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Radiomics of diffusion‑weighted 
MRI compared to conventional 
measurement of apparent 
diffusion‑coefficient 
for differentiation between benign 
and malignant soft tissue tumors
Seung Eun Lee1, Joon‑Yong Jung1*, Yoonho Nam2, So‑Yeon Lee1, Hyerim Park3, 
Seung‑Han Shin4, Yang‑Guk Chung4 & Chan‑Kwon Jung5

Diffusion‑weighted imaging (DWI) is proven useful to differentiate benign and malignant soft 
tissue tumors (STTs). Radiomics utilizing a vast array of extracted imaging features has a potential 
to uncover disease characteristics. We aim to assess radiomics using DWI can outperform the 
conventional DWI for STT differentiation. In 151 patients with 80 benign and 71 malignant tumors, 
 ADCmean and  ADCmin were measured on solid portion within the mass by two different readers. For 
radiomics approach, tumors were segmented and 100 original radiomic features were extracted 
on ADC map. Eight radiomics models were built with training set (n = 105), using combinations of 2 
different algorithms—multivariate logistic regression (MLR) and random forest (RF)—and 4 different 
inputs: radiomics features (R), R +  ADCmin (I), R +  ADCmean (E), R +  ADCmin and  ADCmean (A). All models 
were validated with test set (n = 46), and AUCs of  ADCmean,  ADCmin, MLR‑R, RF‑R, MLR‑I, RF‑I, MLR‑E, 
RF‑E, MLR‑A and RF‑A models were 0.729, 0.753 0.698, 0.700, 0.773, 0.807, 0.762, 0.744, 0.773 and 
0.807, respectively, without statistically significant difference. In conclusion, radiomics approach did 
not add diagnostic value to conventional ADC measurement for differentiating benign and malignant 
STTs.

DWI is a functional MRI that provides unique information about the microarchitecture of tissue and how it 
affects the diffusion of water molecules. In musculoskeletal field, it is considered to improve the detection of 
tumorous or infectious lesions, differentiation of benign and malignant tumors, and evaluation of treatment 
response when combined with standard MRI. DWI is advantageous especially in the case of tumor characteriza-
tion because it can provide the quantitative information with ADC map. It can also give additional information 
for determining various extracellular component such as hemorrhage, mineralization, fat and myxoid  tissue1,2.

Radiomics is an emerging field of study that utilizes the vast arrays of quantitative features extracted from 
volumetric image, which is comprised of millions of  voxels3. Typical radiomic assessment includes analysis of 
texture, shape, and size; and, the acquired features hold information about tumor pathophysiology, which can 
be harnessed for diagnosis, prognosis and therapeutic modality in clinical field.

In musculoskeletal radiology, differentiation of the malignant soft tissue sarcomas from benign tumors is 
important for planning proper treatment. Due to their pathologic heterogeneity with various origin, location and 
overlapping imaging features on conventional MRI, standard MRI is frequently insufficient for differentiating 
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soft tissue tumors. Several previous studies demonstrated increased diagnostic accuracy of malignant soft tis-
sue sarcoma by obtaining additional DWI with standard  MRI4–6. However, clinical utility of radiomics based on 
ADC map, regarding the diagnosis of soft tissue sarcoma, has not been studied yet. Therefore, we aim to assess 
the diagnostic performances of various radiomics models based on DWI and ADC map and to compare them 
with that of  ADCmean and  ADCmin in this study.

Result
Patient demographics. Among the included 151 patients, 71 patients (47%) were diagnosed as malignant 
soft tissue sarcoma. Lesions with intermediate biologic behavior including desmoid type fibromatosis, fibrohis-
tiocytic tumor, inflammatory myofibroblastic tumor and solitary fibrous tumor were considered as benign. Spe-
cific histological types and locations of included tumors are shown in Table 1. The average time interval between 
MRI and pathologic assessment was 28 days (range; 0–357 days). The proportion of malignant soft tissue tumor 
was 45% (47/105 cases) in training set and 52% (24/46 cases) in test set. There was no statistically significant dif-
ference of age, sex,  ADCmean and  ADCmin values between the training and test sets. Baseline demographics and 
clinical characteristics of the patients are summarized in Supplementary Table (S1).

Diagnostic performance of ADC value. The mean ROI size of all tumors was 62.5  mm2 (range; 17.5–
133.9  mm2) and 69.5mm2 (range; 15.4–145.6  mm2) in both readers, respectively. The interobserver agreement 
of ADC values in ROIs was excellent between 2 readers : intraclass correlation coefficients of  ADCmean = 0.97 
and  ADCmin = 0.93. With the ADC values assessment, the average and standard deviation of  ADCmean and 
 ADCmin value in regions of interest (ROI) in training set (n = 105) were 1448.59 ± 567.98, 1015.55 ± 492.67 
in reader 1 and 1429.26 ± 554.75, 959.07 ± 480.27 in reader 2, respectively (Supplementary Table  1). Specifi-
cally, the average and standard deviation of  ADCmean and  ADCmin were 1199.69 ± 443.41, 788.32 ± 463.59 in 
reader 1 and 1215.44 ± 445.90, 776.74 ± 465.70 in reader 2 in malignant soft tissue tumors, and 1632.90 ± 576.41, 
1221.14 ± 478.52 in reader 1 and 1602.53 ± 573.52, 1106.83 ± 439.37 in reader 2 in benign soft tissue tumors, 
respectively. Both  ADCmean and  ADCmin values were significantly associated with malignant soft tissue tumor 
differentiation in reader 1 and 2 (p value < 0.001). The receiver operating characteristic (ROC) curves are dem-
onstrated in Fig. 1; and AUCs of  ADCmean and  ADCmin were 0.712 and 0.759 in reader 1, and 0.697 and 0.719 in 
reader 2, respectively.

Reproducibility of segmentation and influence of normalization methods on feature selec‑
tion. Among randomly selected 20 tumor images for evaluation of segmentation reproducibility, 13 tumors 
(65%) were malignant. The average and standard deviation of Dice coefficient between 3 different segmentations 
by 3 readers were 0.92 ± 0.07 (range from 0.57 to 1).

Radiomic features were extracted, and top 20 radiomic features were selected by univariate regression test for 
each normalization method. When top 20 selected features were compared, 7 features were commonly selected 
regardless of the normalization methods. Common radiomic features between two normalization methods were 
55% (11/20 features), 70% (14/20 features) and 60% (12/20 features) in whole-image method, VOI method and 
VOI-dilation method, respectively (Table 2).

Diagnostic performances of 8 classification models. The AUCs of MLR-R, MLR-I, MLR-E and 
MLR-A models with training set were 0.848, 0.883, 0.876 and 0.883 in reader 1 and 0.848, 0.873. 0.875 and 
0.875 in reader 2, respectively. Also the AUCs of RF-R, RF-I, RF-E and RF-A models with training set were 
0.807, 0.846, 0.841 and 0.860 in reader 1 and 0.807, 0.820, 0.834 and 0.841 in reader 2, respectively. All results 
including AUCs, sensitivity, specificity and accuracy of 8 built models were presented in Table 3. In MLR-A and 
RF-A models,  ADCmin was selected as second-most important and the most important feature in reader 1, and 

Table 1.  Various histology of soft tissue sarcoma of the included patients.

Soft tissue tumors

Benign and borderline tumors (n = 80)

Histology
Schwannoma (n = 41), Tenosynovial giant cell tumor (n = 11), Desmoid type fibromatosis (n = 8), 
Neurofibroma (n = 5), Myxoma (n = 3), Inflammatory myofibroblastic tumor (n = 2), Solitary 
fibrous tumor (n = 1), Nodular fasciitis (n = 1), Fibrohistiocytic tumor (n = 1), Spiradenoma 
(n = 1), Granular cell tumor (n = 1), Angiofibroma (n = 1), Angioleiomyoma (n = 1)

Location Neck (n = 2), Shoulder and axilla (n = 8), Upper extremity (n = 17), Hand and Wrist (n = 17), 
Trunk (n = 6), Hip and Groin (n = 7), Lower extremity (n = 21), Foot and Ankle (n = 2)

Malignant tumor (n = 71)

Histology

Undifferentiated pleomorphic sarcoma (n = 18), Myxoid liposarcoma (n = 12), Myxofibrosarcoma 
(n = 11), Synovial sarcoma (n = 7), Malignant peripheral nerve sheath tumor (n = 6), Rhabdo-
myosarcoma (n = 4), Leiomyosarcoma (n = 4), Dedifferentiated liposarcoma (n = 2), Pleomor-
phic liposarcoma (n = 1), Alveolar soft-part sarcoma (n = 1), Angiosarcoma (n = 1), Epithelioid 
sarcoma (n = 1), Extraskeletal myxoid chondrosarcoma (n = 1), Low grade fibromyxoid sarcoma 
(n = 1), Malignant solitary fibrous tumor (n = 1)

Location Shoulder and axilla (n = 1), Upper extremity (n = 10), Hand and Wrist (n = 2), Trunk (n = 6), Hip 
and Groin (n = 16), Lower extremity (n = 34), Foot and Ankle (n = 2)
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 ADCmean was not included in model generation. In contrast,  ADCmean was selected as second-most important 
and fourth-most important feature in reader 2, and  ADCmin was not included in MLR-A and RF-A model gen-
eration.

The AUCs of  ADCmean,  ADCmin, MLR-R, RF-R, MLR-I, RF-I, MLR-E, RF-E, MLR-A and RF-A radiomics 
models in test set were 0.729, 0.753, 0.698, 0.700, 0.773, 0.807, 0.762, 0.744, 0.773 and 0.807 in reader 1, and 0.689, 
0.711, 0.698, 0.700, 0.727, 0.771, 0.742, 0.775, 0.742 and 0.775 in reader 2, respectively. The other results compared 
in test set are summarized in Table 3. Comparisons of AUCs between  ADCmean,  ADCmin and 4 radiomics models 
(MLR-R, RF-R, MLR-A, RF-A) did not show any significant difference in both readers (reader 1; p value = 0.745, 
0.559 with MLR-R model, p value  = 0.782, 0.599 with RF-R model, p value  = 0.456, 0.653 with MLR-A model, p 
value  = 0.259, 0.408 with RF-A model, reader 2; p value  = 0.932, 0.895 with MLR-R model, p value  = 0.922, 0.915 
with RF-R model, p value  = 0.312, 0.561 with MLR-A model, p value  = 0.330, 0.476 with RF-A model) (Fig. 2).

Discussion
In this study, we compared the use of ADC and radiomics approach with ADC maps for differentiation of benign 
and malignant STT. Eight radiomics models estimated with the test set showed similar performances to ADC 
measurement. When the models using both ADC measurement and radiomics features were built with training 

Figure 1.  ROC curves of  ADCmean and  ADCmin of reader 1 and reader 2 in training set. The plots were 
generated using MedCalc for Windows, version 19.0 (MedCalc Software, Ostend, Belgium).

Table 2.  Common features  among the top 20 original radiomic features from each normalization method for 
malignant tumor prediction † Normalization method covering all voxels from whole image. ‡ Normalization 
method covering the voxels from VOI only. *Normalization method covering the voxels from VOI and its 
2 mm-dilated circumference.

Normalization method Method  1†,  2‡ and 3* Method 1 and 2 Method 1 and 3 Method 2 and 3

Common features

GLCM
Joint entropy

Shape
Least axis length

First order
Interquartile range

GLCM
Inverse variance

GLCM
Correlation

GLCM
Cluster tendency

Shape
Mesh volume

GLCM
Difference entropy

GLDM
Dependence nonuniformity

GLCM
Imc2

First order
10 percentile

First order Maxi-
mum

GLSZM
Zone variance

Shape
Sphericity

GLCM
Cluster shade
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set, ADC was included as highly ranked features and diagnostic performances were consistently higher than 
the single use of ADC in all radiomics models. However, there was no increment in diagnostic performances 
when the trained models were applied to the test set. The discrepant results between training and test sets may 
attribute to different composition in pathologic entities, different data collection periods, or just a random noise 
related to small sample size.

It is widely known that ADC map provides additional benefits to conventional MR images in differentiating 
soft tissue sarcoma from benign  tumors2,4,5,7, with quantitative information of tumor cellularity. According to Lin 
et al., the ADC map is correlated pixelwise with histology in terms of extracellular space and nuclear  size8. Also, 
there are several previous studies about repeatability of ADC values across institutions and MRI  vendors9–11. 
Due to its quantifiable and reliable properties, the ADC map emerged as a target for radiomics  analysis12–14. A 
recent study published by Peerling et al. showed substantial test–retest stability (25–29%) of ADC based features 
in radiomic feature analysis within multicenter and multi-vendor trial with patients of lung cancer, ovarian 
cancer and liver metastasis of colorectal  cancer13. However, there has been no previous study about application 
of radiomics analysis using ADC map on the differentiation of malignant soft tissue tumors.

Before the construction of radiomics model, we evaluated the reproducibility of image segmentation and 
influence of normalization in features generation, because there were concerns on the variability of individual 
 segmentation15 and necessity of normalization on ADC  map14. The segmentation step was not regarded as a step 
to introduce variances based on the result that average DICE coefficient between 3 readers was high. Our result 
also showed that 55% of top 20 radiomic features was consistently extracted with different normalization meth-
ods, which was selected among total 100 radiomic features. Furthermore, these 20 radiomic features accounted 
for 40–60% of features in the final 8 radiomics models.

In our radiomics models, the most relevant imaging features among the top 10 relevant descriptors was 
GLCM-derived features and the second-most relevant imaging features were first-order feature. This result 
is in similar context with a previous study by Corino et al.16 regarding that the two most relevant features for 
differentiation of high grade malignant soft tissue tumor were original first-order feature and GLCM. GLCM 
is a transformed matrix for texture-analysis, which calculates the occurrence of different gray level voxel pairs 
in certain spatial relationship. The GLCM features is known to reflect the tumor  heterogeneity17, which is also 
a pathologically critical feature for histologic grade of soft tissue  sarcoma18,19. Our result showed that radiom-
ics using GLCM-derived features could be a measure to use quantitative information on tumor heterogeneity. 
However, radiomics models did not show superior diagnostic performance even with ADC combined. We 
assume that heterogeneity and cellularity might be parallel in soft tissue tumors. Therefore, radiomics signify-
ing tissue heterogeneity could only provide redundant information to ADC. In addition, the soft tissue tumor 
consists of diverse histologic  subtypes13,20 compared to other tumors. Therefore, it could be more difficult to find 
a universally effective radiomics model for all kinds of STTs rather than the model for specific tumor types. In 
other tumors composed histologically homogeneous cell type such as cervical  cancer21 and prostate  cancer22, 

Table 3.  Diagnostic performance of  ADCmean,  ADCmin and radiomics model in training set and test set. 
R1 Reader 1, R2 Reader 2. † p value calculated from Delong test for comparison of diagnostic performance 
between radiomics model and  ADCmean in test set. ‡ p value calculated from Delong test for comparison of 
diagnostic performance between radiomics model and  ADCmin in test set.

Single parameter Radiomics model

ADCmean ADCmin MLR-R RF-R MLR-I RF-I MLR-E RF-E MLR-A RF-A

Train set

R1

AUC 0.712 0.759 0.848 0.807 0.883 0.846 0.876 0.841 0.883 0.860

Sensitivity (%) 68.1 70.2 78.7 66.0 78.7 68.1 74.5 74.5 78.7 68.1

Specificity (%) 81.0 81.0 77.6 79.3 84.5 84.5 86.2 82.8 84.5 86.2

Accuracy (%) 70.5 74.3 78.1 73.3 81.9 77.1 81.0 79.0 81.9 78.1

R2

AUC 0.697 0.719 0.848 0.807 0.873 0.820 0.875 0.834 0.875 0.841

Sensitivity (%) 68.1 68.1 78.7 66.0 78.7 70.2 72.3 72.3 72.3 68.1

Specificity (%) 70.7 79.3 77.6 79.3 82.8 79.3 87.8 81.0 82.8 82.8

Accuracy (%) 69.5 74.3 78.1 73.3 81.0 75.2 78.1 77.1 78.1 76.2

Test set

R1

AUC 0.729 0.753 0.698 0.700 0.773 0.807 0.762 0.744 0.773 0.807

p  value† 0.551 0.745 0.782 0.456 0.259 0.537 0.827 0.456 0.259

p  value‡ 0.551 0.559 0.599 0.653 0.408 0.861 0.907 0.653 0.408

Sensitivity (%) 66.7 70.8 58.3 75.0 75.0 83.3 70.8 70.8 75.0 83.3

Specificity (%) 81.8 86.4 68.2 63.6 63.6 59.1 54.5 59.1 63.6 59.1

Accuracy (%) 73.9 78.3 63.0 69.6 69.6 71.1 63.0 65.2 69.6 71.1

R2

AUC 0.689 0.711 0.698 0.700 0.727 0.771 0.742 0.775 0.742 0.775

p  value† 0.562 0.932 0.922 0.664 0.306 0.312 0.330 0.312 0.330

p  value‡ 0.562 0.895 0.915 0.841 0.430 0.561 0.476 0.561 0.476

Sensitivity (%) 54.2 62.5 58.3 75.0 70.8 66.7 75.0 70.8 75.0 70.8

Specificity (%) 90.9 90.9 68.2 63.6 63.6 59.1 54.5 59.1 54.5 59.1

Accuracy (%) 71.7 76.1 63.0 69.6 67.4 63.0 65.2 65.2 65.2 65.2
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the radiomics models presented similar or higher diagnostic performance compared to the diagnosis based on 
conventional diagnosis or ADC values.

Our study has several limitations. First, it is a retrospective study based on a single center with uniform 
MR protocol. As we divided training set and test set with temporal separation, by setting the patients who took 
MRI later to test set, there could be result interruption due to heterogeneity between two sets. Also, although 
we performed ten-fold cross validation to monitor and tune the model during training phase and subsequently 
tested the trained model with temporally split sample, external validation with data set from different institution 
is regarded as optimal way to prove the generalizability. Second, a certain type of tumor consists more than 50% 
of benign tumor groups in our study. In case of schwannoma, it is relatively straightforward to be diagnosed 
as benign with conventional images. However, this composition reflects the real incidence in clinical practice. 
It is still unclear whether balanced composition is beneficial to train model than the composition reflecting 
real incidence. Third, there are several concerns yet to be addressed in radiomics research such as stability of 

Figure 2.  Comparison between the diagnostic performance of ADC values and 4 radiomics models (MLR-
R, RF-R, MLR-A and RF-A) in reader 1 (a) and reader 2 (b). The plots were generated using MedCalc for 
Windows, version 19.0 (MedCalc Software, Ostend, Belgium).
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radiomic feature extraction, and difficulty in correlation with biological behaviors of targeted disease. Although 
many researches are ongoing to address these issues in radiomics, there is not sufficient evidence to support the 
radiomics as more robust and explainable methodology.

In conclusion, our study showed both ADC measurement and radiomics approach for ADC map are com-
parable for differentiating malignant and benign STT. However, we did not find additional diagnostic values 
of radiomics approach to conventional ADC measurement. Further study with a larger cohort from multiple 
institutions should ensue to prove the incremental values of radiomics approach.

Material and methods
This retrospective study was approved by our institutional review board (IRB of The Catholic university of Korea, 
Seoul St. Mary’s Hospital) and the requirement for informed consent was waived. All methods in our study were 
carried out in accordance with relevant guidelines and regulations.

Patient population. From January 2009 to August 2019, a total of 398 patients underwent 3.0  T MRI 
including DWI in our institution for primary soft tissue tumor evaluation. The MR images of 125 patients were 
excluded for various reasons: distortion of images due to artifacts (n = 44), acquisition of images after treatment 
(n = 49) and images of less than 1  cm sized lesions (n = 32). We also excluded well-differentiated adipocytic 
tumors (n = 76) such as lipomas and well-differentiated liposarcomas because DWI was performed using a sin-
gle-shot, spin-echo echo-planar imaging sequence with fat  suppression1. After excluding 46 additional patients 
who had not achieved pathologic confirmation, 151 patients were finally included (Fig.  3). All tumors were 
pathologically confirmed by surgical excision with histological analysis on the excisional sample performed by 
one pathologist. The specific histologic results and locations of soft tissue tumors were evaluated. The time inter-
vals between MRI and pathologic result were additionally assessed. Among 151 data sets from 151 patients, 105 
data sets were assigned to the training set. Forty-six consecutive patients who received MRI recently between 
2018 and 2019 were assigned to the test set for temporal  validation23.

MRI protocols. MRI was obtained before surgery or neoadjuvant treatment in all patients. MRI was per-
formed using two 3.0 T imagers (Verio and Magnetom Vida; Siemens Medical Solutions, Erlangen, Germany) 
with dedicated surface coils depending on the location of tumor. The standard MRI protocols included longi-
tudinal fat-suppressed T2-weighted turbo spin-echo (TSE) sequence, axial T1-weighted TSE sequence, axial 
T2-weighted TSE sequences with and without fat suppression, and longitudinal and axial fat-suppressed con-
trast-enhanced T1-weighted TSE sequences. Other parameters are shown in Supplementary Table S2. Before 
contrast enhancement, a single-shot spin-echo echo-planar DWI sequence was obtained on the axial plane. A 
parallel imaging technique using GRAPPA (GeneRalized Autocalibrating Partially Parallel Acquisitions) was 

Figure 3.  Flowchart of patient inclusion.
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combined with an acceleration factor of 2. Sensitizing diffusion gradients were applied with b values of 0 and 
800 s/mm2 sequentially in the x, y, and z  directions7. Pixel-based ADC maps were created from DWI based on 
mono-exponential calculation using commercial software and a workstation (Leonardo MR Workplace; Sie-
mens Medical Solution, Erlangen, Germany).

MRI analysis. 

• ADC value acquisition
  In quantitative analysis of ADC, the  ADCmean and  ADCmin values were measured by two readers (12-years 

and 2-years of experience in musculoskeletal radiology) on picture archiving and communication system 
(PACS)24. A solid portion for ROI setting was defined as the lesion showing hyperintense signal on DWI 
(b = 800 s/mm2), and enhancement on contrast enhanced T1-weighted images. Sites of hemorrhage, necrosis, 
or calcification were carefully avoided after correlation with standard MRI. After selection of solid portion, 
ROI was manually drawn on the ADC map, and the minimum and average values of the measurement were 
recorded as  ADCmin and  ADCmean. The acquired values from test set were used as a standard reference for 
evaluating the diagnostic performance of radiomics models.

Radiomics model development and validation. 

• Segmentation
  Segmentation was initially performed by another radiologist (2-years of experience on musculoskeletal 

radiology) using semiautomatic region intensity filter method, which was implemented by ITK-SNAP soft-
ware, version 3.8.0 (open source, http:// www. itksn ap. org/)25. The segmented masks were manually revised 
on the b value image of 800 s/mm2 and co-registered ADC map with standard MRI as reference. VOI was 
drawn along the entire mass except for the most peripheral portions in order to avoid partial-volume effects. 
To review the reproducibility of VOI segmentation, the final correction of peripheral portion in VOI was 
edited in 20 tumor images by three readers, consisted of one student and two radiologists (2-years of experi-
ence on musculoskeletal radiology, each).

• Image preprocessing and radiomic feature extraction
  The single VOI was selected by consensus of three readers for further preprocessing steps. After VOI 

confirmation, the normalization of ADC map was done with the Z-score normalization, according to the 
following equation: f (x) = s(x−µx)

σx
 , with f (x) as normalized intensity, x as original intensity, µx as mean 

and σx as standard deviation of image signal intensity,  respectively26. According to Schwier et al.14, the image 
normalization provides the reproducibility of ADC map extracted radiomics features. In our study, normali-
zation was performed using three different image coverages: (1) coverage of all voxels from image, including 
both VOI and background area (whole-image method), (2) coverage of voxels from VOI only (VOI method), 
(3) coverage of voxels from VOI with marginal dilation of 2 mm (VOI-dilation method), for inclusion of 
surrounding normal tissues. In this step, we assessed the influence of different normalization methods on 
the radiomic feature selection. The gray-level quantization and voxel resampling were performed with bin 
width of 5, and a spatial resolution of 3 × 3 × 3  mm3 using spline interpolator. Radiomic feature were extracted 
by using the pyradiomics package (https:// github. com/ Radio mics/ pyrad iomics/)26. Within each VOI, (a) 18 
first-order features, (b) 14 volume and shape features, and (c) 68 texture features were obtained.

• Feature selection and classification model building
  We used Syngo. via Frontier Radiomics (Siemens Healthineers)27 to construct classification model. This 

software incorporates mRMR for feature selection, and multivariate logistic regression test and random 
forests (RF) algorithm for classification model algorithms, respectively. Classic mRMR is frequently used 
feature selection method for the exclusion of redundant  features28, and applied to the selection of radiomic 
features for generating 8 radiomics models in our study. RFs for classification is one of the well-established 
classifiers in radiomics by constructing a multitude of decision  trees27,29–31.

  In training phase, 10 radiomic features were selected by classic mRMR. Subsequently, classification models 
were developed using multivariate logistic regression (MLR) and random forest (RF). Each model was trained 
with 4 different inputs using radiomic features only, radiomic features and  ADCmin combined, radiomic 
features and  ADCmean combined, and radiomic features and  ADCmin,  ADCmean combined. As a result, 8 
classification models were built: (1) multivariate logistic regression (MLR) with radiomic features (MLR-R), 
radiomic features and  ADCmin (MLR-I), radiomic features and  ADCmean (MLR-E), and radiomic features 
and  ADCmin,  ADCmean (MLR-A), (2) random forest (RF) with radiomic features (RF-R), radiomic features 
and  ADCmin (RF-I), radiomic features and  ADCmean (RF-E), and radiomic features and  ADCmin,  ADCmean 
(RF-A). The best subset of features in MLR are determined with forward selection method using adjusted R2.

  Hyperparameters of RF used in the software package were summarized in supplementary material (S3). 
Accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) of each 
model was calculated in training set. In case of four RF models, averaged AUCs with ten-fold cross valida-
tion were calculated. Ten-fold cross validation is a resampling technique by dividing the data sample into 10 
parts, and using 9 parts for training and 1 part for testing. After repeating the model training and validating 
procedure for 10 times with changing of training set sequentially, the model performance is determined by 
averaging all results acquired from 10 times of test set validation. Ten-fold cross validation process can protect 
the model against the overfitting, and overall error estimate is generalized.

• Temporal validation with test set

http://www.itksnap.org/
https://github.com/Radiomics/pyradiomics/
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• Eight constructed classifier models were evaluated on a test set, which is temporally separated from the 
training set. Diagnostic accuracy, sensitivity, specificity, and AUC for differentiating malignant from benign 
soft tissue tumors were calculated. Entire step for radiomics workflow is demonstrated on Fig. 4.

Statistical analysis. Student’s t-test and chi-square test were used to assess the difference between the train-
ing and test sets regarding the demographic data. Interobserver agreement of  ADCmean and  ADCmin between 

Figure 4.  Radiomics pipeline of our study. The diagram was drawn by the first author of the manuscript. The 
images included in the diagram were captured from the softwares we used : ITK-SNAP software, version 3.8.0 
(open source, http:// itksn ap. org/), Syngo. via Frontier Radiomics (Siemens Healthineers).

http://itksnap.org/
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two readers were evaluated using intraclass correlation (ICC) analysis. The sensitivity, specificity and AUC of 
 ADCmean and  ADCmin of two readers were calculated in training set, respectively. The sensitivity and specificity 
were determined by selecting the optimal cut-off values as the minimum distance from the left upper corner of 
the unit square in ROC curves of ADCs.

During the image preprocessing step, DICE coefficient was calculated to measure the similarity between 
segmentations drawn by 3 readers. For the assessment of influence of normalization method on radiomic feature 
selection, the univariate regression test using Benjamini–Hochberg procedure with false positive rate of 0.05 was 
performed to extract 3 different sets of top 20 radiomic features, selected from 3 different normalization methods.

To compare the diagnostic performance between ADC measured on single layer and newly developed eight 
models including radiomic features, the ROC curves of  ADCmean,  ADCmin, MLR-R, RF-R, MLR-I, RF-I, MLR-E, 
RF-E, MLR-A and RF-A models in test set were compared using the Delong test. All statistical analyses were 
performed using R version 4.0.0 (http:// www.r- proje ct. org/) and MedCalc for Windows, version 19.0 (MedCalc 
Software, Ostend, Belgium). A p value of < 0.05 was considered statistically significant.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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