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Classification of glioblastoma 
versus primary central nervous 
system lymphoma using 
convolutional neural networks
Malia McAvoy 1,11*, Paola Calvachi Prieto 2,3,11, Jakub R. Kaczmarzyk 4,5, 
Iván Sánchez Fernández 6,7, Jack McNulty8, Timothy Smith9, Kun‑Hsing Yu 3,10, 
William B. Gormley9 & Omar Arnaout9

A subset of primary central nervous system lymphomas (PCNSL) are difficult to distinguish from 
glioblastoma multiforme (GBM) on magnetic resonance imaging (MRI). We developed a convolutional 
neural network (CNN) to distinguish these tumors on contrast‑enhanced  T1‑weighted images. 
Preoperative brain tumor MRIs were retrospectively collected among 320 patients with either GBM 
(n = 160) and PCNSL (n = 160) from two academic institutions. The individual images from these MRIs 
consisted of a training set (n = 1894 GBM and 1245 PCNSL), a validation set (n = 339 GBM; 202 PCNSL), 
and a testing set (99 GBM and 108 PCNSL). Three CNNs using the EfficientNetB4 architecture were 
evaluated. To increase the size of the training set and minimize overfitting, random flips and changes 
to color were performed on the training set. Our transfer learning approach (with image augmentation 
and 292 epochs) yielded an AUC of 0.94 (95% CI: 0.91–0.97) for GBM and an AUC of 0.95 (95% CI: 0.92–
0.98) for PCNL. In the second case (not augmented and 137 epochs), the images were augmented prior 
to training. The area under the curve for GBM was 0.92 (95% CI: 0.88–0.96) for GBM and an AUC of 
0.94 (95% CI: 0.91–0.97) for PCNSL. For the last case (augmented, Gaussian noise and 238 epochs) the 
AUC for GBM was 0.93 (95% CI: 0.89–0.96) and an AUC 0.93 (95% CI = 0.89–0.96) for PCNSL. Even with 
a relatively small dataset, our transfer learning approach demonstrated CNNs may provide accurate 
diagnostic information to assist radiologists in distinguishing PCNSL and GBM. 

The morphological features of glioblastoma (GBM) and primary central nervous system lymphoma (PCNSL) are 
often easily distinguished. However, in some cases, the two neoplasms may mimic each other on MRI. Gliomas 
are the most common primary brain tumor accounting for about 70% of all primary brain tumors. GBM is a high-
grade glioma corresponding to the grade IV classification of CNS tumors from the World Health Organization 
(WHO)1. Approximately 15% of all primary brain tumors are  GBMs2. GBM tends to affect individuals between 
45 and 75 years of age with a slight male  predominance2. The median survival time among patients with GBMs 
is less than one year, and this prognosis has not changed over the last 20  years3. The primary treatment for GBM 
involves surgical resection followed by radiation and chemotherapy with  temozolomide4,5.

PCNSL, on the other hand, is a non-Hodgkin B cell neoplasm accounting for approximately 1–3% of all 
intracranial  neoplasms2,6. It occurs within the brain, meninges, spinal cord, nerve roots, or eyes. PCNSL affects 
immunocompetent adults among a median age of 53–57 years, also with a slight male  predominance2. Patients 
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with PCNSL have a median survival time of 3–4 years from the time of  diagnosis2. The standard treatment for 
PCNSL is stereotactic intracranial biopsy followed by high dose  methotrexate7. Resection provides no thera-
peutic benefit and is reserved only for rare cases of neurologic deterioration due to brain herniation. Therefore, 
preoperative differentiation of GBM and PCNSL is critical to avoid unnecessary and potentially harmful surgery.

On MRI, GBM often exhibits ring-like or heterogeneous enhancement with central hypointense necrosis 
whereas PCNSL is characterized by a solid homogeneous  enhancement7,8. Low cerebral blood volume (CBV) is a 
common manifestation in PCNSL on MR imaging, distinguishing PCNSL from GBM with a diagnostic accuracy 
as high as 90.9%9. However, atypical cases of GBM and PCNSL may be very difficult to distinguish radiographi-
cally. For instance, atypical GBM may exhibit solid enhancement without visible  necrosis8. Also, atypical PCNSL 
may demonstrate necrosis. Furthermore, a subset of PCNSLs, so-called “hypervascular PCNSLs,” may exhibit 
high CBV that is indistinguishable from GBM using  CBV10,11.

In cases such as these, a stereotactic brain biopsy is often performed to determine the true diagnosis. However, 
another key diagnostic dilemma exists given the frequent use of steroids to treat vasogenic edema associated with 
brain tumors. Steroids have a cytolytic effect on lymphoma cells, mediated by the presence of glucocorticoid-like 
antigens on the cell  membrane5,12. Thus, the administration of steroids before biopsy may result in few remaining 
tumor cells, rendering the biopsy  nondiagnostic13.

Currently, differentiation of GBM and PCNSL relies on the clinical judgment of radiologists aided by quantita-
tive diffusion-weighted imaging, perfusion-weighted imaging, susceptibility-weighted imaging, texture analysis, 
or a combination of  them8. These methods create additional workload for radiologists and special examination 
protocols which are resource-intensive. Machine learning (ML) may provide a method for autonomous clas-
sifications of medical images offloading the work for  radiologists6.

Several ML algorithms have been developed to assist neuroradiologists, neurosurgeons, and neuro-oncologists 
in decision making using imaging features alone. For instance, Zhou et al.14 described the use of a random forest 
algorithm to generate a model that predicts IDH mutation status and 1p19q codeletion among glioma patients 
using preoperative MR images alone with an accuracy of 78.2%. Kunimatsu et al.15 developed an ML-based 
image classifier for differentiation between GBM and PCNSL using texture features from contrast-enhanced  T1 
weighted images although the prediction accuracy was only 75% on the test data.

The revolution of image classification using ML came with the development of the convolutional neural 
network (CNN), comprising convolution and pooling layers, and has enabled automatic identification of image 
features relevant to classification  tasks16. Before the adoption of the CNN, most ML radiology studies, such as the 
studies described previously, used hand-crafted feature extraction techniques, such as texture analysis, followed 
by the use of conventional machine learning classifiers, such as random forests and support vector  machines15,17,18. 
Chang et al.19 demonstrated the power of CNNs within the field of neuro-oncology by predicting IDH mutation 
status with a testing accuracy of 89.1%.

There is one study to date that describes a CNN to distinguish between PCNSL and GBM using MRI images 
of previously untreated patients performed by Xia et al.20 A single parametric CNN model was designed using T1 
contrast weighted, FLAIR and apparent diffusion coefficient (ADC) sequence MRI images collected from a total 
of 289 patients with PCNSL (n = 136) or GBM (n = 153). The single-parametric CNN model had an accuracy of 
0.884, 0.782 and 0.700 for T1 contrast-weighted, FLAIR and ADC sequences. This is compared with the team’s 
junior, intermediate-level and senior radiologists who had accuracies of 0.875, 0.878 and 0.906, respectively. 
Therefore, there remains a need for a more accurate CNN model that may augment and even surpass the accu-
racy of radiologists at all levels to be clinically useful. Here, we describe a CNN that was designed using transfer 
learning which is the reuse of pre-trained models to address a new problem in order to improve the accuracy of 
CNNs to differentiate PCNLs and  GBMs21.

Methods
Data collection. The Institutional Review Board (IRB) at Dana Farber/Brigham and Women’s Hospital 
approved this study and allowed the processing of de-identified images in publicly available computing envi-
ronments. Informed consent was waived by the IRB due to the minimal risks of this study. All research was 
performed according to institutional, local, and national guidelines as well as in accordance with the Declara-
tion of Helsinki. MR imaging and clinical variables including patient demographics (i.e., age and sex) were 
obtained from the medical records. A database search for adult patients with GBM or PCNSL from 2015 to 2018 
was performed using the Partners Healthcare Research Patient Data Registry (RPDR) web-based query tool. 
The RPDR is a centralized clinical dataset containing electronic medical record information for over 6.5 mil-
lion patients seen through the Partners HealthCare Network. The inclusion criteria were as follows: (1) adults 
18 years or older at the time of the first preoperative MR scan, (2) pathology confirmed diagnoses of GBM or 
PCNSL that was untreated (i.e. not recurrent) and (3) MR scan with intravenous contrast through the Partners 
Healthcare system on a 3 T unit with an eight-channel head before surgical resection or biopsy. Patients with 
incomplete MR scans or scans with movement artifacts were excluded. All of the PCNSL were diffuse large B-cell 
subtypes that developed in immunocompetent patients. Adult immunodeficiency syndrome-related or Epstein-
Barr virus-related PCNSL were excluded from our analysis as both subtypes of PCNSL may have atypical imag-
ing  features21. One preoperative T1 contrast-weighted scan was obtained per patient. The original images were 
three-dimensional MRIs saved in a DICOM format. For each T1 contrast-weighted scan, 2–15 slices containing 
the tumor were selected per patient. The following authors selected axial images for the dataset: M.M., P.C. and 
J.M. The axial scans were exported as de-identified PNG images with a sliding window of 32 kB. The images were 
preprocessed as follows: images were first resized to 380 × 380 pixels using Lanczos resampling and into three 
channels (i.e., red, green, and blue). The data were entered into the model as values in range [0, 255], and then 
rescaled to [0, 1]. Next, the values were modified according to the mean and standard deviation of the ImageNet 
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dataset (pre-train database). Each channel was first subtracted by the channel-wise mean and then divided by 
the channel-wise standard deviation.

Convolutional neural network. The EfficientNet architecture was proposed by Tan and Le (2019)22 to 
systematically scale the width, depth, and resolution of convolutional networks based on the computational 
resources available. Different versions of the EfficientNet exist based on the scaling parameters used, and the 
larger models perform competitively on ImageNet. For the current study, the medium-sized model, Efficient-
NetB4, was chosen for its favorable balance of model size and accuracy. According to Tan and Le (2019)22, 
EfficientNetB4 achieved top-one and top-five accuracies on ImageNet of 83.0% and 96.3%, respectively, with 
approximately nineteen million parameters. Furthermore, EfficeintNets achieved high accuracy in 5 out of 8 
widely used transfer learning datasets including CIFAR-100 (91.7%) and Flowers (98.8%), suggesting that Effi-
cientNets also transfer  well23.

Implementation details. The Keras  Applications24 implementation of EfficientNetB4 was used. Transfer 
learning was applied from a model trained on ImageNet and publicly available via Keras Applications. A data 
processing pipeline that included loading and augmentation was constructed using the TensorFlow(2.5.0), and 
training was performed across four NVIDIA 1080Ti GPUs with the Keras API with TensorFlow  backend25. Data 
were fed to the model in batches of 32, so each GPU saw eight samples per step. The Adam optimizer was used 
with an initial learning rate of 0.0001 and exponential decay rates for the first and second moment estimates 
of 0.9 and 0.999, respectively. The learning rate was progressively decreased after 50 epochs using the formula 
0.0001 * exp(0.015 * (50 − N)), where N is the current epoch. The model minimized cross-entropy loss. Source 
code is available at https:// github. com/ kaczm arj/ class ifica tion- of- gbm- vs- pcnsl- using- cnns.

Evaluation of models. The performance of the models was evaluated using the diagnostic accuracy of the 
training, validation, and testing sets. Each set of data were separated according to random partition. The main 
performance metric was the area under the receiver operating characteristic curve (AUC). The 95% confidence 
intervals (CIs) of the AUC values were obtained using 10,000 interactions of bootstrapping.

Data augmentation. Three different EfficientNetB4 models were trained with varying levels of image aug-
mentation on the training data. In the first model, images were not augmented. In the second model, images 
were augmented prior to training using random vertical and horizontal flips, and random changes to color. In 
the third model, images were augmented as in the second model and each image had a 10% chance of having 
Gaussian noise sampled from N(0.0, 0.0025) added to it.

Ethics approval. For this type of study, informed consent was waived the by Partners Institutional Review 
Board due to the minimal risk to patients. This study in full was approved by the Partners Healthcare Institu-
tional Review Board. All institutional, local and federal regulations were followed. All research was performed 
in accordance with the Declaration of Helsinki.

Results
Patient characteristics. The total number of patients in the training and validation sets was 189, of which 
100 patients had GBMs and 89 patients had PCNSL. Fifty-nine patients were included in the testing set, of which 
35 patients had GBMs and 24 patients had PCNSLs. The mean ages of GBM and PCNSL in the training groups 
were 60.0 and 63.9 years, respectively (Table 1). In the testing groups, the mean ages of GBM and PCNSL patients 
were 62.8 and 62.9, respectively. The percentages of females in the training groups were 35.0% with GBM and 
42.7% with PCNSL and, in the testing groups, the percentages of females were 42.8% and 54.2%, respectively. 
There was a total of 3887 images with different tumor location, size, and presentation (Fig. 1). Of those, 2332 
(60%) represented patients with GBM and 1555 (40%) PCNSL.

Evaluation in the test set. Each model was trained for 300 epochs, and the best epoch was taken from 
those 300 (best meaning the lowest validation loss). The first model trained with image augmentation (292 
epochs) had an accuracy of 0.93, an area under the receiver operating characteristic curve of 0.94 (0.91–0.97) in 
the test set with a sensitivity of 1, a specificity of 0.86, and F1 score (the harmonic mean of positive predictive 

Table 1.  Summary statistics of the study population.  The total number of patients n = 320. GBM glioblastoma, 
PCNSL primary central nervous system lymphoma.

Training group (n = 189) Testing group (n = 59)

GBM PCNSL GBM PCNSL

Number of patients 100 89 35 24

Women (%) 35.0 42.7 42.8 54.2

Men (%) 65.0 57.3 57.2 45.8

Mean age, range (years) 60.0, 26–90 63.9, 20–89 62.8, 31–90 62.9, 40–83

https://github.com/kaczmarj/classification-of-gbm-vs-pcnsl-using-cnns
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value and sensitivity) of 0.93 for GBM. In contrast, PCNSL had an accuracy of 0.94 and AUC of 0.95 (0.92–0.98), 
Sensitivity of 0.87; specificity of 1.00, and F1 score of 0.93. Models 1 and 2 had a lower rate of error compared 
with model 3 (Table 2). Overall, the model trained with augmentation but without Gaussian noise had the high-
est performance in terms of AUC the testing set.

CNN visualization by Grad‑CAM heatmaps. These heatmaps highlight the characteristics of the image 
they are identifying as a key determinant of the classification. The Grad-CAM heatmaps in the validation set 
showed that the models were classifying images largely based on the presence of the tumor (Fig. 2).

Discussion
Differentiation between GBM and atypical PCNSL remains a challenge for radiologists even with advanced MR 
protocols. Although conventional machine learning (ML) classifiers have been developed to address this prob-
lem with moderate accuracy (75%)15, there has been no ML classifier utilizing convolutional neural networks 
(CNNs) that has achieved accuracy necessary for clinical applications. In this study, we implemented transfer 
learning with a high-performing CNN architecture and are able to classify GBM and PCNSL with high accuracy 
(91–92%) using contrast-enhanced  T1 weighted images.

The capabilities of CNNs to evaluate lesions on radiological images with high accuracy has been described 
for a variety of diseases. According to Chang et al., IDH1 status in grades II-IV gliomas could be predicted with 
an accuracy of 0.86 by CNNs using MR  images19. For evaluating thyroid nodules, Chi et al.26 reported CNN 
models that reported the malignancy of thyroid nodules with an accuracy of 0.96–0.98 on ultrasound images. 
Hamm et al.27 described a custom CNN that classified common hepatic lesions on MRI with a 92% accuracy. 
Differentiation of hepatic lesions using CNNs was also performed on contrast-enhanced CT with an accuracy 
of 0.84 and AUC of 0.92 on the testing  data28.

Figure 1.  Representative MR images for classification. (A) Contrast-enhanced  T1-weighted image of a 71-year-
old woman with primary central nervous system lymphoma in the right thalamus. (B) Contrast-enhanced  T1-
weighted image of a 70-year-old man with primary central nervous system lymphoma in the right frontal lobe.

Table 2.  Sensitivity, specificity and AUC metrics for each model.

AUC (95% CI) Sensitivity Specificity

Model 1

GBM 0.94 (0.91–0.97) 1 0.86

PCSNL 0.95 (0.92–0.98) 0.87 1

Model 2

GBM 0.92 (0.88–0.96) 0.97 0.79

PCSNL 0.94 (0.91–0.97) 0.81 0.97

Model 3

GBM 0.93 (0.89–0.96) 0.98 0.42

PCSNL 0.93 (0.89–0.96) 0.61 0.99
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Even with a small dataset, our CNN methods outperform prior approaches for classification of GBM ver-
sus PCNSL based on MRI. Kunimatsu et al.15 recently published a study extracting texture features of GBM 
and PCNSL  T1-weighted MR images followed by image classification by support vector machine, a traditional 
machine learning method. Two classifiers were developed, a Gaussian kernel and a linear kernel. When the clas-
sifiers were subjected to test data, both showed a prediction accuracy of 75%.

There are several differences between CNNs and conventional ML  classifiers16. First, CNN’s do not require 
hand-crafted feature extraction, such as texture analysis. Extracting hand-crafted image features can be difficult 
and time-consuming and are restrictive to known image patterns, whereas CNNs can aptly learn the informative 
features from the images and discover new features not previously detected by  humans29. Second, CNNs do not 
require segmentation of tumors by human experts, which can also be very time-consuming. One disadvantage 
of using CNNs is that training CNNs from scratch require far more data and computational power for model 
training due to the millions of learnable parameters available. However, given the great potential for improved 
predictive accuracy using CNNs, the increased computational requirements may be worth the cost when clas-
sifying diagnoses with important clinical consequences.

Here, we demonstrated the high accuracy achieved using CNNs even with a relatively small dataset by trans-
fer learning. Xia et al.20 described the only CNN published thusfar to differentiate PCNSL from GBM using 
MRI utilized other sequences including FLAIR and apparent diffusion coefficient (ADC) in addition to the T1 
contrast-weighted sequences used in this study. The highest accuracy was obtained with the T1 contrast-weighted 
sequences using the single-parametric CNN (0.884). However, this was still lower accuracy than the senior radi-
ologist (0.906). To further improve the accuracy of CNNs to be clinically useful to radiologists, we used transfer 
learning which is a machine learning method where a previously developed model is used as the foundation 
for creating another model to perform a different  task21. The model used in this study was trained on ImageNet 
and publicly available via Keras  Applications24. The accuracy was 0.94 for GBM and 0.95 for PCNSL diagnoses, 
surpassing the senior radiologist described in this study by Xia et al.20. Moreover, the model described in this 
study does not require the time consuming preprocessing steps including image registration, brain extraction 
and standardization while still achieving higher accuracy.

This study has several limitations. First, this was a retrospective study with a small number of patients at 
two academic institutions under the Partners Healthcare system. Given that these patients are all under one 
healthcare system and this healthcare system is a large academic institution, our participants may have different 
demographic features from patients encountered in other settings. Second, the images we used for this analysis 
were PNG exports of DICOM format. This process loses a significant amount of data since the dynamic range 
of DICOM files is wider. Third, we did not directly compare the classification outcomes of CNN’s versus radi-
ologists. Future work is required to explore this comparison and assess whether this tool would add value to 
clinical practice. Also, future studies ought to test the CNNs developed here with independent data from insti-
tutions outside of the Partners Healthcare system, although it is expected that this model would be applicable 
under similar circumstances. Furthermore, a larger dataset of patients with GBM and PCNSL could enable the 
development of 3-dimensional convolutions using the 3-dimensional stack of DICOM images. Another next 
step would involve the automatic selection of relevant axial images to minimize the manual efforts required to 
curate the training dataset.

Conclusion
This study provides a proof of concept analysis of convolutional neural networks (CNNs) that differentiate 
between GBM and PCNSL based on  T1-weighted MRI with high accuracy. The models described here may enable 
decision supporting tools for radiologists when making diagnoses that highly impact patient care.

Figure 2.  Heatmaps showing identifying features within the tumor that served as key determinants of 
classification.
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Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request and in compliance with ethical standards.
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