπ(S,A) among all possible policies π:

  The function Qπ
∗(S,A) can be used to derive π∗(S):

  The optimal Qπ
∗ function can be found by inserting Eq. (9) into Eq. (8) 45:

  To estimate the action-value function, the method of value iteration can be adopted where the Bellman 
equation is updated iteratively:

  This algorithm converges to the optimal action-value function Qπ
∗ as the number of iterations increases 

(i.e., i → ∞).
B. Deep Q-learning
  The iterative Bellman equation (Eq. (12)) underlies many RL algorithms to estimate the action-value func-

tion. In practice, this basic approach may lead to instability, because the action-value function is estimated 
for each time sequence separately in which the samples would be highly  correlated46. DQL can be regarded 
as an extension of the classical QL to approximate the optimal action-value function (i.e., Qπ

∗ ). In DQL, a 
history of interactions with the environment is used by the agent to learn the optimal policy. This type of 
RL algorithm employs a neural network as a function approximator (e.g., DNN), with weights parameter θ , 
called Q-network. The general block diagram of the deep Q-learning system is shown in Fig. 4.

  The fundamental approach to solve the problem of instability in Q-networks is to break the tempo-
ral dependency and correlation among the sequence of observations used in training the neural net-
work, called experience replay47. With experience replay, the agent’s experiences at each time step t  , i.e., 
et = (St ,At ,Rt , St+1) , are stored in a data set, called the replay memory. A Q-network can be trained by 
minimizing a loss function Li(θi) defined  as46:

where i represents the iteration index. Using the gradient-descent approach, the optimal action-value Q-func-
tion is obtained when the minimum threshold value of the loss function is reached.

  The two implementations of RL (i.e., QL and DQL) are used as the classifiers in the proposed dynamic 
SAAD system shown in Fig. 1. Here, the output of the probabilistic state space, St , and the true attentional 

(7)Qπ(S,A) = Eπ[Gt | St = S, At = A],

(8)
Qπ(S, A) = Eπ[Rt + γ Qπ(St+1,At+1) | St = S, At = A],

=
∑

St+1∈S
P(St+1|St ,At)[Rt + γQπ(St+1,At+1)].

(9)Qπ
∗ (S,A) = max

π

Qπ(S,A).

(10)π
∗(S) = argmaxAQπ∗(S,A).

(11)Qπ
∗ (St ,At) =

∑

St+1∈S
P(St+1|St ,At)

[

Rt + γ maxAt+1Qπ∗(St+1,At+1)
]

.

(12)Qi+1(St ,At) =
∑

St+1∈S
P(St+1|St ,At)

[

Rt + γ maxAt+1Qi(St+1,At+1)
]

.

(13)Li(θi) = Eet
[

(Q(St ,At; θi−1)− Q(St ,At; θi))
2
]

,

Figure 4.  The block diagram of the DQL system. The key difference with QL is the use of a neural network in 
the learning process of the agent.
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labels, ot , form the environment. The classification agent uses the policy to predict the labels of the attention 
class represented by the action At . At each time step, the agent receives a sample from the probabilistic state-
space and classifies it. Then, the environment returns the next sample and an immediate reward Rt based on 
a comparison between the true and predicted classification labels. If the agent performs a correct classifica-
tion action, which is the true detection of attention direction, it earns a positive reward (+ 1), otherwise, it 
is given a negative reward (-1). The agent’s task is to maximize the cumulative reward by learning optimal 
actions (i.e., true classification). This may involve sacrificing some initial immediate rewards to gain more 
long-term return. The policy of the classification agent is optimized by the Bellman iterative update for QL 
or minimizing the loss of the neural network (i.e., DNN or RNN in this study) for DQL. In “Experimental 
setup” section, the detailed structures of both learning methods are shown in Table 1.

Experiments and evaluations
Experimental setup. To investigate the practical performance of the proposed dynamic SAAD model, in 
this study, three groups of experiments are implemented as follows. First, the efficiencies of different dynamic 
learning methods employed in the proposed model are evaluated. The internal structures of the learning meth-
ods used in the implementation of the proposed SAAD are shown in Table 1.

In the second group of experiments, the recently developed systems of attention detection in the 
 literature10,27,33,34 are simulated as baselines and compared with the proposed SAAD system. The baseline systems 
are denoted, respectively, as “O’Sullivan et al.”10, “Wong et al.”27, “Taillez et al.”33, and “Ciccarelli et al.”34. Although 
all the baseline systems use both EEG and speech signals as input, they have inherently different structures in the 
detection of attended speech. The method of “O’Sullivan et al.” uses a backward mapping technique to reconstruct 
the envelope of the attended speech. “Wong et al.” uses various TRF techniques to find a good regression in both 
forward and backward mapping. The baseline “Taillez et al.” employs DNN for the TRF regression, and “Ciccarelli 
et al.” uses convolutional neural networks (CNNs) for the learning of the end-to-end classifier. The proposed and 
baseline methods are simulated using the same EEG data obtained from 128 electrodes. Thirty percent of EEG 
data is used in the training procedure of the baseline systems and seventy percent of data is used to test them.

The last experiment concerns the applicability of the SAAD system in conditions where the attentional 
direction of the listener can be switched from one input stimuli to the other. To this aim, four artificial data 
sequences of 5, 10, 15, and 30 s with alternating attentional directions of the same subject (i.e., left-attended 
or right-attended) are created and concatenated to generate a whole sequence of 60 s long and used as input to 
investigate the performance of the proposed system in such switching attention conditions.

Performance measures. Accuracy. In this study, the objective measure of accuracy is employed to vali-
date the performance of classification. Accuracy (ACC) is a measure of the rate of total samples correctly classi-
fied by the model and is calculated  as48:

where true positive (TP) is the number of positive samples correctly predicted and true negative (TN) is the 
number of negative samples correctly predicted. False positive (FP) is denoted as the number of positive samples 
incorrectly predicted and false negative (FN) is denoted as the number of negative samples incorrectly predicted.

Permutation test. In the classification studies, it is essential to reassure that the results are reliable in the sense 
that high detection performance is not due to overfitting. As an initiative in the reduction of the effects of over-
fitting, in this work, some basic methods such as multiple iterations of the algorithm and cross-validation tech-
niques are employed. Yet, this does not necessarily mean overfitting has not occurred. Several studies suggest 
an evaluation approach, named as “permutation test” to confirm the competence of a classifier and validity of 
the  results49,50. In this approach, the attentional labels of the data (i.e., right attended/left attended) are permuted 
randomly to show that the whole classification pipeline fails with the new manipulated data. The reasoning 
behind the permutation test is to obtain accuracies with normal distributions centered on chance (i.e., 50% in 
2-class problem) in multiple cross folding repetitions with the relabeled  data51. The chance level accuracy of clas-
sification with randomly permuted labels illustrates that overfitting has not occurred in the detection of classes 
with the original data.

Evaluations and discussion. In the first experiment, the performances of different learning methods are 
assessed in the detection of the attentional direction of the listener (see Fig. 1). The results of the various clas-
sification approaches in terms of detection delays and ACC are shown in Table 2 obtained for 60-s trials and 100 
repetitions of the proposed SAAD algorithm.

Considering the dynamic nature of the learning algorithms, the system computes a detection accuracy at any 
time based on the cumulative decisions made up to that time. The detection delay specifies the time required for 
the system to reach a stable decision state in attention detection. It can be seen that the use of the QL method 
has the lowest accuracy and the longest delay in detection among different learning methods. Other methods 
using neural networks attain higher accuracies. Specifically, the use of RNN as the agent in DQL yields the high-
est accuracy and the shortest delay in detection. This can be interpreted by the observation that employing a 
powerful agent such as RNN in the internal structure of the DQL method results in higher performance of the 
system in terms of accuracy and detection delay.

(14)ACC =
TP+TN

TP+TN+ FP+ FN
,
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To examine whether the high performances of the proposed dynamic SAAD system are due to the overfitting 
or not, the method of permutation test is used. For this purpose, the attentional labels are randomly permuted 
and the learning operations are repeated with the manipulated data. The results of this test for 100 repetitions 
are shown in Fig. 5 as normal distributions for different learning approaches.

According to this figure, it can be seen that using the relabeled data in the RNN method, the average detection 
accuracy is above 60%, which means that the overfitting in this learning method is more probable among other 
methods. In the QL method, despite the fact that the average accuracy is close to the level of chance, a higher 
variance is observed as compared with RNN for the accuracy of the detection. This indicates that these dynamic 
learning methods (i.e., RNN and QL) are less generalizable. However, in the deep Q-learning methods, the close 
values of average accuracies to the chance level (47.2% for DQL (DNN agent), 51.8% for DQL (RNN agent)) 
and low values of the variances, show that these methods are robust against overfitting, and therefore, suitable 
candidates for the dynamic SAAD system.

The second experiment concerns the comparisons of the proposed dynamic SAAD system with several 
traditional baseline methods (see Sect. 3.1) in terms of classification accuracy. In the first step, Table 3 shows 
the performances of these baselines reported in the literature with different signal lengths, along with those of 
the proposed system simulated with a 60-s signal length. Nevertheless, a meaningful and valid comparison is 

Table 2.  The classification performance of the proposed SAAD system (in terms of detection delay and ACC) 
using four learning methods obtained for 60-s trials and 100 repetitions of the algorithm.

Learning methods Detection delay ACC 

RNN 6231 ms ± 443 89.1% ± 0.9

QL 8806 ms ± 671 84.1% ± 1.2

DQL (DNN agent) 4162 ms ± 387 92.6% ± 0.2

DQL (RNN agent) 2697 ms ± 225 94.2% ± 0.4

Figure 5.  The results of the permutation test for different learning methods obtained for 100 repetitions of the 
proposed SAAD algorithm.

Table 3.  The comparison of the proposed SAAD and baseline methods (in terms of ACC). The classification 
accuracies of the baselines are reported from the corresponding literature.

SAAD method Learning method Signal Duration ACC 

O’Sullivan et al Reconstruction 30 min 89.0% 10

Wong et al Regularized TRF 30 s 90.9% 27

Taillez et al DNN 60 s 97.6% 33

Ciccarelli et al CNN 10 s 87.0% 34

Proposed

RNN 60 s 89.1%

QL 60 s 84.1%

DQL (DNN agent) 60 s 92.6%

DQL (RNN agent) 60 s 94.2%
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accomplished when the proposed and baseline methods are simulated under similar conditions, i.e., the same data 
and signal length. Figure 6 shows the simulation results of the methods for sequentially increasing data duration. 
In this diagram, for the static baseline methods, the signal length used to find the accuracy of the detection is 
increased in 5-s steps. In the case of the proposed dynamic system with different learning methods, the signal 
length is increased continually, where each point on the diagram represents the ratio of total true decisions to 
all decisions obtained up to that point. 

Evidently, the method of “Ciccarelli et al.” achieves the highest performance, whereas “O’Sullivan et al.” 
performs the least among the different static methods. In contrast to the result presented by “O’Sullivan et al.” 
in Table 3, here the method yields a final lower classification accuracy (~ 52%) due to the small amount of data 
(i.e., 60 s) used by the method. Despite the observation that the dynamic learning methods yield stable detection 
accuracies with some delays, the corresponding values of accuracies are, in general, higher than those of static 
baseline methods. Specifically, the proposed SAAD based on the DQL (RNN agent) learning method attains 
the highest accuracy among all dynamic SAAD approaches. The proposed system, in this case, has also the 
fastest rate of increase in accuracy regarding its lower detection delay (refer to Table 2). Moreover, the diagram 
illustrates that both the DNN and RNN agents in DQL result in close performances of attention detection in 
longer durations of data.

In the last experiment, considering the capability of the proposed dynamic SAAD system in temporally track-
ing the auditory attention, the performance of the system in switching attention scenarios is evaluated. Due to 
the high efficiency of DQL (RNN agent) in the previous experiments, this learning method is used to inspect 
the capability of the proposed SAAD for the switching attention task. The results of this experiment are shown 
in Table 4 for different time segments of the data (see “Preprocessing” section). The evaluation is performed 
in terms of the classification accuracy of the model and the detection delays of the learning method for differ-
ent time fragments of input data. As can be seen, the length of data pieces and detection accuracy are directly 
related to each other; the smaller the duration of the data segments, the lower the accuracy of the detection. This 
observation is justified by the evidence that the reduction in the length of data segments results in a decrease 
in classification accuracy, which is also confirmed by the findings given in Fig. 6. Assuming the approximately 
constant detection delay of the learning method (~ 2.5 s), the results of the table also show that even with short 
data segments (e.g., 5 s), an acceptable detection accuracy (~ 59.7%) is achievable.

Conclusion
In this paper, a new system for selective auditory attention detection based on dynamic learning methods is 
proposed with the ability of temporally tracking the attentional direction of the listener. The main contribution of 
this study is to formulate the classification problem of selective auditory attention as a sequential decision-making 

Figure 6.  The comparison of the proposed SAAD and baseline methods in terms of ACC for sequentially 
increasing data duration.

Table 4.  The classification performance of the proposed SAAD system with DQL (RNN agent) (in terms 
of detection delay and ACC) in attention switching scenarios obtained for different data segments and 100 
repetitions of the algorithm.

Data segments

12 × 5 s 6 × 10 s 4 × 15 s 2 × 30 s

ACC 59.7% ± 0.3 73.4% ± 0.2 84.6 ± 0.2 90.8 ± 0.1

Detection delay 2432 ms ± 216 2486 ms ± 212 2531 ms ± 218 2713 ms ± 214
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process which is solved by the learning methods of RNN, QL, and DQL. In the proposed SAAD system, first, 
a set of all possible states corresponding to the input data (i.e., speech and EEG), called the probabilistic state 
space, is formed at each time step. Then, the generated states at each moment are used in the learning stage to 
detect the attentional direction. Here, various dynamic learning methods, including RNN, QL, and DQL are 
employed to make the final decision of the attention detection task. The proposed model for attention detection 
is advantageous in some aspects to the traditional auditory attention detection procedures. First, the auditory 
attention is detected at any time for the sequentially presented input data without requiring a separate training 
stage of the classifier. This means that the learning process takes place in little time, specified by the detection 
delay, using trial and error methods. Furthermore, the proposed SAAD model provides the possibility to be 
employed in such environmental conditions where the switching attention of the listener takes place. Due to the 
sequential and real-time nature of the learning methods in the new system, here, both the computational load 
and the data size are significantly low.

Using different learning methods, the proposed SAAD model is evaluated and compared with different tradi-
tional attention detection methods from the literature used as baselines. The permutation test is used to validate 
the reliability of the classification results and the generalizability of the methods. As a result of the experiments, it 
is found that the deep Q-learning method using RNN as agent (i.e., DQL (RNN agent)) has the best performance 
in terms of all criteria, including highest classification accuracy (~ 94.2%), least detection delay (~ 2697 ms), 
and better generalizability among all learning methods. In an additional experiment, taking the capability of 
the proposed SAAD in tracking the auditory attention over time, the performance of the system is assessed in 
switching attention conditions. The results of using DQL (RNN agent) as the learning method demonstrate that 
the SAAD model is able to track the switching attention of the listener for different time segments of the data. 
Specifically, for short data segments, the model shows a good performance in tracking the switching attention, 
which increases by using longer segments of data.

In a real-world cocktail party scenario, the selective auditory attention detection can be considered as a 
complementary component of a complete speech segregation system for the design of the hearing aid devices. 
The current work evaluates the performance of the dynamic SAAD system in a dichotic scenario with two input 
speech signals. Also, artificially produced speech segments are used to evaluate SAAD in attention switching 
conditions. The assessment of the proposed system with more sound sources located at different spatial posi-
tions in a noisy and reverberant acoustic environment seems to be an indispensable step toward the design of 
practical hearing aids. In future works, more realistic data are required to exploit the capability of the proposed 
dynamic SAAD system in detecting and tracking the auditory attention switching in such real environments.
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