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Automated stomata detection 
in oil palm with convolutional 
neural network
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Yee Thung Kon1, Harikrishna Kulaveerasingam1 & David Ross Appleton1

Stomatal density is an important trait for breeding selection of drought tolerant oil palms; however, 
its measurement is extremely tedious. To accelerate this process, we developed an automated system. 
Leaf samples from 128 palms ranging from nursery (1 years old), juvenile (2–3 years old) and mature 
(> 10 years old) were collected to build an oil palm specific stomata detection model. Micrographs 
were split into tiles, then used to train a stomata object detection convolutional neural network 
model through transfer learning. The detection model was then tested on leaf samples acquired from 
three independent oil palm populations of young seedlings (A), juveniles (B) and productive adults 
(C). The detection accuracy, measured in precision and recall, was 98.00% and 99.50% for set A, 
99.70% and 97.65% for set B, and 99.55% and 99.62% for set C, respectively. The detection model was 
cross-applied to another set of adult palms using stomata images taken with a different microscope 
and under different conditions (D), resulting in precision and recall accuracy of 99.72% and 96.88%, 
respectively. This indicates that the model built generalized well, in addition has high transferability. 
With the completion of this detection model, stomatal density measurement can be accelerated. This 
in turn will accelerate the breeding selection for drought tolerance.

The key to sustainable agriculture and managing the impact of climate change is selective breeding. Through 
selective breeding, the global increase in demand for food can be achieved through improvement in yield per 
unit area, thereby not requiring new agricultural land. Particularly in the case of oil palm, this means a halt to 
deforestation, therefore conserving the habitats for biodiversity. In the past, selective breeding has been per-
formed using phenotypic selection or limited marker assisted selection. The advancement in genomic sciences 
has allowed for high throughput, whole genomic marker discovery and deployment for selective breeding. Whole 
genomic marker-based selection is known as genomic prediction or  selection1, which has seen a lot of success 
from cattle to maize  breeding2,3. Genomic selection is usually conducted by regressing the trait values against 
the genotypes, resulting in a model that can be used to predict for individuals with known genetic information 
but unknown trait performance. Since the conceptual introduction of it in oil  palm4, genomic selection has since 
been assessed and applied in different oil palm breeding  programs5,6.

Even though high throughput genotyping has been made  possible7,8, the phenotyping process usually still 
relies on manual measurement and recording. This, together with the fact that breeders are usually interested in 
multiple traits, creates a phenomenon known as phenotyping  bottleneck9. Time taken for phenotyping essentially 
limits progress in plant breeding programs, including drought  tolerance10. Therefore, it is crucial to automate 
phenotyping processes in order to accelerate selective breeding. The first step towards automating the entire 
phenotyping process often lies in image analytics and machine learning. Essentially, once an image of a plant has 
been captured through a device, machine learning can be employed to automate the measurement, counting or 
classification of the objects in the image. Applications developed based on this include Deep Plant Phenomics, 
which is capable of leaf counting and mutant  classification11.

One of the key traits of interest for oil palm is drought tolerance, particularly related to minimizing cli-
mate change impact. There are many methods to define drought tolerance, including taking a range of leaf 
 measurements12. The most direct measurement of drought tolerance is based on water-use efficiency and yield 
under water-limiting  conditions13. Another alternative is to measure the stomatal density. Biologically, stomata 
are an important “gate” for both gas exchange (CO2) of the leaf during photosynthesis and water vapor during 
 transpiration14. Previous studies have shown that photosynthesis and efficiency of water usage in plants were 
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affected by the responsiveness, speed and size of  stomata15,16. Low stomatal density has been reported to increase 
drought tolerance in many plant species, including  barley17,  rice18,  wheat19 and  arabidopsis20. In addition, regula-
tion capacity of stomatal traits including size and density were also identified as key traits to select for drought 
 tolerance21. With that, the focus of this study was to develop an automated method of detecting and counting 
stomatal density using convolutional neural network (CNN).

Methodology
Sample collection. A total of 128 leaf samples were obtained from advanced commercial oil palms, col-
lected from Sime Darby Plantation nurseries and estates in Carey Island and Banting, Selangor, Malaysia. 
Among these 128 samples, 42 were collected from nursery seedlings (1 years old (yo)), 43 were from juvenile 
palms (2–3 yo) planted in estates, and 43 were collected from adult palms (> 10 yo) in commercial estates. For 
seedlings, bifurcated leaf number 3 was collected, whereas middle leaflets from frond number 17 were collected 
for juvenile and adult palms.

Image capture and stomatal characterization. The bottom surfaces of leaf samples were cleaned with 
distilled water and air-dried. A thin layer of nail vanish was applied at the middle part of the oil palm leaf 
(approximately 1 cm × 3 cm in size). After air-drying, a layer of transparent tape was applied firmly on top of the 
dried nail vanish. The layer of cellofoam tape was then peeled with the nail vanish stuck together and transferred 
to a clean slide, generating the stomata  imprint22. Micrographs of size 1800 µm × 1400 µm were acquired with a 
10× objective lens using the RGB-mode illumination on an EVOS FL Auto (Thermo Scientific, US) microscope.

Stomatal density and size were recorded and measured manually from the micrographs. Density was counted 
as the number of stomata objects in 1  mm2. The stomatal size in this study was defined as the horizontal length 
measured from one stoma end to the other. The average stomatal size was estimated based on the size of 150 
randomly selected stomata across all images for that particular age group. Statistical t-test was carried out to 
determine significant differences for stomatal density and size measured between each age group.

Preprocessing. The acquired 128 micrographs were of resolution 2048 × 1536. Each image was cropped into 
12 independent 516 × 512 tiles, resulting in 1536 tiles. Of these tiles, 51 from young seedlings, 171 from juvenile 
palms, and 88 from adult palms were manually selected to build the CNN stomata detection model. The tiles 
were manually annotated for stomata objects using labelImg  software23. Overall, 20,809 stomata objects were 
annotated.

The acquired tiles were manually inspected, and 193 tiles of the training set were subjected to augmentation 
using an in-house Python script. Blurring of the images was done using both “bilateralFilter” and “GaussianBlur” 
functions from OpenCV  library24. Brightness of the selected tiles were also altered (brightened and darkened) 
by a factor of 2. After augmentation, there were 49,837 stomata objects.

Model building. This study was carried out using Google Cloud Platform’s Compute Engine, with the speci-
fication of Tesla T4 GPU, 128 GB RAM and 24 CPU. The stomata detection model was trained using  tensorflow25 
library’s object detection  API26. MobileNet Version 1 (MobileNetV1) is a light weight deep neural network 
suitable for mobile vision applications, based on a streamlined architecture with depth-wise (dw) separable 
 convolutions27. Table 1 summarized the MobileNetV1 architecture. Single Shot Multibox Detector (SSD) is a 
deep network based accurate object detector that does not resample pixels or features while forming bounding 
 boxes28. Instead of the original VGG-16  architecture29, the MobileNetV1-based Single Shot Multibox Detector 
(SSD) (Fig. 1) model trained on COCO  dataset30 was used in this study. The model was retrained to detect sto-
mata through transfer learning, with the initial weights being MobileNetV1’s pretrained weights.

80% of the tiles were used for the model training set, while 20% were used as a validation set. From the 49,837 
stomata objects, 39,877 were used for model training, while 9960 were used for validation. During training, L2 
regularization was carried out to prevent overfitting. RMSprop and momentum optimizers were also used dur-
ing training to reduce training time required. After a few rounds of manual running and adjustments, the initial 
learning rate was set at 0.003, and the decay factor was set at 0.95, decay steps at 100. Number of classes was set 
at 1 and batch size was set 20. The detection score threshold was set at 0.2.

The training progress was monitored through the use of  Tensorboard25. The overall loss function ( L ) used was 
the combination of classification loss and the weighted sum of the localization loss, which is represented as follow:

where Lc , the classification loss is essentially the softmax loss over the different  classes28, Ll , the localization 
loss, is the smooth L1  loss31 between the predicted bounding box and the ground truth box, N is the number of 
matched default  boxes28 and α is the weight factor. The validation metric used to measure the performance of 
the model was mean average precision (mAP). The model was only saved/updated if it was performing better 
than the previous checkpoints. Early stopping was employed to prevent model overfitting.

Application. Three independent datasets, consisting of 55 leaf samples from 1 yo seedlings (set A), 135 leaf 
samples from 2 to 3 yo palms (set B) and 100 samples from > 10 yo palms (set C) were collected and used as the 
application/test set. Similarly, the micrographs were split into tiles. In this case, however, they were split into 20 
overlapping (120 pixels overlapping horizontally and 40 pixels vertically) tiles, resulting in 5800 tiles. The sto-
mata objects on these tiles were detected using the model built previously with detection score threshold set at 

L =
1

N
(Lc + αLl),
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0.2. After prediction, the bounding boxes generated were overlaid on the full-size micrographs using a Python 
script. Non-maximum suppression was used to solve the issue of overlapping bounding boxes caused by split-
ting, with the threshold set as 0.01. The acquired results were manually inspected and validated. Accuracy of the 
prediction was measured in both precision and recall. Precision was defined as true positives divided by total 
detected cases in the image, whereas recall was defined as true positives divided by total stomata in the image. 
As this dataset was not annotated, both precision and recall were calculated manually. In this case, correct detec-
tions were defined as bounding boxes overlapping with the stomata objects.

Challenge/limitation. Another 20 independent leaves were sampled from palms sharing the same genetic 
background as Set C. However, in this case the micrographs were captured under the 4× objective lens of an 
ECLIPSE Ci-L Nikon, Japan microscope. Stomata images of size 1589 µm × 1192 µm were captured from this 
step. The model was cross applied onto the current dataset, hereby referred to as Set D.

Statement of consent. This study on oil palm complies with relevant institutional, national, international 
guidelines and legislation. All samples collected are maintained and belong to Sime Darby Plantation R&D, 
Malaysia.

Table 1.  MobileNet body  architecture27.

Type/stride Filter shape Input size

Conv/s2 3 × 3 × 3 × 32 224 × 224 × 3

Conv dw/s1 3 × 3 × 32 dw 112 × 112 × 32

Conv/s1 1 × 1 × 32 × 64 112 × 112 × 32

Conv dw/s2 3 × 3 × 64 dw 112 × 112 × 64

Conv/s1 1 × 1 × 64 × 128 56 × 56 × 64

Conv dw/s1 3 × 3 × 128 dw 56 × 56 × 128

Conv/s1 1 × 1 × 128 × 128 56 × 56 × 128

Conv dw/s2 3 × 3 × 128 dw 56 × 56 × 128

Conv/s1 1 × 1 × 128 × 256 28 × 28 × 128

Conv dw/s1 3 × 3 × 256 dw 28 × 28 × 256

Conv/s1 1 × 1 × 256 × 256 28 × 28 × 256

Conv dw/s2 3 × 3 × 256 dw 28 × 28 × 256

Conv/s1 1 × 1 × 256 × 512 14 × 14 × 256

5×
Convdw/s1
Conv/s1

3 × 3 × 512 dw 14 × 14 × 512

1 × 1 × 512 × 512 14 × 14 × 512

Conv dw/s2 3 × 3 × 512 dw 14 × 14 × 512

Conv/s1 1 × 1 × 512 × 1024 7 × 7 × 512

Conv dw/s2 3 × 3 × 1024 dw 7 × 7 × 1024

Conv/s1 1 × 1 × 1024 × 1024 7 × 7 × 1024

Avg Pool/s1 Pool 7 × 7 7 × 7 × 1024

FC /s1 1024 × 1000 1 × 1 × 1024

Softmax /s1 Classifier 1 × 1 × 1000

Figure 1.  Diagram showing  SSD28 using  MobileNetV127 as backbone.
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Results
Stomatal characterization across different palm developmental stages. The average stomatal 
count in an image was 107 ± 12 (mean ± standard deviation) for the 1 yo palms (Set A) and 200 ± 18 for 2–3 
yo palms (Set B) and 208 ± 16 for > 10 yo palms (Set C). Besides having the highest stomatal count, the stoma-
tal size of Set C was also the largest, at 43.01 ± 3.51 µm, as compared to Set A and Set B (31.82 ± 2.64 µm and 
34.41 ± 2.67 µm, respectively) (Table 2). Example stomata tiles for all three stages can be found in Fig. 2.

Model and application. The mean average precision (mAP) of the detection model was 96% (with inter-
section over union (IoU) threshold set at 0.5) when training was stopped. At this point, the overall loss value 
was 1.34. The model built was then applied on independent test sets (A, B, C and D). Figure 3 shows the boxplot 
summarizing precision and recall values acquired for all four test sets. For the image with the highest stomatal 
density (Supplementary Fig. S1), both precision and recall calculated were 99.83%. As for the image with the 
lowest stomatal density (Supplementary Fig. S2), precision was 98.91% and recall was 99.45%. The average pre-
cision acquired when testing the model on set A was 98.00 ± 1.40% (mean ± standard deviation), with the cor-
responding recall being 99.50 ± 0.70%. Comparatively, the average precision acquired for set B was 99.70 ± 0.29% 
and the recall was 97.65 ± 2.76%. The image with the lowest recall value (82%) can be found in Supplementary 
Fig. S3. As for set C, the model achieved average precision of 99.55 ± 0.37%, and recall of 99.62 ± 1.05%. The 
cross application of the model onto set D dataset exhibited precision of 99.72 ± 0.29% and a slight drop in recall 
of 96.88 ± 1.40%. The worst performing image is included as Supplementary Fig. S4. In addition, examples of 
raw and annotated tiles are shown in Fig. 4, including successful application on an unfocused image (Fig. 4D). 
Figure 5 shows an example of a fully annotated stomata image using the built model.

Discussion
To the best of our knowledge, this is the first CNN-based oil palm stomata detection model reported. In other 
plant species such as  grapevine32 and  oak33, stomata detection and morphological feature estimation have been 
automated through cascade object detector utilizing feature extractors such as histogram of oriented gradients. 
In oak, the estimated precision and recall were 95% and 85%, respectively. As for grapevine, the precision and 
recall were 92% and 79%, respectively. In these methods, parameters associated with these feature extractors 
were manually defined. Though the precision values acquired from these studies were very high, the recall values 
were lower by comparison. Compared to these methods that use specific feature engineering methods, a more 
recent methodology of automating stomata detection using multiple feature extraction techniques and learning 
methods was introduced in  maize34, achieving 97.1% detection accuracy (measured in precision). This study 
also highlighted the use of deep learning features for stomata detection application.  StomataCounter35 was one 

Table 2.  Stomatal count and size across different palm age groups. The stomatal counts and standard 
deviations (sd) were rounded to its’ nearest integer. Significant differences at p-value < 0.05 were represented as 
α for A versus B, and β for B versus C.

Set Palm age (yo) Count mean (/mm2) Count sd (/mm2) Size mean (µm) Size sd (µm)

A 1 107α 12 31.82α 2.64

B 2–3 200α 18 34.41α, β 2.67

C  > 10 208 16 43.01β 3.51

Figure 2.  Representative stomata tiles for three palms’ developmental stages collected in this study. (A) 1 yo 
palm seedling, (B) 2–3 yo juvenile palm, (C) > 10 yo adult palm.



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:15210  | https://doi.org/10.1038/s41598-021-94705-4

www.nature.com/scientificreports/

of the earliest efforts in building CNN-based stomata detection model. The model built reached precision of 99% 
and recall of 93%, indicating that CNN performed better than other methods. It was also noted in the study that 
model accuracy would decrease significantly when cross-applied on images from another species.

Our current study focused on developing an automated stomata detection model specifically for oil palm. 
For this purpose, we have selected oil palm samples from different developmental stages or age groups, ranging 
from young seedling to adult. One of the concerns with only using training dataset images from a single age 
group was that the resulting detection model might not generalize well across other age groups. From the sto-
matal characterization performed, we observed significant difference in stomatal density between seedling and 
juvenile palms. Although the stomatal density of adult palms was the highest, it was not statistically different 
from juvenile palms. On the other hand, stomatal size measurements showed significant differences across all 
age groups. It is noted, however, that the size difference observed between juvenile and seedling was far lesser 
when compared to the difference between adult and juvenile. This indicates that the juvenile palms’ (age 2–3 yo) 
stomatal profile captures the transitional stages of stomata from seedling to adult. By combining these images 
with images acquired from both seedling and adult palms, the resulting model would be capable of detecting 
stomata across all age groups in oil palm. Thus, not only can this model be used for yield-related studies in adult 
palms, it can also be used early screening of drought tolerant palms in nursery.

In general, the accuracy acquired in this study was similar to a previous publication on stomata detection 
using  CNN35, with the acquired recall values reported here being slightly higher. This is probably attributed to the 
preset condition that our model was both trained and expected to only be used for oil palm stomata micrographs, 
as compared to a general  model35 that is expected to work across different species. The high recall and precision 
values indicated that the model seldom miss stomata, nor misclassify non-stomata objects. In fact, compared 
to other non-CNN  methods32,33, CNN-based detection models achieved far better recall values, indicating that 
they generalized better. This is probably because parameters involved in CNN were determined through train-
ing and not manually decided. In addition, CNN has a deeper architecture which provides exponentially more 
expressive capability, and its’ hierarchical feature representation enables multilevel representation from pixel 
to high-level  features36. Although CNN models generalize better, the required condition to build CNN model 
is that the number of samples needs to be large, which was a limitation faced in previous grapevine and oak 

Figure 3.  Precision and recall boxplot for four test sets (A, B, C and D).
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Figure 4.  Representative tiles before and after automated detection using developed stomata model. The 
detected stomata were labelled in green bounding boxes together with a detection score on top. (A) Clear tile. 
(B) Stomata detected on clear tile. (C) Unfocused tile. (D) Stomata detected on unfocused tile.

Figure 5.  Stomata detection on entire microscopic image. The detected stomata were labelled in green 
bounding boxes together with a detection score on top.
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 publications32,33. As our final goal is to develop a mobile application that enables field stomatal count phenotyp-
ing, the MobileNet CNN architecture, which is known to be light weight was selected. Other CNN architectures, 
such as  VGGNet29 were not assessed, which can be seen as a limitation of this study.

With large volume of data comes the problem of data quality. Two problems faced when working on micro-
graphs in this study were inconsistent brightness and unfocused images, which were predominantly faced during 
set B application (example shown in Fig. 4C). This is potentially caused by uneven stomata imprint or non-
optimal microscope brightness and contrast settings. In moving towards high-throughput phenotyping using 
micrographs, this represents one of the practical issues that needs to be solved. Another option is to develop a 
robust detection model. Instead of discarding these low-quality images, the CNN model was also trained on them 
as well. In fact, to increase the number of low-quality images, some of the high-quality images were artificially 
altered to be unfocused and darkened/lightened in a process known as augmentation. The augmentation process 
also increases the number of annotated images for training, which is often regarded as a taxing and expensive 
process in developing an object detection  model37,38. With this, the resulting model was also capable of detecting 
stomata on most low-quality images (example shown in Fig. 4D). Another method to reduce manual annotation 
used in this study was only annotating selected tiles from a full-size image instead of annotating every single one. 
With tiles within the same image sharing similar background properties, it was rather redundant to annotate all 
of them. Instead, representing every training image with a few tiles allows for building of a more robust model 
with lesser effort.

Although the resulting oil palm stomata detection model performed well, it was not without limitation. In 
rare cases, we observed low recall but high precision, which indicates failure of the model in detecting certain 
stomata objects. Upon inspection of these images (Supplementary Figs. S3, S4), it was found that the undetected 
stomata fall within the image regions that had a combination of unfocused stomata objects, low-contrast or noisy 
background. Further improvements to the model can be made through training on images with similar proper-
ties. In addition, the stomata objects that were found near the edges of the images were sometimes undetected. 
A potential solution that can be implemented is to subset the test image by ignoring the last few pixels both 
vertically and  horizontally33,35.

One of the key criteria when building a predictive model is that the training dataset must be representative 
of the test/application set by having similar  distribution37. In practice, however, it is impractical to assume that 
images acquired under different microscope and different conditions will share the same underlying distribu-
tion. As such, the detection model was tested on another set of images (D) acquired from a different microscope 
under different conditions such as lighting and image size. Set D achieved the similar precision with B and C at 
99.72%, indicating that the model was able to detect stomata in the images from different microscope with low 
false positives. Despite the slight drop in recall to 96.88%, overall the model performed rather well in this chal-
lenge test. In other words, the model can be cross-applied to micrographs generated using other microscopes. 
Yet, the slight drop in recall also indicates that the detection model needs to be continuously be improved using 
images acquired under different conditions.

With our main goal being to develop drought tolerant yet productive palms, commercial populations devel-
oped from key breeding programs were selected for this study. Stomata detection from micrographs was identified 
as one of the key time-consuming steps. To ease this phenotyping process, this stomata detection CNN model 
was developed. The resulting model showed promising result, particularly on adult palms. From our experience, 
manual stomata counting of a single full image can take up to 5 min, and automating stomata counting on a large 
dataset can save months of manpower. Without the limitation in phenotype analysis, the result acquired using 
this model can be used for genome-wide association study or quantitative trait locus analysis, which identifies 
key genes controlling drought tolerance and requires a large dataset of palms to be used. Also, high-throughput 
phenotyping methods will accelerate genomic  selection5,6, thereby reducing time required for breeding and 
selection. As an initial step towards automating stomata phenotyping in oil palm, future models will need to not 
only detect stomata, but also segment out and measure their sizes and openings. The model can then be incor-
porated into a portable device for field phenotyping. Given the high accuracy observed, other CNN models can 
be developed in the future for many other commercially useful traits and for precision agriculture, for example 
automatic palm detection from drone/satellite images and disease classification in estates or nurseries.

Conclusion
This paper describes the development of the first oil palm CNN-based stomata detection model using leaves 
collected from palms of different ages. The resulting model showed very high accuracy (99.08% precision and 
98.92% recall) when tested on three different age groups. The model also demonstrated high transferability, 
achieving high accuracy (99.72% precision and 96.88% recall) when cross-applied onto micrographs acquired 
under different conditions.

Received: 2 March 2020; Accepted: 9 July 2021
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