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Human carbonic anhydrase XII (hCA XII) isozyme is of high therapeutic value as a pharmacological 
target and biomarker for different types of cancer. The hCA XII is one of the crucial effectors that 
regulates extracellular and intracellular pH and affects cancer cell proliferation, invasion, growth 
and metastasis. Despite the fact that interaction features of hCAs inhibitors with the catalytic site of 
the enzyme are well described, lack in the selectivity of the traditional hCA inhibitors based on the 
sulfonamide group or related motifs is an urgent issue. Moreover, drugs containing sulfanomides can 
cause sulfa allergies. Thus, identification of novel non-classical inhibitors of hCA XII is of high priority 
and is currently the subject of a vast field of study. This study was devoted to the identification of 
novel potential hCA XII inhibitors using comprehensive set of computational approaches for drug 
design discovery: generation and validation of structure- and ligand-based pharmacophore models, 
molecular docking, re-scoring of virtual screening results with MMGBSA, molecular dynamics 
simulations, etc. As the results of the study several compounds with alternative to classical inhibitors 
chemical scaffolds, in particular one of coumarins derivative, have been identified and are of high 
interest as potential non-classical hCA XII inhibitors.

Carbonic anhydrases (CAs, EC 4.2.1.1) are zinc metalloenzymes that catalyze the reversible hydration of car-
bon dioxide into bicarbonate and a proton1. Sixteen CA isoforms are found in humans and all vary in kinetic 
properties, subcellular localization and distribution to the tissues. Human carbonic anhydrase XII (hCA XII) 
is induced by hypoxia and highly expressed within the hypoxic core of many solid tumor types2. The hCA XII 
regulates extracellular and intracellular pH homeostasis of the cancer cells, thus, mediating cancer cells invasion, 
proliferation, metastasis, progression and tumor growth3–5.

In general, CA inhibitors (CAIs) are compounds equipped with an effective zinc-binding group (ZBG) capable 
of chelating the prosthetic zinc ion placed inside the hCA binding site that is essential for these enzymes’ catalytic 
action. Sulfonamide moieties or related structural motifs represent the most common ZBGs shared by typical 
CAIs (such as sulfamides and sulfamates) and are the most significant groups of CAIs with multiple ligands with 
high inhibitory potency have been recorded to date6. These groups are especially effective in endowing high-
affinity small-molecule ligands with hCAs, as they enable not only the proper coordination of the catalytic zinc 
ion, but also the forming of associations of H-bonds with key protein residues located in the zinc-binding cavity 
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area. A great amount of effort has been put in drug design and discovery of hCA XII potential inhibitors7–15. 
Currently, SLC-011, one of the most promising compounds that is also based on the ureido-substituted ben-
zene sulphonamide core (USB) has reached phase Ib/II of clinical trials as hCA IX/XII inhibitor16,17. However, 
because of the high amino acid conservation found at the level of their catalytic site and adjacent regions in the 
various hCA isoforms, most of these ligands are insufficiently selective against particular hCAs, including hCA 
XII which is currently the subject of a vast field of study18. In addition, a small but significant percentage of the 
general population cannot be treated with sulfonamide-based compounds due to a sulfa allergy19,20. Therefore, 
novel CAIs should be not only isoform specific, but also non-classical, i.e. not based on sulfonamides, sulfamates, 
or sulfamides20. Non-classical CAIs are an especially useful resource in this sense for finding isoform specificity 
and avoiding possible off-target events, side effects and adverse reactions (such as sulfur allergies) associated with 
the use of sulfurized ligands20. Notwithstanding, the development of hCA IX/XII selectivity inhibitors over hCA 
I/II, which are ubiquitously distributed and involved in key physiological processes, is still a difficult challenge, 
although some examples of selective ligands have been reported21,22.

Computer-aided drug design (CADD) comprises a broad range of theoretical and computational approaches 
that are part of modern drug discovery23,24. CADD methods have made key contributions to the development of 
drugs that are in clinical use or in clinical trials25,26. Such methods have emerged and evolved along with experi-
mental approaches used in drug design. This study was devoted to identification of novel potential non-classical 
hCA XII inhibitors using the combination of computational approaches, including pharmacophore modeling 
(structure-, and ligand-based), molecular docking, MMGBSA re-scoring and molecular dynamics simulations.

Materials and methods
Combination of the several computer-aided drug design and discovery methods, tools and approaches were 
applied in this study (Fig. 1). Structure- and ligand-based pharmacophores modelling was used for initial filtra-
tion of ZINC database of chemical compounds. Molecular docking and additional re-scoring with MMGBSA 
were used for further filtration and identification of potential hit compounds. Molecular dynamics simulations 
were used for assessment of interaction stability between hCA XII isozyme and top identified chemical com-
pounds. Additionally, chemical scaffolds of identified compounds were analyzed and compared to the reference 
ligand (classical hCA inhibitor).

Structure‑based pharmacophore generation.  Structure-based pharmacophore model was gener-
ated using LigandScout v4.427. 22 crystal structures of the hcA XII in complexes with inhibitors (X-ray reso-
lution < 2 Å) were downloaded from Protein Data Bank (PDB)28. Several approaches for the structure-based 
pharmacophore model generation were tested: (1) based on the separate crystal structures, (2) based on the 
combination of different crystal structures, (3) merged and (4) shared pharmacophores. Best pharmacophore 
model was generated using crystal structure of the catalytic domain of human carbonic anhydrase isozyme XII 
with benzene sulfonamide derivative (PDB ID: 4QJW, resolution 1.55 Å, chain C). All features that characterize 

Figure 1.   Schematic representation of general methodology and approaches applied in the study. Schematic 
illustration was drawn using Adobe Illustrator 2018 (www.​adobe.​com/​produ​cts/​illus​trator).

http://www.adobe.com/products/illustrator


3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:15516  | https://doi.org/10.1038/s41598-021-94809-x

www.nature.com/scientificreports/

interactions with the water molecules and hydrophobic interactions were removed from the obtained pharma-
cophore model. Additionally, exclusion volumes coat feature of LigandScout v4.4 was applied.

Ligand‑based pharmacophore generation.  Ligand-based pharmacophore model was also generated 
using LigandScout v4.427. 135 compounds active against hCA XII enzyme were downloaded from PubChem29 
BioAssay dataset. These 135 active compounds were clusterized using pharmacophore alignment score as a 
similarity measure and the average method for cluster distance calculations. Maximum number of the confor-
mations and cluster distance values were set to 3 and 0.4, respectively. As a result, 14 clusters were identified and 
representative compounds of these clusters were used for the creation of ligand-based pharmacophore models 
(Table S1). The final best ligand-based pharmacophore model was obtained based on the biggest cluster. “H bond 
donor” feature was removed from the selected ligand-based pharmacophore model.

Validation of generated structure‑ and ligand‑based pharmacophore models.  2500 compounds 
with Ki < 10 against hCA XII enzyme were downloaded from PubChem BioAssay and ChEMBL30 databases. 
5000 decoy compounds were generated using a Database of Useful Decoys: Enhanced (DUD-E)31 and were 
not included in the validation datasets in order to avoid bias. 3D structures of decoys were generated by Open 
Babel v3.1.132 software based on the SMILES obtained by using DUD-E. Two separate validation datasets were 
prepared and each of them consisted of 5% active compounds and 95% decoys. First validation dataset included 
top 135 active compounds based on the Ki values. Second dataset included 135 randomly selected active com-
pounds. Hydrogens were added to all compounds using Open Babel v3.1.1 software. The iConBest method of 
LigandsScout v4.4 was used for the generation of the conformations for active and decoy compounds.

For the validation of the generated pharmacophore models several widely established metrics were used. The 
area value under the receiver operating characteristic (ROC AUC) ranges from 0 to 1, where 1 is perfect classi-
fication, while values below 0.5 indicate random classification. ROC is widely used to evaluate virtual screening 
and pharmacophore modeling methods33,34 and defined as a graphical representation of the test sensitivity in 
relation to its specificity or false-positive rate. The AUC is the probability of active compounds being ranked 
earlier than decoy compounds. The classifier “precision” represents the share of true positives (TP) among all hits 
(TP/(TP + FP, where FP is false positive compounds)). The classifier “specificity” represents the ratio of the active 
compounds found in the list of compounds identified as “true positives” (TP/A, where A is active compounds). 
The “Specificity” classifier is the ratio of true negative compounds to all compounds in the database, excluding 
active ones. Enrichment Factor (EF) measures the fraction of active compounds found in a specific percentage, 
solving the problem of comparing the results for datasets with different active/inactive compound ratios35. The 
EF for 1, 5, 10 and 100% was calculated for the share of true positives among the molecules identified as hit 
compounds using generated pharmacophore models.

Virtual screening.  ZINC “purchasable” (21,777,093 compounds) and ZINC “natural and derivatives” (197, 
488 compounds) datasets were used for the selection of library of compounds. ZINCPharmer36 was used for the 
filtration of these datasets using generated structure-based and ligand-based pharmacophore models. Identified 
hit compounds were used for the molecular docking against the active site of the hCA XII enzyme (PDB ID 
4QJW). AutoDock Tools37 was used for the estimation of the grid box (< 27 Å), calculation of the protein’s and 
compounds’ charges and the addition of the polar hydrogens. Virtual screening was performed using AutoDock 
Vina software38, which has been regarded as highly efficient software for molecular docking and virtual screen-
ing procedures based on the recent benchmark studies among both academic and commercial software39,40. 
AutoDock Vina uses “Iterated Local Search global optimizer” similar to that by Abagyan et al. and Broyden-
Fletcher-Goldfarb-Shanno (BFGS), which is quasi-Newton method for the local optimization, as a search algo-
rithm and hybrid scoring function (empirical + knowledge-based function) inspired in the X-Score function38. 
Standard, recommended by the developers, parameters were used for the virtual screening procedure.

Re‑scoring using MMGBSA method.  The algorithm for the molecular mechanics-generalized Born 
surface area (MMGBSA) calculations is based on a freely-available AmberTools suite. The algorithm can be 
described in three stages, (1) receptor and ligands parametrization, (2) minimization and (3) MM/GBSA and 
MM/PBSA calculations. At the first stage, the ff14SB force field41 is used to describe protein parameters, and 
General Amber Force Field (GAFF)42 with AM1-BCC charge model43 is used for small molecule parametriza-
tion. Next, the algorithm prepares necessary input files (coordinates and topologies) with mbondi3 radii using 
LEaP. Minimization is performed in generalized Born implicit solvent models (igb = 8) using the sander engine. 
Finally, for the free energy calculations, the algorithm uses the MMPBSA.py program44 for the MMGBSA calcu-
lations. The algorithm45 is implemented in a bash script and can be run in parallel in most Linux distributions 
without any additional libraries for parallelization. The full code is available at the following link: https://​github.​
com/​sahak​yanhk/​iPBSA.

Molecular dynamics simulations.  The molecular dynamics simulations were carried out using 
AMBER2046 molecular dynamics package. The ff14SB force field was used for protein parametrization and 
GAFF for the ligand parameterization with AM1-BCC charge model. Minimized conformations of complexes 
of hCA XII with bound compounds were taken from the previous step (re-scoring of docked complexes with 
MMGBSA) and used as starting positions for corresponding simulations. The complexes were solvated in TIP3P 
water model and Na+/Cl− ions at 150 mM concentration47. The Monte Carlo barostat48 with reference pressure at 
1 bar and Langevin thermostat49 with collision frequency (gamma_ln) 2 ps−1 were used to keep the temperature 
at 310.15 K. The Particle Mesh Ewald (PME) method with 1.0 nm cutoff was used for the long-range electro-

https://github.com/sahakyanhk/iPBSA
https://github.com/sahakyanhk/iPBSA
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static interactions. Bonds involving hydrogen were constrained using the SHAKE algorithm with 2 fs integration 
step50. Each simulation consisted of 5 ns of system minimization and equilibration and 100 ns of conventional 
molecular dynamics simulation. Finally, for every simulation, binding free energies were re-calculated using the 
same MMGBSA method and MMPBSA.py program, using 250 snapshots with equal intervals collected from the 
last 20 ns of simulation. RMSD and SASA was calculated as indicators of stability of studied complexes during 
simulation. Besides, RMSF analysis was performed to measure the average atomic flexibility of the Cα atoms of 
the docked complexes. Radius of gyration was calculated as an indicator of protein structure compactness dur-
ing simulation. Hydrogen bonding analysis was performed to identify similarities and differences in interaction 
patterns between studied compounds and amino acid residues of hCA XII binding site.

Results and discussion
Ligand‑based pharmacophore generation.  As a result of the clusterization of 135 compounds active 
against hCA XII, 14 clusters have been obtained. The best ligand-based pharmacophore model was obtained 
based on the biggest cluster (Supplementary Figure S1). The final ligand-based pharmacophore model included 
three “H-bond (acceptor)” features, two “H-bond (donor)” features, one “hydrophobic” and “aromatic” features 
of the LigandScout v4.4. Validation tests of the generated ligand-based pharmacophore model demonstrated 
high results on two separate datasets. First dataset (Fig. 2A): 105 hits (97 TP, 8 FP), AUC 1, 5, 10, 100−1, 1, 1, 
0.86; EF 1, 5, 10, 100−19.8, 18.3, 18.3, 18.3. Second dataset (Fig. 2B): 74 hit compounds (63 TP, 11 FP) AUC 1, 5, 
10, 100−1, 1, 1, 0.73; EF 1, 5, 10, 100−19.8, 16.9, 16.9, 16.9.

Structure‑based pharmacophore generation.  Structure-based pharmacophore model generated 
based on the crystal structure of catalytic domain of hCA isozyme XII with benzenesulfonamide derivative (PDB 
ID: 4QJW) demonstrated LigandScout’s binding affinity score of − 17.18, which includes interaction and des-
olvation energies. The selected structure-based pharmacophore model included two “H-bond (acceptor)” fea-
tures that are important for the interaction of the ligand with ASN64 and THR198 of the active site of hCA XII 
enzyme, and two “H-bond (donor) feature that are important for interaction with PRO200 and GLU104 (Fig. 3).

Validation of structure-based pharmacophore model in the case of the first dataset (Fig. 4A) demonstrated 
following values: 103 hit compounds (38 TP, 65 FP), AUC 1, 5, 10, 100−0.72, 0.93, 0.95, 0.63; EF 1, 5, 10, 100−7.6, 
7.3, 7.3, 7.3. In the case of the second validation dataset (Fig. 4B): 82 hit compounds (24 TP, 58 FP), AUC 1, 5, 
10, 100−0.97, 0.92, 0.93, 0.58; EF 1, 5, 10, 100−3.8, 5.8, 5.8, 5.8 (Fig. 4).

Filtration of ZINC database using generated pharmacophore models.  Both selected ligand-based 
and structure-based pharmacophore models were applied to filter ZINC “purchasable” and “natural and deriv-
atives” compounds datasets (total of 21.970.000 compounds) using ZINCPharmer, separately. 6357 and 193 
hit compounds were identified from “purchasable” and “natural and derivatives” datasets, respectively, using 
a structure-based pharmacophore model. Other 8415 and 1514 hit compounds were identified using a ligand-
based pharmacophore model. All identified hit compounds were used for molecular docking against the active 
site of the hCA XII enzyme.

Molecular docking.  1361 “purchasable” and 264 “natural and derivatives” compounds with similar or 
higher docking scores compared to the reference molecule (co-crystallized ligand of 4QJW, benzenesulfonamide 
derivative: − 8 kcal/mol) were identified as the result of molecular docking of hit compounds obtained by appli-
cation of the ligand-based pharmacophore (Table S2). In case of hit compounds identified by structure-based 
pharmacophore, 1027 “purchasable” and 17 “natural and derivatives” compounds were identified as a result of 

Figure 2.   Validation of the generated ligand-based pharmacophore on the two datasets (A,B) Identified hit 
compounds out of 2635 total compounds (135 actives, 2500 decoys). Figure was obtained using LigandScout 
v4.427 (www.​intel​igand.​com/​ligan​dscout/). Schematic illustration was drawn using Adobe Illustrator 2018 (www.​
adobe.​com/​produ​cts/​illus​trator).

http://www.inteligand.com/ligandscout/
http://www.adobe.com/products/illustrator
http://www.adobe.com/products/illustrator
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molecular docking (Table S3). All of the compounds with similar or higher docking scores in comparison to the 
reference ligand were passed to the additional stages of minimization and re-scoring using MMGBSA method.

MMGBSA re‑scoring.  Only 38 compounds from the “purchasable” (Table  1) and 2 from “natural and 
derivatives” (Table 2) datasets demonstrated similar or higher binding energy values than reference ligand as 
the result of MMGBSA re-scoring. 24 out of aforementioned 38 compounds were obtained with the use of 
structure-based pharmacophore model and the rest 15 with the use of the ligand-based pharmacophore model. 

Figure 3.   The best generated structure-based pharmacophore model. 3D (A) and 2D (C) representations of the 
pharmacophore model with all initial features. Final pharmacophore models after removing features responsible 
for the interactions with water molecules and hydrophobic interactions (B,D) and addition of the exclusion 
volumes coat (B). Figures of structure-based pharmacophore model was obtained using LigandScout v4.427 
(www.​intel​igand.​com/​ligan​dscout/). Schematic illustration was drawn using Adobe Illustrator 2018 (www.​
adobe.​com/​produ​cts/​illus​trator).

Figure 4.   Validation of the generated structure-based pharmacophore on the two datasets (A,B). Identified hit 
compounds out of 2635 total compounds (135 actives, 2500 decoys). Figure was obtained using LigandScout 
v4.427 (www.​intel​igand.​com/​ligan​dscout/). Schematic illustration was drawn using Adobe Illustrator 2018 (www.​
adobe.​com/​produ​cts/​illus​trator).

http://www.inteligand.com/ligandscout/
http://www.adobe.com/products/illustrator
http://www.adobe.com/products/illustrator
http://www.inteligand.com/ligandscout/
http://www.adobe.com/products/illustrator
http://www.adobe.com/products/illustrator
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Both compounds identified from “natural and derivatives” dataset were obtained with the use of a ligand-based 
pharmacophore model.

In order to analyze chemical diversity of identified compounds, an agglomerative hierarchical clustering 
method based on the “ECFP” fingerprint implemented in ICM-Pro software51 was performed (Fig. 5). As a 
result of the clusterization of the identified 38 compounds, 18 clusters were obtained. As expected, most of the 
identified compounds (Fig. 5, clusters 1–10) have sulfonamide moieties or related structural motifs that are 
widely known to promote small-molecules interaction with hCAs active site. However, several of the identified 
compounds (Fig. 5, clusters 11–18) have different from sulfonamide chemical moieties. These compounds include 
cyclohexanecaboxiamide, propanamide, acetamide, cyclopropanecarbohydrazide, thiadiazolidine, cyclopropane, 
carbohydrazide, chromen-7, tetrahydrofuran derivatives and analogues.

Remarkably, one of these compounds, identified with the use of ligand-based pharmacophore 
(ZINC82980951), showed the lowest binding energy among all compounds as the result of MMGBSA re-scoring 
(Table 1). Compounds that are chemically different from the traditional hCA XII inhibitors (which include sul-
fonamide chemical group) are of special interest for further analysis and investigation as potential alternative 
hCA XII inhibitors.

In the case of the “natural and derivatives” compounds only two compounds (ZINC49181869 and 
ZINC49181861, Table 2), which are stereoisomers of the same coumarin derivative, showed higher binding 
energies than reference ligand.

Molecular dynamics.  From the list of compounds, identified from the “purchasable” dataset (Table 1), two 
compounds with lowest binding energy (one identified using structure-based pharmacophore—ZINC66466630 
and another one using ligand-based pharmacophore model—ZINC82980951) were selected for additional MD 
simulations. In the case of the “natural and derivatives” dataset (Table 2), two compounds with the lowest binding 
energies, identified using structure-based (ZINC70704873) and ligand-based pharmacophore (ZINC49181869) 
models, were also selected for MD simulations.

The reference compound (co-crystallized ligand of 4QJW structure) was stable during the whole simulation 
and has maintained conformation close to its initial crystal state (fluctuations around 0.05 nm, Fig. 6).

From the four tested compounds only ZINC49181869 was stable during the whole simulation and also 
maintained conformation close to the one predicted by molecular docking fluctuations around 0.05 nm. Com-
pound ZINC70704873 stabilized after ~ 55 ns of the simulation and maintains its conformation with fluctua-
tions around ~ 0.05 nm. ZINC66466630 stabilized after ~ 70 ns and maintains its conformation with fluctuations 

Table 1.   Binding energies of the top “purchasable” compounds after re-scoring using MM-GBSA.

Structure-based approach Ligand-based approach

ZINC ID
Energy (kJ/
mol) ZINC ID

Energy (kJ/
mol) ZINC ID

Energy (kJ/
mol) ZINC ID

Energy (kJ/
mol)

ZINC66466630 − 157,83 ZINC76941861 − 129,56 ZINC82980951 − 159,25 ZINC21761334 − 133,43

ZINC16137455 − 153,97 ZINC39147130 − 128,51 ZINC68025286 − 147,68 ZINC10514459 − 130,47

ZINC90089846 − 152,20 ZINC75669379 − 127,26 ZINC27522612 − 144,36 ZINC38671716 − 129,54

ZINC76965500 − 146,49 ZINC39252273 − 127,24 ZINC12555593 − 141,68 ZINC55678727 − 128,52

ZINC05699310 − 139,63 ZINC12551609 − 126,40 ZINC29565674 − 139,19 ZINC27929386 − 128,16

ZINC09126577 − 139,14 ZINC89392154 − 126,25 ZINC59456846 − 137,50 ZINC13056037 − 127,18

ZINC44547064 − 138,05 ZINC12085595 − 125,75 ZINC49448410 − 136,54 ZINC40897288 − 124,45

ZINC09562497 − 135,91 ZINC39252405 − 125,39 ZINC06510447 − 136,40 ligand_4qjw − 124,20

ZINC22239311 − 134,62 ZINC12983599 − 124,99

ZINC47251290 − 134,41 ZINC58304576 − 124,67

ZINC58247763 − 132,89 ZINC06142500 − 124,23

ZINC40218576 − 131,14 ligand_4qjw − 124,20

ZINC58263892 − 129,77

Table 2.   Binding energies of the top “natural and derivatives” compounds after re-scoring using MMGBSA.

Structure-based approach Ligand-based approach

ZINC ID Energy (kJ/mol) ZINC ID Energy (kJ/mol)

ZINC70704873 − 105,68 ZINC49181869 − 139,62

ZINC04221765 − 93,03 ZINC49181861 − 133,30

ZINC02131655 − 85,34 ZINC49181866 − 120,74

ZINC70699917 − 77,17 ZINC08829478 − 111,70

ZINC15958674 − 76,88 ZINC08792367 − 109,86
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Figure 5.   Results of the clusterization of the identified compounds as the result of MMGBSA re-scoring 
procedure. 2D structures of representative are presented for all 18 clusters. IDs of representative compounds of 
clusters with more than one compound are colored in red. Clusterization dendrogram and figures of chemical 
structures were obtained using ICM-PRO51 (http://​www.​molso​ft.​com/​icm_​pro.​html). Schematic illustration was 
drawn using Adobe Illustrator 2018 (www.​adobe.​com/​produ​cts/​illus​trator).

Figure 6.   RMSD values of studied compounds and Rg, RMSF and SASA values of hCA XII during performed 
MD simulations. First 5 ns represent equilibration stage of performed MD simulations.

http://www.molsoft.com/icm_pro.html
http://www.adobe.com/products/illustrator
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around ~ 0.025 nm. ZINC82980951 stabilized after ~ 50 ns and maintains its conformation with fluctuations 
around ~ 0.1 nm. Based on the obtained RMSD, RMSF, Rg and SASA values all studied complexes stabilize 
within performed simulations.

In its stable conformation, during molecular dynamics simulation, the reference ligand had five hydrogen 
bonds with the following amino acid residues of active site of the hCA XII enzyme: HIE 117, HID 91, GLN 89, 
ASN 64, THR 198. In the presence of the reference ligand, HID 93, HIE 117 and THR 198 amino acid residues 
coordinate Zn2+ ion (Fig. 7).

Similarities and differences in interaction patterns of the amino acid residues of hCA XII binding site with 
compounds and reference ligand is of particular interest for the evaluation of the studied compounds as potential 
alternative inhibitors of the hCA XII. ZINC66466630 and ZINC82980951 compounds and reference ligand have 
hydrogen bond with the THR 198 amino acid residue of the hCA XII active site. ZINC70704873, as the reference 
ligand, has hydrogen bonds with THR 198 and GLN 89 residues. ZINC49181869 and reference ligand both have 
hydrogen bonds with GLN 89 and HID 91 residues.

At the same time, all studied compounds have unique hydrogen bonds with other amino acid residues 
of the hCA XII isozyme. ZINC66466630 has hydrogen bonds with HID 93, GLU 104 and SER 133 residues. 
ZINC70704873 has hydrogen bonds with PRO 200 and LYS 69. ZINC49181869 has hydrogen bonds with HID 
93, GLU 104 and LYS 71 residues. Finally, ZINC82980951 has hydrogen bond with SER 30 amino acid residue.

Information on the involvement of amino acid residues of the hCA XII binding site in coordination of Zn2+ 
ion in the presence of different compounds is also of high value for drug design and discovery of potential hCA 
inhibitors. Common amino acid residues that interact with the Zn2+ in the presence of tested compounds and 
reference ligand: HID 93, THR 198 (ZINC66466630, ZINC70704873, ZINC49181869), HID 93 (ZINC82980951). 
Unique, in comparison to the reference ligand, amino acid residues that interact with the Zn in the presence of the 
tested compounds: GLU 104 (ZINC70704873), HID 91 and GLU 104 (ZINC49181869), HID 93 (ZINC82980951).

Additionally, comparison of the shapes and chemical structures of the selected compounds to the reference 
ligand (classical inhibitor of classical inhibitor of hCA XII) was performed using ROCS_report utility tool 
(Fig. 8).

Only one out of four studied compounds (ZINC66466630) has sulfonamide group, which is inherent in clas-
sical hCA inhibitors. Three other studied compounds have alternative to classical inhibitors chemical structures.

One of these compounds—ZINC49181869 (coumarin derivative) is of higher interest as potential alternative 
inhibitor of the hCA XII, since it demonstrated relatively good parameters based on various indicators. This com-
pound showed exceptional stability during the whole length of molecular dynamics simulation. It also has high 
affinity to the hCA XII isozyme (− 139,62 kJ/mol) based on the MMGBSA calculations. Besides, it is a natural 
compound that has various good ADMET properties predicted by SwissADME53 (consensus Log P of 0.58; Log 
S of around − 3.5 and is not inhibitor of CYP1A2, CYP2C19, CYP2C9, CYP2D6 and CYP3A4). Remarkably 
coumarins are regarded as a promising new class of non-classical inhibitors of CAs20,54.

Figure 7.   Interaction of the selected compounds with amino acid residues and Zn2+ ion in the binding site of 
the hCA XII isozyme. (A) ZINC66466630, (B) ZINC70704873, (C) ZINC49181869, (D) ZINC82980951, (E) 
Reference. Figures of complexes were obtained using PyMOL v. 2.3.2 (https://​pymol.​org). Schematic illustration 
was drawn using Adobe Illustrator 2018 (www.​adobe.​com/​produ​cts/​illus​trator).

https://pymol.org
http://www.adobe.com/products/illustrator
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Conclusion
Despite the fact that interaction features of hCAs inhibitors with the catalytic site of the hCA enzyme are well 
described, classical inhibitors that have sulfonamides group or related motifs are lacking selectivity to the particu-
lar hCA isoforms and can also cause sulfa allergies in patients. Novel inhibitors of hCA XII should be both, iso-
form specific and non-classical, i.e. not based on sulfonamides, sulfamates, or sulfamides. This study was devoted 
to the identification of novel potential hCA XII inhibitors using comprehensive set of computational approaches 
for drug design discovery. As the results of the study several compounds with alternative to classical inhibitors 
chemical scaffolds have been identified and are of high interest as potential non-classical hCA XII inhibitors. The 
most promising out of identified compounds is coumarin derivative (ZINC49181869) that demonstrated rela-
tively better indicators and properties based on the performed calculations and analysis. Remarkably, coumarin 
derivatives were recognized as a new class of non-classical inhibitors of CAs based on several relatively recent 
studies. The results of our study signify the potency of coumarins as non-classical inhibitor of hCA XII isozyme.
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