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Radiomics of diffusion-weighted
MRI compared to conventional
measurement of apparent
diffusion-coefficient

for differentiation between benign
and malignant soft tissue tumors

Seung Eun Lee?, Joon-Yong Jung'*?, Yoonho Nam?, So-Yeon Lee?, Hyerim Park?,
Seung-Han Shin* Yang-Guk Chung* & Chan-Kwon Jung®

Diffusion-weighted imaging (DWI) is proven useful to differentiate benign and malignant soft

tissue tumors (STTs). Radiomics utilizing a vast array of extracted imaging features has a potential
to uncover disease characteristics. We aim to assess radiomics using DWI can outperform the
conventional DWI for STT differentiation. In 151 patients with 80 benign and 71 malignant tumors,
ADC,,.., and ADC,,,;,, were measured on solid portion within the mass by two different readers. For
radiomics approach, tumors were segmented and 100 original radiomic features were extracted

on ADC map. Eight radiomics models were built with training set (n=105), using combinations of 2
different algorithms—multivariate logistic regression (MLR) and random forest (RF)—and & different
inputs: radiomics features (R), R+ADC,,, (I), R+ADC,,.. (E), R+ADC,;, and ADC,,..,. (A). All models
were validated with test set (n=46), and AUCs of ADC,,..., ADC,;;, MLR-R, RF-R, MLR-I, RF-I, MLR-E,
RF-E, MLR-A and RF-A models were 0.729, 0.753 0.698, 0.700, 0.773, 0.807, 0.762, 0.744, 0.773 and
0.807, respectively, without statistically significant difference. In conclusion, radiomics approach did
not add diagnostic value to conventional ADC measurement for differentiating benign and malignant
STTs.

DWTI is a functional MRI that provides unique information about the microarchitecture of tissue and how it
affects the diffusion of water molecules. In musculoskeletal field, it is considered to improve the detection of
tumorous or infectious lesions, differentiation of benign and malignant tumors, and evaluation of treatment
response when combined with standard MRI. DWT is advantageous especially in the case of tumor characteriza-
tion because it can provide the quantitative information with ADC map. It can also give additional information
for determining various extracellular component such as hemorrhage, mineralization, fat and myxoid tissue'%.

Radiomics is an emerging field of study that utilizes the vast arrays of quantitative features extracted from
volumetric image, which is comprised of millions of voxels®. Typical radiomic assessment includes analysis of
texture, shape, and size; and, the acquired features hold information about tumor pathophysiology, which can
be harnessed for diagnosis, prognosis and therapeutic modality in clinical field.

In musculoskeletal radiology, differentiation of the malignant soft tissue sarcomas from benign tumors is
important for planning proper treatment. Due to their pathologic heterogeneity with various origin, location and
overlapping imaging features on conventional MRI, standard MRI is frequently insufficient for differentiating
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Soft tissue tumors

Benign and borderline tumors (n=_80)

Schwannoma (n=41), Tenosynovial giant cell tumor (n=11), Desmoid type fibromatosis (n=8),
Neurofibroma (n=5), Myxoma (n =3), Inflammatory myofibroblastic tumor (n=2), Solitary

Histology fibrous tumor (n=1), Nodular fasciitis (n= 1), Fibrohistiocytic tumor (n=1), Spiradenoma
(n=1), Granular cell tumor (n=1), Angiofibroma (n=1), Angioleiomyoma (n=1)
Location Neck (n=2), Shoulder and axilla (n=8), Upper extremity (n=17), Hand and Wrist (n=17),

Trunk (n=6), Hip and Groin (n=7), Lower extremity (n=21), Foot and Ankle (n=2)

Malignant tumor (n=71)

Undifferentiated pleomorphic sarcoma (n = 18), Myxoid liposarcoma (n =12), Myxofibrosarcoma|
(n=11), Synovial sarcoma (n=7), Malignant peripheral nerve sheath tumor (n=6), Rhabdo-
myosarcoma (n=4), Leiomyosarcoma (n=4), Dedifferentiated liposarcoma (n =2), Pleomor-

Histology phic liposarcoma (n=1), Alveolar soft-part sarcoma (n=1), Angiosarcoma (n=1), Epithelioid
sarcoma (n=1), Extraskeletal myxoid chondrosarcoma (n=1), Low grade fibromyxoid sarcoma
(n=1), Malignant solitary fibrous tumor (n=1)

Location Shoulder and axilla (n=1), Upper extremity (n=10), Hand and Wrist (n=2), Trunk (n=6), Hip

and Groin (n=16), Lower extremity (n=34), Foot and Ankle (n=2)

Table 1. Various histology of soft tissue sarcoma of the included patients.

soft tissue tumors. Several previous studies demonstrated increased diagnostic accuracy of malignant soft tis-
sue sarcoma by obtaining additional DWT with standard MRI*°. However, clinical utility of radiomics based on
ADC map, regarding the diagnosis of soft tissue sarcoma, has not been studied yet. Therefore, we aim to assess
the diagnostic performances of various radiomics models based on DWI and ADC map and to compare them
with that of ADC,,,,, and ADC_;, in this study.

Result

Patient demographics. Among the included 151 patients, 71 patients (47%) were diagnosed as malignant
soft tissue sarcoma. Lesions with intermediate biologic behavior including desmoid type fibromatosis, fibrohis-
tiocytic tumor, inflammatory myofibroblastic tumor and solitary fibrous tumor were considered as benign. Spe-
cific histological types and locations of included tumors are shown in Table 1. The average time interval between
MRI and pathologic assessment was 28 days (range; 0-357 days). The proportion of malignant soft tissue tumor
was 45% (47/105 cases) in training set and 52% (24/46 cases) in test set. There was no statistically significant dif-
ference of age, sex, ADC,,,, and ADC,,;, values between the training and test sets. Baseline demographics and
clinical characteristics of the patients are summarized in Supplementary Table (S1).

Diagnostic performance of ADC value. The mean ROI size of all tumors was 62.5 mm? (range; 17.5-
133.9 mm?) and 69.5mm? (range; 15.4-145.6 mm?) in both readers, respectively. The interobserver agreement
of ADC values in ROIs was excellent between 2 readers : intraclass correlation coefficients of ADC,,.,,=0.97
and ADC,,;,=0.93. With the ADC values assessment, the average and standard deviation of ADC,,,,, and
ADC,,, value in regions of interest (ROI) in training set (n=105) were 1448.59+567.98, 1015.55 +492.67
in reader 1 and 1429.26 +554.75, 959.07 £480.27 in reader 2, respectively (Supplementary Table 1). Specifi-
cally, the average and standard deviation of ADC,,.,, and ADC,;, were 1199.69+443.41, 788.32+463.59 in
reader 1 and 1215.44 +445.90, 776.74 £465.70 in reader 2 in malignant soft tissue tumors, and 1632.90 +576.41,
1221.14+478.52 in reader 1 and 1602.53+573.52, 1106.83+439.37 in reader 2 in benign soft tissue tumors,
respectively. Both ADC,,.,, and ADC_;, values were significantly associated with malignant soft tissue tumor
differentiation in reader 1 and 2 (p value <0.001). The receiver operating characteristic (ROC) curves are dem-
onstrated in Fig. 1; and AUCs of ADC,,,,, and ADC,;, were 0.712 and 0.759 in reader 1, and 0.697 and 0.719 in
reader 2, respectively.

Reproducibility of segmentation and influence of normalization methods on feature selec-
tion. Among randomly selected 20 tumor images for evaluation of segmentation reproducibility, 13 tumors
(65%) were malignant. The average and standard deviation of Dice coefficient between 3 different segmentations
by 3 readers were 0.92+0.07 (range from 0.57 to 1).

Radiomic features were extracted, and top 20 radiomic features were selected by univariate regression test for
each normalization method. When top 20 selected features were compared, 7 features were commonly selected
regardless of the normalization methods. Common radiomic features between two normalization methods were
55% (11/20 features), 70% (14/20 features) and 60% (12/20 features) in whole-image method, VOI method and
VOI-dilation method, respectively (Table 2).

Diagnostic performances of 8 classification models. The AUCs of MLR-R, MLR-I, MLR-E and
MLR-A models with training set were 0.848, 0.883, 0.876 and 0.883 in reader 1 and 0.848, 0.873. 0.875 and
0.875 in reader 2, respectively. Also the AUCs of RF-R, RF-I, RF-E and RF-A models with training set were
0.807, 0.846, 0.841 and 0.860 in reader 1 and 0.807, 0.820, 0.834 and 0.841 in reader 2, respectively. All results
including AUCs, sensitivity, specificity and accuracy of 8 built models were presented in Table 3. In MLR-A and
RF-A models, ADC,,;, was selected as second-most important and the most important feature in reader 1, and
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Figure 1. ROC curves of ADC,,,.,, and ADC,;, of reader 1 and reader 2 in training set. The plots were
generated using MedCalc for Windows, version 19.0 (MedCalc Software, Ostend, Belgium).

Normalization method | Method 17, 2f and 3* | Method 1 and 2 Method 1 and 3 Method 2 and 3
GLCM Shape First order GLCM
Joint entropy Least axis length Interquartile range | Inverse variance
GLCM GLCM Shape
Correlation Cluster tendency Mesh volume
GLCM GLDM GLCM
Difference entropy Dependence nonuniformity Imc2
First order First order Maxi-
Common features .
10 percentile mum
GLSZM
Zone variance
Shape
Sphericity
GLCM
Cluster shade

Table 2. Common features among the top 20 original radiomic features from each normalization method for
malignant tumor prediction "Normalization method covering all voxels from whole image. *Normalization
method covering the voxels from VOI only. *Normalization method covering the voxels from VOI and its

2 mm-dilated circumference.

ADC,,.,, Was not included in model generation. In contrast, ADC,,,, was selected as second-most important
and fourth-most important feature in reader 2, and ADC,;, was not included in MLR-A and RF-A model gen-
eration.

The AUCs of ADC,,,,, ADC,;,, MLR-R, RE-R, MLR-I, RE-I, MLR-E, RE-E, MLR-A and RF-A radiomics
models in test set were 0.729, 0.753, 0.698, 0.700, 0.773, 0.807, 0.762, 0.744, 0.773 and 0.807 in reader 1, and 0.689,
0.711, 0.698, 0.700, 0.727, 0.771, 0.742, 0.775, 0.742 and 0.775 in reader 2, respectively. The other results compared
in test set are summarized in Table 3. Comparisons of AUCs between ADC,, ., ADC,;i, and 4 radiomics models
(MLR-R, RF-R, MLR-A, RF-A) did not show any significant difference in both readers (reader 1; p value=0.745,
0.559 with MLR-R model, p value =0.782, 0.599 with RF-R model, p value =0.456, 0.653 with MLR-A model, p
value =0.259, 0.408 with RF-A model, reader 2; p value =0.932, 0.895 with MLR-R model, p value =0.922, 0.915
with RF-R model, p value =0.312, 0.561 with MLR-A model, p value =0.330, 0.476 with RF-A model) (Fig. 2).

Discussion

In this study, we compared the use of ADC and radiomics approach with ADC maps for differentiation of benign
and malignant STT. Eight radiomics models estimated with the test set showed similar performances to ADC
measurement. When the models using both ADC measurement and radiomics features were built with training
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Single par t Radiomics model

ADC,,.., |ADC,;, |MLR-R |[RF-R |MLR-I [RF-I | MLR-E |RF-E | MLR-A |RF-A

AUC 0.712 0.759 0.848 0.807 | 0.883 0.846 | 0.876 0.841 | 0.883 0.860
RI Sensitivity (%) | 68.1 70.2 78.7 66.0 78.7 68.1 74.5 74.5 78.7 68.1
Specificity (%) | 81.0 81.0 77.6 79.3 84.5 84.5 86.2 82.8 84.5 86.2
Train set Accuracy (%) 70.5 74.3 78.1 73.3 81.9 77.1 81.0 79.0 81.9 78.1

AUC 0.697 0.719 0.848 0.807 | 0.873 0.820 | 0.875 0.834 | 0.875 0.841
R2 Sensitivity (%) | 68.1 68.1 78.7 66.0 78.7 70.2 72.3 72.3 72.3 68.1
Specificity (%) |70.7 79.3 77.6 79.3 82.8 79.3 87.8 81.0 82.8 82.8
Accuracy (%) | 69.5 74.3 78.1 733 81.0 75.2 78.1 77.1 78.1 76.2

AUC 0.729 0.753 0.698 0.700 | 0.773 0.807 | 0.762 0.744 | 0.773 0.807

p value® 0.551 0.745 0.782 | 0.456 0.259 | 0.537 0.827 | 0.456 0.259

RI p value* 0.551 0.559 0.599 | 0.653 0.408 | 0.861 0.907 | 0.653 0.408
Sensitivity (%) | 66.7 70.8 58.3 75.0 75.0 83.3 70.8 70.8 75.0 83.3
Specificity (%) | 81.8 86.4 68.2 63.6 63.6 59.1 54.5 59.1 63.6 59.1
Test set Accuracy (%) 73.9 78.3 63.0 69.6 69.6 71.1 63.0 65.2 69.6 71.1

AUC 0.689 0.711 0.698 0.700 | 0.727 0.771 | 0.742 0.775 | 0.742 0.775

p value® 0.562 0.932 0.922 | 0.664 0.306 | 0.312 0.330 | 0.312 0.330

R2 p value? 0.562 0.895 0.915 | 0.841 0.430 | 0.561 0.476 | 0.561 0.476
Sensitivity (%) | 54.2 62.5 58.3 75.0 70.8 66.7 75.0 70.8 75.0 70.8
Specificity (%) | 90.9 90.9 68.2 63.6 63.6 59.1 54.5 59.1 54.5 59.1
Accuracy (%) 71.7 76.1 63.0 69.6 67.4 63.0 65.2 65.2 65.2 65.2

Table 3. Diagnostic performance of ADC,,.,,, ADC,;, and radiomics model in training set and test set.
R1 Reader 1, R2 Reader 2. "p value calculated from Delong test for comparison of diagnostic performance
between radiomics model and ADC,,,, in test set. *p value calculated from Delong test for comparison of
diagnostic performance between radiomics model and ADC_,;;, in test set.

set, ADC was included as highly ranked features and diagnostic performances were consistently higher than
the single use of ADC in all radiomics models. However, there was no increment in diagnostic performances
when the trained models were applied to the test set. The discrepant results between training and test sets may
attribute to different composition in pathologic entities, different data collection periods, or just a random noise
related to small sample size.

It is widely known that ADC map provides additional benefits to conventional MR images in differentiating
soft tissue sarcoma from benign tumors®*>’, with quantitative information of tumor cellularity. According to Lin
etal.,, the ADC map is correlated pixelwise with histology in terms of extracellular space and nuclear size®. Also,
there are several previous studies about repeatability of ADC values across institutions and MRI vendors®!.
Due to its quantifiable and reliable properties, the ADC map emerged as a target for radiomics analysis'>"'%. A
recent study published by Peerling et al. showed substantial test-retest stability (25-29%) of ADC based features
in radiomic feature analysis within multicenter and multi-vendor trial with patients of lung cancer, ovarian
cancer and liver metastasis of colorectal cancer!?. However, there has been no previous study about application
of radiomics analysis using ADC map on the differentiation of malignant soft tissue tumors.

Before the construction of radiomics model, we evaluated the reproducibility of image segmentation and
influence of normalization in features generation, because there were concerns on the variability of individual
segmentation' and necessity of normalization on ADC map'. The segmentation step was not regarded as a step
to introduce variances based on the result that average DICE coeflicient between 3 readers was high. Our result
also showed that 55% of top 20 radiomic features was consistently extracted with different normalization meth-
ods, which was selected among total 100 radiomic features. Furthermore, these 20 radiomic features accounted
for 40-60% of features in the final 8 radiomics models.

In our radiomics models, the most relevant imaging features among the top 10 relevant descriptors was
GLCM-derived features and the second-most relevant imaging features were first-order feature. This result
is in similar context with a previous study by Corino et al.' regarding that the two most relevant features for
differentiation of high grade malignant soft tissue tumor were original first-order feature and GLCM. GLCM
is a transformed matrix for texture-analysis, which calculates the occurrence of different gray level voxel pairs
in certain spatial relationship. The GLCM features is known to reflect the tumor heterogeneity'”, which is also
a pathologically critical feature for histologic grade of soft tissue sarcoma'®'®. Our result showed that radiom-
ics using GLCM-derived features could be a measure to use quantitative information on tumor heterogeneity.
However, radiomics models did not show superior diagnostic performance even with ADC combined. We
assume that heterogeneity and cellularity might be parallel in soft tissue tumors. Therefore, radiomics signify-
ing tissue heterogeneity could only provide redundant information to ADC. In addition, the soft tissue tumor
consists of diverse histologic subtypes'*** compared to other tumors. Therefore, it could be more difficult to find
a universally effective radiomics model for all kinds of ST Ts rather than the model for specific tumor types. In
other tumors composed histologically homogeneous cell type such as cervical cancer?! and prostate cancer?,
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Figure 2. Comparison between the diagnostic performance of ADC values and 4 radiomics models (MLR-
R, RF-R, MLR-A and RF-A) in reader 1 (a) and reader 2 (b). The plots were generated using MedCalc for
Windows, version 19.0 (MedCalc Software, Ostend, Belgium).

the radiomics models presented similar or higher diagnostic performance compared to the diagnosis based on
conventional diagnosis or ADC values.

Our study has several limitations. First, it is a retrospective study based on a single center with uniform
MR protocol. As we divided training set and test set with temporal separation, by setting the patients who took
MRI later to test set, there could be result interruption due to heterogeneity between two sets. Also, although
we performed ten-fold cross validation to monitor and tune the model during training phase and subsequently
tested the trained model with temporally split sample, external validation with data set from different institution
is regarded as optimal way to prove the generalizability. Second, a certain type of tumor consists more than 50%
of benign tumor groups in our study. In case of schwannoma, it is relatively straightforward to be diagnosed
as benign with conventional images. However, this composition reflects the real incidence in clinical practice.
It is still unclear whether balanced composition is beneficial to train model than the composition reflecting
real incidence. Third, there are several concerns yet to be addressed in radiomics research such as stability of
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Consecutive patients with primary soft tissue tumor and
preoperative MRI with diffusion-weighted images between
Jan 2009 to Aug 2019 (n=398)

MRI abnormality (n=125)

»  Artifact (n=44)

—” . Neoadjuvant treatment before MR (n=49)
»  Small size of lesion (<1cm) (n=32)

¥ No pathologic confirmation (n=46)

—» Lipoma and well-differentiated liposarcoma (n=76)
A 4

Eligible patients with primary soft tissue tumor (n=151)

Training set : MRI from 2009 to 2017 (n=105)

Test set : MRI from 2018 to 2019 (n=46)

Figure 3. Flowchart of patient inclusion.

radiomic feature extraction, and difficulty in correlation with biological behaviors of targeted disease. Although
many researches are ongoing to address these issues in radiomics, there is not sufficient evidence to support the
radiomics as more robust and explainable methodology.

In conclusion, our study showed both ADC measurement and radiomics approach for ADC map are com-
parable for differentiating malignant and benign STT. However, we did not find additional diagnostic values
of radiomics approach to conventional ADC measurement. Further study with a larger cohort from multiple
institutions should ensue to prove the incremental values of radiomics approach.

Material and methods

This retrospective study was approved by our institutional review board (IRB of The Catholic university of Korea,
Seoul St. Mary’s Hospital) and the requirement for informed consent was waived. All methods in our study were
carried out in accordance with relevant guidelines and regulations.

Patient population. From January 2009 to August 2019, a total of 398 patients underwent 3.0 T MRI
including DWT in our institution for primary soft tissue tumor evaluation. The MR images of 125 patients were
excluded for various reasons: distortion of images due to artifacts (n=44), acquisition of images after treatment
(n=49) and images of less than 1 cm sized lesions (n=32). We also excluded well-differentiated adipocytic
tumors (n=76) such as lipomas and well-differentiated liposarcomas because DWI was performed using a sin-
gle-shot, spin-echo echo-planar imaging sequence with fat suppression'. After excluding 46 additional patients
who had not achieved pathologic confirmation, 151 patients were finally included (Fig. 3). All tumors were
pathologically confirmed by surgical excision with histological analysis on the excisional sample performed by
one pathologist. The specific histologic results and locations of soft tissue tumors were evaluated. The time inter-
vals between MRI and pathologic result were additionally assessed. Among 151 data sets from 151 patients, 105
data sets were assigned to the training set. Forty-six consecutive patients who received MRI recently between
2018 and 2019 were assigned to the test set for temporal validation®.

MRI protocols. MRI was obtained before surgery or neoadjuvant treatment in all patients. MRI was per-
formed using two 3.0 T imagers (Verio and Magnetom Vida; Siemens Medical Solutions, Erlangen, Germany)
with dedicated surface coils depending on the location of tumor. The standard MRI protocols included longi-
tudinal fat-suppressed T2-weighted turbo spin-echo (TSE) sequence, axial T1-weighted TSE sequence, axial
T2-weighted TSE sequences with and without fat suppression, and longitudinal and axial fat-suppressed con-
trast-enhanced T1-weighted TSE sequences. Other parameters are shown in Supplementary Table S2. Before
contrast enhancement, a single-shot spin-echo echo-planar DWI sequence was obtained on the axial plane. A
parallel imaging technique using GRAPPA (GeneRalized Autocalibrating Partially Parallel Acquisitions) was
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combined with an acceleration factor of 2. Sensitizing diffusion gradients were applied with b values of 0 and
800 s/mm? sequentially in the x, y, and z directions’. Pixel-based ADC maps were created from DWI based on
mono-exponential calculation using commercial software and a workstation (Leonardo MR Workplace; Sie-
mens Medical Solution, Erlangen, Germany).

MRI analysis.

e ADC value acquisition

In quantitative analysis of ADC, the ADC_,,,, and ADC_;, values were measured by two readers (12-years
and 2-years of experience in musculoskeletal radiology) on picture archiving and communication system
(PACS)*. A solid portion for ROI setting was defined as the lesion showing hyperintense signal on DWI
(b=800 s/mm?), and enhancement on contrast enhanced T1-weighted images. Sites of hemorrhage, necrosis,
or calcification were carefully avoided after correlation with standard MRI. After selection of solid portion,
ROI was manually drawn on the ADC map, and the minimum and average values of the measurement were
recorded as ADC,,;, and ADC_,,,,. The acquired values from test set were used as a standard reference for
evaluating the diagnostic performance of radiomics models.

Radiomics model development and validation.

® Segmentation

Segmentation was initially performed by another radiologist (2-years of experience on musculoskeletal
radiology) using semiautomatic region intensity filter method, which was implemented by ITK-SNAP soft-
ware, version 3.8.0 (open source, http://www.itksnap.org/)*. The segmented masks were manually revised
on the b value image of 800 s/mm? and co-registered ADC map with standard MRI as reference. VOI was
drawn along the entire mass except for the most peripheral portions in order to avoid partial-volume effects.
To review the reproducibility of VOI segmentation, the final correction of peripheral portion in VOI was
edited in 20 tumor images by three readers, consisted of one student and two radiologists (2-years of experi-
ence on musculoskeletal radiology, each).

® Image preprocessing and radiomic feature extraction

The single VOI was selected by consensus of three readers for further preprocessing steps. After VOI
confirmation, the normalization of ADC map was done with the Z-score normalization, according to the
following equation: f(x) = % , with f(x) as normalized intensity, x as original intensity, (x as mean
and oy as standard deviation of image signal intensity, respectively®®. According to Schwier et al.', the image
normalization provides the reproducibility of ADC map extracted radiomics features. In our study, normali-
zation was performed using three different image coverages: (1) coverage of all voxels from image, including
both VOI and background area (whole-image method), (2) coverage of voxels from VOI only (VOI method),
(3) coverage of voxels from VOI with marginal dilation of 2 mm (VOI-dilation method), for inclusion of
surrounding normal tissues. In this step, we assessed the influence of different normalization methods on
the radiomic feature selection. The gray-level quantization and voxel resampling were performed with bin
width of 5, and a spatial resolution of 3 x 3 x 3 mm? using spline interpolator. Radiomic feature were extracted
by using the pyradiomics package (https://github.com/Radiomics/pyradiomics/)*. Within each VOI, (a) 18
first-order features, (b) 14 volume and shape features, and (c) 68 texture features were obtained.

® TFeature selection and classification model building

We used Syngo. via Frontier Radiomics (Siemens Healthineers)? to construct classification model. This
software incorporates mRMR for feature selection, and multivariate logistic regression test and random
forests (RF) algorithm for classification model algorithms, respectively. Classic nRMR is frequently used
feature selection method for the exclusion of redundant features®, and applied to the selection of radiomic
features for generating 8 radiomics models in our study. RFs for classification is one of the well-established
classifiers in radiomics by constructing a multitude of decision trees?”-*-3!.

In training phase, 10 radiomic features were selected by classic mRMR. Subsequently, classification models
were developed using multivariate logistic regression (MLR) and random forest (RF). Each model was trained
with 4 different inputs using radiomic features only, radiomic features and ADC_;, combined, radiomic
features and ADC,,.,, combined, and radiomic features and ADC,_,,, ADC,,.,, combined. As a result, 8
classification models were built: (1) multivariate logistic regression (MLR) with radiomic features (MLR-R),
radiomic features and ADC,;, (MLR-I), radiomic features and ADC,,.,, (MLR-E), and radiomic features
and ADC,;,, ADC,,.., (MLR-A), (2) random forest (RF) with radiomic features (RF-R), radiomic features
and ADC,;, (RF-I), radiomic features and ADC,,.,, (RF-E), and radiomic features and ADC,,;,, ADC,,..n
(RF-A). The best subset of features in MLR are determined with forward selection method using adjusted R*.

Hyperparameters of RF used in the software package were summarized in supplementary material (S3).
Accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) of each
model was calculated in training set. In case of four RF models, averaged AUCs with ten-fold cross valida-
tion were calculated. Ten-fold cross validation is a resampling technique by dividing the data sample into 10
parts, and using 9 parts for training and 1 part for testing. After repeating the model training and validating
procedure for 10 times with changing of training set sequentially, the model performance is determined by
averaging all results acquired from 10 times of test set validation. Ten-fold cross validation process can protect
the model against the overfitting, and overall error estimate is generalized.

e Temporal validation with test set
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Figure 4. Radiomics pipeline of our study. The diagram was drawn by the first author of the manuscript. The
images included in the diagram were captured from the softwares we used : ITK-SNAP software, version 3.8.0
(open source, http://itksnap.org/), Syngo. via Frontier Radiomics (Siemens Healthineers).

e Eight constructed classifier models were evaluated on a test set, which is temporally separated from the
training set. Diagnostic accuracy, sensitivity, specificity, and AUC for differentiating malignant from benign
soft tissue tumors were calculated. Entire step for radiomics workflow is demonstrated on Fig. 4.

Statistical analysis. Student’s t-test and chi-square test were used to assess the difference between the train-
ing and test sets regarding the demographic data. Interobserver agreement of ADC,.,, and ADC_;, between
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two readers were evaluated using intraclass correlation (ICC) analysis. The sensitivity, specificity and AUC of
ADC,,.., and ADC_;, of two readers were calculated in training set, respectively. The sensitivity and specificity
were determined by selecting the optimal cut-off values as the minimum distance from the left upper corner of
the unit square in ROC curves of ADCs.

During the image preprocessing step, DICE coefficient was calculated to measure the similarity between
segmentations drawn by 3 readers. For the assessment of influence of normalization method on radiomic feature
selection, the univariate regression test using Benjamini—-Hochberg procedure with false positive rate of 0.05 was
performed to extract 3 different sets of top 20 radiomic features, selected from 3 different normalization methods.

To compare the diagnostic performance between ADC measured on single layer and newly developed eight
models including radiomic features, the ROC curves of ADC,, ., ADC,iry MLR-R, RF-R, MLR-I, RF-I, MLR-E,
RF-E, MLR-A and RF-A models in test set were compared using the Delong test. All statistical analyses were
performed using R version 4.0.0 (http://www.r-project.org/) and MedCalc for Windows, version 19.0 (MedCalc
Software, Ostend, Belgium). A p value of < 0.05 was considered statistically significant.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding
author on reasonable request.
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