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Interpretable deep recommender 
system model for prediction 
of kinase inhibitor efficacy 
across cancer cell lines
Krzysztof Koras1, Ewa Kizling1, Dilafruz Juraeva2, Eike Staub2 & Ewa Szczurek1*

Computational models for drug sensitivity prediction have the potential to significantly improve 
personalized cancer medicine. Drug sensitivity assays, combined with profiling of cancer cell lines and 
drugs become increasingly available for training such models. Multiple methods were proposed for 
predicting drug sensitivity from cancer cell line features, some in a multi-task fashion. So far, no such 
model leveraged drug inhibition profiles. Importantly, multi-task models require a tailored approach 
to model interpretability. In this work, we develop DEERS, a neural network recommender system for 
kinase inhibitor sensitivity prediction. The model utilizes molecular features of the cancer cell lines 
and kinase inhibition profiles of the drugs. DEERS incorporates two autoencoders to project cell line 
and drug features into 10-dimensional hidden representations and a feed-forward neural network 
to combine them into response prediction. We propose a novel interpretability approach, which in 
addition to the set of modeled features considers also the genes and processes outside of this set. Our 
approach outperforms simpler matrix factorization models, achieving R = 0.82 correlation between 
true and predicted response for the unseen cell lines. The interpretability analysis identifies 67 
biological processes that drive the cell line sensitivity to particular compounds. Detailed case studies 
are shown for PHA-793887, XMD14-99 and Dabrafenib.

Matching the optimal drugs for individual cancer patients remains a crucial problem of precision  medicine1. Drug 
sensitivity data from cancer models are frequently generated to provide the basis for the discovery of molecular 
markers to predict drug efficacy. To predict the response of a specific cell line to a specific drug, there is a need 
of computational models that can leverage the abundance of information about drugs and cancer cell lines.

Strongly parallelized assay formats provide a variety of data that can be used to comprehensively describe the 
characteristics of both cancer cell lines and  drugs2–6. Despite their  drawbacks7–11, multi-omics cell line data can 
provide important insights about the molecular mechanisms underlying susceptibility to distinct drugs. Argu-
ably, the subclass of kinase inhibitor drugs is best characterized by their kinase inhibition profiles, which, apart 
from the intended on-targets, manifest also off-target effects. Despite their frequent use during the early phases 
of drug development, when inhibitory profiles of kinase inhibitors are optimized, to our knowledge such data 
has not been used for modelling of drug response.

Computational drug sensitivity prediction has been approached by many machine learning  methodologies12–14, 
ranging from traditional  algorithms15–18 to models based on neural networks and deep  learning19–24. Recently, 
the problem has also been addressed using generative modeling, including variational  autoencoders25–27, as well 
as using the reinforcement learning  framework28.

The problem of drug sensitivity prediction can be stated as a recommendation problem, where cancer cell 
lines and drugs are analogous to users and items, respectively. The goal is to recommend the best drug for a 
given cell line. One of the most popular recommender system techniques is matrix factorization (MF), where 
the user-item interaction matrix is decomposed into a product of two lower-dimensional rectangular matrices. 
The problem of so called matrix factorization with side information incorporates features of users and items in 
the factorization process. The simplest approach to such MF problems involves linear projection of the features 
to lower-dimensional hidden space, followed by computing the dot product between corresponding user and 
item hidden representations in order to obtain user-item interaction  prediction29–31. Recently, this approach has 
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been modified by introducing non-linearity in the projection step, where the projections are computed by neural 
networks or autoencoders, but the corresponding hidden representations are still connected via a dot product in 
the linear fashion. Dot product, however, as a simple linear function, has a limited ability to capture the complex 
user-item interactions in the hidden space. To address this issue, deep neural networks have been proposed to 
replace the dot product for modeling the user-item interactions in the latent  space32,33. Since neural networks 
are known as the universal  approximators34, they are expected to be more suitable to learn complex relationships 
between the hidden representations of the users and items and the response variable.

While the neural-network based models are more expressive, previous analyses point out that the deep 
learning models do not necessarily outperform simpler models when the latter are finely tuned, and that some 
published neural network model results are hard to  reproduce35. Moreover, deep neural networks have a repu-
tation of being difficult to interpret due to their non-linearity and complex structure. The majority of so called 
explainable artificial intelligence methods focus on finding attributions between specific neurons in the network 
by analyzing the underlying gradient  flow36–39. Although useful, these methods provide rather standard utilities 
(e.g. feature importances), often available also for traditional machine learning models. Moreover, the insights 
derived from such interpretability approaches are limited by the features chosen for training the model.

We argue that a desired recommender system for the problem of drug sensitivity prediction should satisfy 
several objectives. First, it should solve a multi-task learning problem, i.e. model multiple drugs and cell lines 
simultaneously. This allows to capture general mechanisms driving the drug-cell lines interactions. Second, it 
should achieve state-of-the art predictive performance, especially in the task of predicting drug sensitivities for 
new cell lines. This is due to the fact that in this setting, the new cell line mimics a new patient, and the recom-
mendation problem corresponds to identifying the best therapy for that patient. Finally, the model should be 
interpretable. Specifically, the model should explain the rationale behind its predictions and provide biological 
and pharmacological insights regarding the mechanism underlying the drugs-cell lines interactions. The emphasis 
on model interpretability is crucial in the context of its potential clinical applications.

To address these objectives, we develop a recommender system model for drug sensitivity prediction, called 
Drug Efficacy Estimation Recommender System (DEERS). DEERS incorporates two autoencoders to project the 
drug and cell line features, respectively, into lower dimensional representations, and uses a feed forward network 
to predict the sensitivities of the cell lines to the drugs based on their hidden representations. The proposed 
framework brings several advantages. First, the model solves a multi-drug and multi-cell line sensitivity learning 
problem and utilizes cell lines biological data and drugs inhibition profiles as side information (Fig. 1a,b). Second, 
the model is highly predictive. In a comparative analysis, DEERS outperforms two other MF-based recommender 
system models, and achieves similarly good results to the best performing XGBoost algorithm. Third, we provide 
an approach for model interpretability, on two levels: (1) meaningful drug and cell line feature representation 
learning, and (2) explaining the cell line sensitivities to drugs in terms of the underlying biological processes.

The crucial aspect of the proposed interpretability approach is that it offers the widest possible assessment of 
the specific genes and biological processes that underlie the action of the drugs on the cell lines. The novelty of 
this approach stems from the fact that it considers also such genes and processes that were not included in the set 
of modeled features. Using the interpretablity approach, we demonstrate that the low-dimensional representa-
tions of the model capture the high dimensional features of drugs or cell lines, specifically the molecular patterns 
of cell lines and drug inhibition profiles that govern the response of distinct cell lines to drugs (Fig. 1c). Finally, 
we find the relationships between drug response and biological processes of cell lines (Fig. 1d).

Results
DEERS was developed with two aims in mind. One, to achieve state-of-the art predictive performance in predict-
ing the response of cancer cell lines to kinase inhibitor drugs. Second, to identify the biological mechanisms that 
drive this response. Below, we evaluate the performance of DEERS in comparison to other models and conduct 
its interpretability analysis.

Evaluation of the predictive performance of DEERS in comparison to other models. The drug 
sensitivity measurements were acquired from the Genomics of Drug Sensitivity in Cancer (GDSC)3 database. 
GDSC provides two sensitivity measurements, summarizing the dose-response curve: area under the curve 
(AUC) and log half maximal inhibitory concentration (IC50), defined as a drug concentration needed to reduce 
cell viability by 50%.

The predictive performance of DEERS is compared with four other methods. Two of those, Elastic net and 
XGBoost, are traditional, frequently used machine learning algorithms. Remaining two, referred to as Lin MF 
and Autoen MF, are versions of matrix factorization with side information (see “Methods” section for a descrip-
tion of the compared models). In order to evaluate the performance of DEERS and other models on a test set 
containing responses of unseen cell lines, we first pass the drugs and cell lines input data to the model and obtain 
a table of predicted responses for each drug and cell line pair. Given such a table, we calculate the Pearson cor-
relation and RMSE (root mean squared error) of the true to predicted responses across all drug-cell line pairs. 
In addition to such metrics calculated globally, we also group the previously described table, and calculate 
correlation (abbreviated corr.) and RMSE of true and predicted responses across pairs per given drug or cell 
line. To aggregate the per-drug and the per-cell line results, we take the median across the cell lines and drugs, 
respectively. The per cell line results mimic an envisioned clinical application of the model, where prediction 
of drug efficacy will be made for a new patient with specific tumor features, enabling a personalized medicine 
approach. This evaluation scheme yields six performance metrics per model (referred to as “Pairs RMSE”, “Pairs 
corr.”, “Per-drug RMSE”, “Per-drug corr.”, “Per-cl RMSE” and “Per-cl corr.”). These metrics are evaluated both 
for IC50 (Table 1) and AUC (Table 2). The metrics are computed for several experiments with different random 
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data splits into training, validation and test sets (ten experiments for DEERS and five for each of the compared 
methods). In order to obtain a more robust comparison between DEERS and the simpler approach of matrix 
factorization with side information, we group the results for the five experiments of the Lin MF and Autoen MF 
models, yielding two ten-element groups of results per each evaluation metric (ten for DEERS and ten for the 
matrix factorization with side information). We then perform the one-sided Wilcoxon rank-sum tests, testing 
whether DEERS obtains statistically significantly better performance in a given evaluation metric.

Figure 1.  Overview of the data and the modeling process. (a) Recommender system framework for drug 
sensitivity prediction from drug and cell line features. The drugs are described by their inhibition profiles on 
a panel of 294 kinases. The biological features of the cell lines include continuous mRNA expressions, binary 
indicators of coding variants, and dummy-encoded tissue type. Two drug response metrics are considered: AUC 
and IC50. The recommender system first independently encodes drugs and cell lines input data into lower-
dimensional representations. The two hidden representations are then transformed in order to compute the drug 
response estimation. (b) Architecture of the DEERS model. First, the drugs and cell lines inputs are passed into 
corresponding autoencoders which output the 10-dimensional representations and reconstructed data. Next, the 
hidden representations are concatenated and used as an input to the two-layered, feed-forward network which 
outputs the drug response estimate. (c) Method for relating biological meaning to hidden dimensions of cell 
lines. First, the hidden dimensions of the cell line autoencoder are correlated with gene expression data. Here, 
ZC denotes the matrix with cell line hidden representations stacked in rows, ZC[:, c] denotes a column of ZC , GC 
denotes the gene expression data for cell lines and GC[:, g] denotes a column of GC . The resulting ranked lists, 
one per each dimension, are then passed as an input to GSEA Preranked analysis, obtaining biological processes 
enriched in every hidden dimension (see “Methods” section). (d) Method for relating the drug action directly 
to biological processes. For a given drug d, the cell line response is correlated with a given cell line hidden 
dimension c. The obtained correlation coefficient is then mapped to the biological processes enriched in hidden 
dimension c. This procedure is performed for every drug and every hidden dimension, obtaining the matrix 
relating drugs to the biological processes (see “Methods” section). For graphics, we used  Matplotlib67,  seaborn68, 
NN-SVG69, and Inkscape version 1.1 (https:// inksc ape. org).

https://inkscape.org
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In general, IC50 as a prediction target is easier to learn than AUC. Indeed, in terms of correlation between 
predicted and true response values, better results are obtained by all models for IC50 than for AUC.

With IC50 as the response variable, the DEERS model mostly outperforms or at least performs similarly well 
as the other two matrix factorization-based models with regard to all of the six performance metrics (indicated 
by bolded values in Table 1). For IC50, the XGBoost outperforms the other traditional method, Elastic net, in 
all performance measures. This indicates that nonlinear models are needed to capture the dependence of IC50 
on drug and cell line features. DEERS and XGBoost achieve comparable evaluation results (with the best model 
according to each evaluation metric underlined in Table 1). In particular, DEERS obtains a high Pearson cor-
relation coefficient r = 0.82, calculated on all drug-cell line pairs in the test set. Moreover, the median per cell 
line correlation of r = 0.86 indicates that DEERS achieves the state-of-the-art performance in predicting cell line 
responses to drugs, which most closely resembles the hypothetical clinical setup. Notably, compared to per-cell 
line correlation, all models obtain relatively poor results in terms of per-drug correlation. This may be due to the 
fact that our input data is asymmetric as it covers much fewer drugs (74) than cell lines (922).

In the case of AUC as the response variable, the comparison of model performance yields similar results as 
the IC50. Here again DEERS outperforms the other two matrix factorization-based methods, while from the two 
traditional methods XGBoost performs better than Elastic net (Table 2). Overall, the performance of DEERS is 
very similar to XGBoost. For AUC, the DEERS achieves r = 0.76 Pearson correlation coefficient calculated on 
all drug-cell line pairs in the test set. For the per-cell line results, the median correlation across the unseen cell 
lines is r = 0.81, constituting the best result along with XGBoost.

Evaluation of the added value of inhibition profiles and putative targets. In order to quantify 
the benefit of incorporating inhibition profiles of the drugs, we performed an ablation study and estimated the 
performance of DEERS with drug putative targets as drug input data. This model is referred to as “DEERS with-
out inhibition profiles” in Table 1. To this end, the reduced drug features were defined by a binary matrix with 
74 rows corresponding to kinase inhibitors and 92 drug targets, and entries 1 if the drug has the gene as target 
and 0 otherwise. With this alternative drug input data and IC50 as a target variable, we evaluated DEERS using 
the same procedure as previously (with five experimental iterations), with all hyperparameters besides learning 
and dropout rates unchanged. Learning and dropouts rates were tuned using validation set in the same manner 
as before. DEERS with inhibition profiles outperforms DEERS with binary targets in 3 evaluation metrics (Pairs 
RMSE, Pairs corr., Per-cl corr.), achieves the same results in 2 metrics (Per drug RMSE and Per-cl RMSE) and 
slightly underperforms in Per-drug corr. metric. The improvement in Pairs RMSE, Pairs corr., Per-cl corr. met-
rics constitutes 11.1%, 2.5%, and 2.4% relative increase, respectively.

We also performed the ablation study in the opposite direction, and removed the set of putative targets of the 
analyzed 74 drugs from the kinases panel used to describe the inhibition profiles. This resulted in removing of 45 
kinases, leaving 249 features to describe the drugs. This change did not affect the predictive performance, as there 
was no significant results difference in any evaluation metric compared to DEERS trained with the whole panel 
of 294 kinases. This analysis underlines the added value of accounting for the inhibition profiles of the drugs.

Evaluation on an independent dataset. In order to estimate the performance of DEERS on other data 
than cell line sensitivities from GDSC, we extracted drug sensitivity data from the Cancer Cell Line Encyclo-
pedia (CCLE)2 project. Next, we constructed a dataset consisting of an intersection between the our analyzed 
dataset (containing data for 74 drugs derived from GDSC for kinase inhibitors), and the CCLE dataset in terms 
of cell lines and drugs, along with corresponding, min–max-scaled CCLE IC50 values. The data regarding the 
intersection between GDSC and CCLE, as well as CCLE IC50 values were extracted using the PharmacoDB 
 package40,41. The resulting dataset contained 351 common cell lines and 5 common drugs (Crizotinib, Lapatinib, 
PD0325901, PLX-4720 and Sorafenib), constituting 1747 pairs in total. The cell lines and drugs were described 
by the same features as in the original GDSC dataset. We next used the GDSC data corresponding to the remain-
ing 571 cell lines that are not present in the CCLE-GDSC intersection dataset and all 74 drugs to train DEERS. 
From those 571 cell lines of GDSC, 50 were randomly chosen to construct the validation dataset for tuning the 
learning and dropout rates (see “Methods” section). We then re-trained the model with the best hyperparam-
eters on all 571 cell lines and applied it to the CCLE-GDSC intersection dataset, obtaining IC50 predictions for 
unseen cell lines. It is important to note that the maximum obtainable correlation between the model predictions 
and the true IC50 values in the intersection dataset in this experiment is 0.53, defined by the correlation between 
the true IC50 values in the CCLE dataset and the true IC50 values in the GDSC for these cell line-drug pairs. 
Given this upper bound, the obtained correlation result of 0.40 is relatively high. In comparison, for the XGBoost 
evaluated in the same scheme as described above, the obtained correlation is 0.39.

Taken together, these results demonstrate that thanks to its deep neural network-based recommender system 
architecture and utilization of informative drug features, DEERS obtains state-of-the art performance in predict-
ing cell lines sensitivity to drugs in a multitask setup. In contrast to the other well performing model, XGBoost, 
however, DEERS obtains highly informative reduced-dimension representations of the cell line and drug features, 
respectively. This aspect of the model is discussed below.

Attributions between input features and hidden dimensions using neural network analy-
sis. As the first step of the DEERS model interpretability analysis, we computed the attributions between 
the input features and the hidden dimensions using Integrated Gradients (see “Methods” section). Next, we 
performed hierarchical clustering of the resulting attribution matrix, in which the rows were the features, and 
columns were the hidden dimensions. The clustering identifies well-defined groups of features associated with 
each specific hidden dimension (Fig. S1). There is very little overlap between feature groups for both drugs and 
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cell lines, indicating that hidden dimensions are independent in terms of which features affect them the most. 
This independence effect is also evident when we compare the covariance matrices of drugs and cell lines repre-
sented in a hidden space, when dependence penalty was incorporated and not incorporated into the overall cost 
function (Fig. S2). The number of drug input features associated with a single hidden dimension ranges from 20 
for dimensions 2 and 8, to 44 for dimension 1. For the cell lines, this number ranges from 11 for hidden dimen-
sion 7 and 44 for hidden dimension 1.

The exact groups of features corresponding to hidden dimensions of the drug autoencoder and to hidden 
dimensions of the cell line autoencoder are listed in Tables S1 and S2, respectively. As an example, in the drugs 
case, hidden dimension 3 is associated with the inhibition of a group of kinases (BRSK1, CAMK2B, CDK3, 
CDK5, CDK16, CHEK1, DCLK1, DRAK1, ERBB4, ERK5, FRK, HCK, LIMK2, MAPKAPK2, MK14, MLK1, 
MP2K6, NDR2, PCTK3, PIM1, PIM2, PLK1, PRKR, TYRO3, VGFR1, VGFR2, YANK3 and YSK1). For the cell 
lines example, hidden dimension 3 is associated with the expression of genes BLK, BRSK1, BTK, CSK, DDR1, 
EGFR, EPHA2, FGFR2, GAK, LCK, MET, NLK, NUAK1, NUAK2, PIM2, PLK2, RIOK1 and ZAP70, as well as 
one-hot encoded tissue indication features corresponding to leukemia, lung NSCLC, lymphoma, myeloma, 
pancreas and urogenital system.

Linking hidden dimensions to the general biological mechanisms. In the next step of the inter-
pretability analysis, we associate each hidden dimension of the cell line autoencoder with a biological process. 
To this end, for each hidden dimension and each gene, we correlate the values of the hidden dimension with the 
expression values of the gene across cell lines. For a given hidden dimension, the obtained correlations are then 
ranked and we apply gene set enrichment analysis (GSEA) to identify biological processes positively or nega-
tively correlated with that dimension (Fig. 1c). Importantly, this analysis links the dimensions to all genes meas-
ured in the cell lines, that is, also to the genes outside of the cell line features used in the model (see “Methods” 
section for a full description of this analysis). Here, we run the GSEA considering the gene-sets included in the 
Gene Ontology Biological Processes. The analysis and subsequent filtering of redundant terms yield a final set of 
GO terms for each dimension of the hidden space of the cell line autoencoder (Fig. 2). We identify 67 GO terms 
in total, many of which are related to cancer (e.g. DNA replication, regulation of cell cycle process, regulation 
of angiogenesis). The number of enriched terms per dimension varies from 6 to 13. The majority of enrichment 

Figure 2.  Heatmap reflecting Biological Process GO terms enriched in hidden dimensions of the cell line 
autoencoder. Negatively and positively signed FDR values correspond to negative and positive enrichment 
scores, i.e. negative and positive side of the ranked list, respectively. Hidden dimensions are sorted by the 
number of enriched terms. Abbreviations: proc. – process, reg. – regulation, resp. – response, neg. – negative, 
pos. – positive, transcr. – transcription, transd. – transduction, mRNA-cont – mRNA-containing, dam. 
– damage, nucl. – nucleus, macromol. – macromolecule, biosyn. – biosynthetic, cellul. – cellular, signal. 
– signaling, act. – activity, trans. – transition. For graphics, we used  Matplotlib67 and  seaborn68.
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scores (67%) are positive, which indicates that they are positively correlated with that dimension. Conversely, the 
negatively signed FDR value implies that the given term is negatively correlated. Markedly, the sets of enriched 
terms almost do not overlap between the dimensions, indicating the independence of the dimensions in terms 
of their associated biological mechanisms. Out of 67 terms, only 12 are associated with more than one hidden 
dimension, from which 10 are associated with two dimensions.

When inspecting the heatmap (Fig. 2), we identify groups of biological mechanisms associated with specific 
hidden dimensions. For example, hidden dimension 2 is mainly linked with DNA replication and cell cycle, as 
terms enriched in it include: DNA replication, DNA-dependent DNA replication, G1/S transition of mitotic cell 
cycle and regulation of cell cycle process. Dimension 4 is related to protein metabolism (post-translational protein 
modification, cellular protein metabolic process, cellular protein modification process), while dimension 3 is 
connected with DNA and RNA metabolism (DNA metabolic process, RNA metabolic process, rRNA metabolic 
process) and known cancer-related processes like regulation of MAPK cascade and regulation of angiogenesis. 
Other such terms include regulation of extrinsic apoptotic signaling pathway (dimension 9), cellular response to 
DNA damage stimulus (dimension 6), cellular response to tumor necrosis factor (dimension 0) and DNA dam-
age response, signal transduction by p53 class mediator (dimension 1). Interestingly, some of the terms are not 
commonly linked to cell cycle or other processes related to oncogenesis, e.g. for dimension 8 the set of enriched 
terms includes central nervous system development, nervous system development and axonogenesis. This analy-
sis provides a form of interpretation of hidden dimensions from the biological standpoint and facilitates a better 
understanding of the model prediction based on cell lines hidden representations. Overall, the obtained list of 
biological processes reflects the repertoire of common biological mechanisms that are affected by the analyzed 
kinase inhibitors in the set of analyzed cell lines, and as a general summary can only be obtained from such a 
multitask learning model as DEERS.

Case studies. We further focus the analysis on three case studies, showing how the model predictions and 
true responses can be explained and interpreted for individual drugs and features. For this purpose, we examine 
three specific compounds: the pan-CDK inhibitor PHA-793887, the ALK/CDK7 inhibitor XMD14-99 and the 
BRAF inhibitor Dabrafenib (Fig. 3). First, we establish which features are most important for the model predic-
tion given the input data for a particular compound. To this end, we calculate the attributions between input 
features and the final output layer of the model using the Integrated Gradients  method39. The attributions are 
first computed separately for each cell line and IC50 as the response variable, and next summarized by averaging 
over all cell lines. Second, for each compound we display the cell lines in two chosen dimensions of the hidden 
space of the cell line autoencoder, and color them by their IC50 response to the compound. In this way, we iden-
tify such regions in this space that are correlated with sensitivity to the compound. Finally, we explore in detail 
how well one chosen hidden dimension correlates with the true response and we list the biological processes that 
are associated with that dimension (as per analysis in Fig. 2). Altogether, the case studies identify such features 
and hidden dimensions that are important for modeling the response, and such biological processes that are 
important for the action of the three analyzed drugs.

PHA-793887 is an inhibitor of multiple cyclin dependent kinases (CDK) with activity against CDK2, CDK1 
and  CDK442. According to the attribution analysis, the activity against CDK is reflected in the most informative 
drug features, where CDK2 kinase is one of the most important drug features for prediction (Fig. 3a, top row 
panel). However, the most important feature of that drug is MK03. According to  Uniprot43, the gene coding for 
MK03 is MAPK3, also known as  ERK144. Other CDK inhibitors have been shown to inhibit not only the CDKs, 
but also  ERK145. Moreover, there is an evidence within the KINOMEscan data, stating that several other MAP-
kinases (but not including MAPK3) are inhibited by PHA-79388746. Interestingly, cell line features corresponding 
to the CDK family do not obtain top attribution values. Instead, the highest average attributions are associated 
with the expression of BTK, PIM2 and TEC genes, suggesting that their activity in the cell lines is important 
for PHA-793887 action (Fig. 3a, second row panel). Again, there is some evidence for another CDK inhibitor, 
abemaciclib, targeting one of the listed genes, namely PIM  kinase47. Representing cell lines in two dimensions 
(by hidden dimensions 3 and 0) identifies a region corresponding to a good response of PHA-793887 (Fig. 3a, 
third row panel). This validates that that in general the hidden dimensions well represent the cell line data and 
that in particular these two hidden dimensions well capture the cell line response to PHA-793887. However, most 
of the cell lines response variance can be explained using hidden dimension 3 alone, which is negatively cor-
related with the true response (Pearson correlation r = −0.40; Fig. 3a, bottom row panel). The biological process 
terms enriched for different dimensions, visualized in Fig. 2, can provide the meaning behind these dimensions. 
Analysing the processes associated with the most informative dimension 3 can shed the light on the way the 
response to PHA-793887 is conveyed in the cell lines. The hidden dimension 3 is associated with eight biological 
processes, five of them positively (DNA metabolic process, regulation of cellular macromolecule biosynthetic 
process, RNA metabolic process, rRNA metabolic process, ribonucleoprotein complex assembly) and three of 
them negatively (regulation of cell migration, regulation of MAPK cascade, regulation of angiogenesis). Since 
the GSEA analysis is performed using gene expression data, large values of hidden variable 3 (which correspond 
to a better response) implicitly indicate the over-expression of genes associated with the five positively enriched 
terms, whereas the over-expression of genes related to three negatively enriched terms can indicate poor response.

According to GDSC annotations, XMD14-19 targets include ALK, CDK7, LTK and others. The known tar-
get LTK is listed as one of the most important drug features (i.e., with a large attribution; Fig. 3b, top row 
panel). Cell line features with top attributions for XMD14-19 strongly overlap with those related to PHA-793887 
(Fig. 3b, second row panel). In particular, the top three to features are exactly the same (expression of BTK, 
PIM2 and TEC genes), indicating some similarity between these two drugs. Hidden dimensions 3 and 4 allow 
to visualize regions in the cell line hidden space with distinctive responses (Fig. 3b, third row panel). Similarly 



7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:15993  | https://doi.org/10.1038/s41598-021-94564-z

www.nature.com/scientificreports/

Figure 3.  Case studies corresponding to compounds: (a) PHA-793887, (b) XMD14-99 and (c) Dabrafenib. 
Top row panels: top ten most important drug features for a response prediction by the model, derived using 
Integrated Gradients. Second row panels: top ten most important cell lines features for a model’s response 
prediction. Feature names abbreviations: exp. – expression, mut. – mutation. Asterisks indicate the intervals 
containing the p-values of the Spearman correlation coefficients r between a given feature and log IC50 values 
for a given drug across screened cell lines: no asterisks – [0.05, 1), * – [0.01, 0.1), ** – [0.001, 0.01), *** – (0, 
0.001). Third row panels: cell lines plotted using two chosen hidden dimensions of the cell line hidden space, 
colored by the true log IC50 values (shown for those cell lines that were screened against the presented drug). 
Bottom row panels: scatter plots of true log IC50 values w.r.t. hidden dimension most correlated with the 
response for a given drug. The presented r values are the Spearman correlation coefficients. Text on top shows 
which GO terms are enriched in a considered hidden dimension, following Fig. 2, where blue and brown colors 
correspond to positive and negative enrichment, respectively. See Fig. 2 for term names abbreviations. For 
graphics, we used  Matplotlib67,  seaborn68, and Inkscape version 1.1 (https:// inksc ape. org).

https://inkscape.org
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to PHA-793887, hidden dimension 3 carries the most information about cell lines response to XMD14-99 and 
thus we can conclude that the same biological processes may be associated with the response to these two drugs 
(Fig. 3b, bottom row panel).

In the case of Dabrafenib, both drug and cell line feature sensitivities are consistent with its design and clini-
cal usage. Dabrafenib is a selective inhibitor of mutant BRAF kinase, approved by the FDA for the treatment 
of metastatic melanoma with mutant BRAF(V600)48,49. Accordingly, the two most important cell line features 
are BRAF mutation and skin tissue indicator (Fig. 3c, second row panel). The inhibition of BRAF also emerges 
among the most informative drug features, though being preceded by the inhibition of RAF1, MLK and AMPK 
(Fig. 3c, top row panel). The hidden dimensions 3 and 4 capture significant information about cell lines response 
(Fig. 3c, third row panel), with the hidden dimension 4 being the sole good indicator of the Dabrafenib efficacy 
(Fig. 3c, fourth panel). The hidden dimension 4 has nine positively enriched biological process terms associated 
with it (Figs. 2; 3c, bottom row panel). Thus, we conclude that a better response to Dabrafenib corresponds to the 
over-expression of genes involved in: neutrophil mediated immunity, positive regulation of I-kappaB kinase/NF-
kappaB signaling, regulation of cell migration, post-translational protein modification, cellular protein metabolic 
process, cellular protein modification process, extracellular matrix organization, regulated exocytosis, and cell 
morphogenesis involved in differentiation.

Associating biological processes to all of the analyzed drugs. In the final step of the interpretability 
analysis, we associate biological processes to all of the analyzed drugs. This analysis is based on the idea behind 
the bottom panels of Fig. 3. Just like for PHA-793887, XMD14-99 and Dabrafenib, we can calculate the correla-

Table 1.  Predictive performance of DEERS and compared models when using IC50 as a drug response metric. 
The presented values are averages of metrics taken across several experiments (ten for DEERS and five for each 
other method), with different data splits, along with the corresponding standard deviations. The presented 
per-drug and per-cell line results are medians taken across all considered drugs and cell lines, respectively. 
The evaluated models are split into two categories: frequently used, traditional machine learning algorithms 
(T) and recommender system class (RS). Best results within a model category are highlighted with bold font, 
while the best results overall are underlined. Asterisks indicate the intervals containing the p-values of the 
one-sided Wilcoxon rank-sum tests of the better performance of DEERS over the other two RS models: no 
asterisks – [0.05, 1), * – [0.01, 0.1), ** – [0.001, 0.01), *** – (0, 0.001). Abbreviations: Alg. – algorithm, corr. 
– correlation, cl – cell line, w/o inhib. profs. – without inhibition profiles.

Alg. type Pairs RMSE Pairs corr. Per-drug RMSE Per-drug corr. Per-cl RMSE Per-cl corr.

Elastic net T
0.09 0.80 0.08 0.31 0.08 0.84

± 0.002 ± 0.007 ± 0.019 ± 0.155 ± 0.002 ± 0.003

XGBoost T
0.08 0.83 0.08 0.40 0.08 0.86

± 0.002 ± 0.009 ± 0.017 ± 0.131 ± 0.001 ± 0.006

Lin MF RS
0.09 0.78 0.09 0.30 0.08 0.85

± 0.003 ± 0.012 ± 0.003 ± 0.045 ± 0.002 ± 0.008

Autoen MF RS
0.09 0.80 0.09 0.31 0.08 0.84

± 0.002 ± 0.009 ± 0.004 ± 0.024 0.003 ± 0.006

DEERS w/o inhib. profs. RS
0.09 0.80 0.08 0.38 0.08 0.84

± 0.002 ± 0.012 ± 0.002 ± 0.047 ± 0.002 ± 0.003

DEERS RS
0.08 *** 0.82 *** 0.08 *** 0.41 *** 0.08 *** 0.86 **

± 0.002 ± 0.006 ± 0.002 ± 0.035 ± 0.002 ± 0.010

Table 2.  Predictive performance of DEERS and compared models when using AUC as a drug response metric. 
Table columns and formatting the same as in Table 1.

Alg. type Pairs RMSE Pairs corr. Per-drug RMSE Per-drug corr. Per-cl RMSE Per-cl corr.

Elastic net T
0.13 0.71 0.11 0.23 0.12 0.77

± 0.002 ± 0.011 ± 0.050 ± 0.188 ± 0.003 ± 0.005

XGBoost T
0.12 0.77 0.10 0.34 0.11 0.81

± 0.002 ± 0.013 ± 0.050 ± 0.176 ± 0.002 ± 0.012

Lin MF RS
0.13 0.73 0.11 0.34 0.12 0.80

± 0.004 ± 0.012 ± 0.005 ± 0.044 ± 0.004 ± 0.011

Autoen MF RS
0.13 0.75 0.11 0.27 0.12 0.80

± 0.005 ± 0.008 ± 0.005 ± 0.044 ± 0.006 ± 0.003

DEERS RS
0.12 * 0.76 ** 0.11 0.35 * 0.11 0.81

± 0.004 ± 0.013 ± 0.005 ± 0.027 ± 0.005 * ± 0.014
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tion coefficient between the response profile for a given drug and a given hidden dimension across cell lines, for 
each of 74 drugs and each of 10 hidden dimensions (Fig. 1d). This calculation yields a 74× 10 matrix, in which 
each entry represents a Spearman correlation coefficient for a given compound and hidden dimension. We then 
utilize the associations between hidden dimensions and biological processes presented in Fig. 2 in order to con-
nect drugs to biological processes. For a given drug and process, we first establish which hidden dimension is 
enriched for that process. Next, we assign a corresponding correlation coefficient between the drug response 
and the dimension to the drug and process pair. If more than one hidden dimension is enriched for the process, 
we take the average of the corresponding correlations. This analysis produces a 74× 67 drug-process matrix, 
where each entry is a correlation coefficient indicating how important a given biological process is for driving the 
response of a cell line to a given drug. We divide this matrix into five sub-matrices by the main target pathways of 
the drugs: RTK signaling, PI3K/MTOR signaling, ERK MAPK signaling, Cell cycle, and Others. Finally, we per-
form the row-wise hierarchical clustering of each such drug-process sub-matrix in order to group drugs by the 
similarity of processes that drive their efficacy (Fig. 4). The obtained clustermaps clearly indicate such processes 
that are shared among drugs targeting the same pathways, as well as point at their differences, some of which are 
related to the particular gene targets.

Five of the drugs targeting the RTK signaling pathway (Fig. 4a) are positively correlated with a large group of 
processes related to DNA replication and cell cycle (DNA replication, DNA-dependent DNA replication, G1/S 
transition of mitotic cell cycle, cellular macromolecule biosynthetic process, cytoskeleton-dependent cytokine-
sis, mitochondrial translational elongation, regulation of cell cycle process, translational elongation, negative 
regulation of transcription from RNA polymerase II promoter, regulation of transcription from RNA polymerase 
II promoter), from which four drugs are positvely correlated with processes related to transport and sensory 
perception (ubiquitin-dependent protein catabolic process, processes endosomal transport, cellular protein 
localization, monovalent inorganic cation transport, sensory perception of chemical stimulus and chemical 
synaptic transmission). These drugs, however, visibly divide into two distinct groups with respect to a group 
of processes related to RNA metabolism and regulation of MAPK cascade and angiogenesis (RNA metabolic 
process, rRNA metabolic process, ribonucleoprotein complex assembly, regulation of MAPK cascade, regulation 
of angiogenesis). This difference is the reflection of putative targets of the drugs; drugs which have ERBB2 or 
EGFR as the putative targets are not or are only slightly correlated with these processes, while remaining drugs 
are strongly negatively correlated with them. In general, the RTK signaling drugs with shared target genes have 
similar associated processes and cluster together.

Drugs targeting the PI3K/MTOR signaling pathways generally share very similar profiles of association with 
biological processes (Fig. 4b). All but three of the drugs in this category have consistent positive correlation with 
five processes (epidermis development, cell-cell junction assembly, regulation of autophagy, plasma membrane 
bounded cell projection assembly and cilium organization), which distinguishes PI3K/MTOR signaling from 
other drug categories (e.g. ERK MAPK signaling drugs have noticeably different association profiles, Fig. 4c). 
There are, however, still some processes which tend to be correlated only with a subset of drugs. For example, 
seven drugs (AKT inhibitor VIII, ZSTK474, Omipalisib, Buparlisib, GSK1059615, WYE-125132 and Torin 2) 
exhibit stronger negative correlation with five previously listed processes related to RNA metabolism and regu-
lation of MAPK cascade and angiogenesis, while others do not. The associations with the foregoing processes 
seem to be more prevalent in drugs which have the mammalian target of rapamycin (mTOR) kinase among their 
putative targets in addition to phosphoinositide 3-kinases (PI3Ks), with the exception of Dactolisib. Notably, two 
drugs presumably targeting solely mTOR (WYE-125132, Torin 2) have very similar association profiles across 
all 67 processes. Another considerable group of processes with relatively high correlation in the PI3K/MTOR 
signaling category consists of eight processes: negative regulation of cytokine production, positive regulation of 
MAPK cascade, positive regulation of intracellular signal transduction, positive regulation of peptidyl-tyrosine 
phosphorylation, proteolysis, regulation of defense response, regulation of extrinsic apoptotic signaling path-
way and regulation of immune response. Two out of three drugs associated with these processes (TGX221 and 
AZD6482) target solely PI3Kbeta. Associations with the listed eight processes are also noticeable in the cell cycle 
category (Fig. 4d), specifically for CGP-082996, CGP-60474, Seliciclib and Palbociclib, as well as for WZ-1-84 
and XMD8-85 in the others category (Fig. 4e).

In general, these results can serve as a validation and explanation of the model predictions, as well as provide 
insights regarding the drugs mechanisms of action and drivers of the cell lines response. Considering drug-
biological process associations within a certain drug category enables insights into drugs action on a more general 
level than putative targets or target pathway information alone.

Discussion
In this work, we propose a deep neural network recommender system-based approach to the problem of kinase 
inhibitor sensitivity prediction based on side information about drugs and cancer cell lines. The proposed model, 
DEERS, combines dimensionality reduction of the cell line and drug features using autoencoders and neural 
network-based prediction based on the obtained hidden representations. The modeled drug features are the 
strengths of inhibition of kinases by the drugs. The cell line features include expression and mutation calls for 
the same kinases in cancer cell lines, complemented by primary tissue type of origin for the cell lines. To our 
knowledge, this type of modeling using these types of input data has not been applied before to predict sensitiv-
ity to kinase inhibitors.

Our focus on modeling kinase inhibitors is motivated by the fact that binding profiles across kinases represent 
exquisite data to characterize such drugs. Alternative information about drugs could be the list of specific known 
drug targets. In contrast to continuous and rich data about kinase inhibition, however, annotations of known 
targets are relatively incomplete. The quality of the kinase binding data that we used is assured by a standardized 
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Figure 4.  Associations between cell lines biological processes (horizontal axes) and all of the 74 analyzed drugs (vertical axes), plotted 
separately for (a) RTK signaling, (b) PI3K/MTOR signaling, (c) ERK MAPK signaling, (d) Cell cycle and (e) Others target pathways. 
First, for every drug, the Spearman correlation coefficient between every cell line hidden dimension and the response is computed, 
as shown in Fig. 3. These correlations are then assigned to biological processes associated with a given hidden dimension (see Fig. 2). 
If more than one hidden dimension is related to a process, an average of correlation is taken and assigned to the process. Drugs were 
hierarchically clustered using the Euclidean distance and average linkage within a given target pathway category. The horizontal axis 
is shared for all panels. The vertical axis tick label is formatted as: Drug Name; Putative Targets. Drugs target pathways and putative 
targets are taken from GDSC annotations. The labels are color-coded by the target pathway. For some drugs, putative targets have 
not been listed for readability. Those targets are: * – PI3K (class 1), MTORC1, MTORC2, ** – PI3Kalpha, PI3Kdelta, PI3Kbeta, 
PI3Kgamma, *** – CDK1,CDK2,CDK5,CDK7,CDK9, PKC, **** – RC, ROCK2, NTRK2, FLT3, IRAK1, others, ***** – BRSK2, 
FLT4, MARK4, PRKCD, RET, SRPK1. The color scale of correlation heatmaps is the same for all categories. See Fig. 2 for term names 
abbreviations. For graphics, we used  Matplotlib67,  seaborn68, and Inkscape version 1.1 (https:// inksc ape. org).

https://inkscape.org
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assay platform interrogating a large number of kinases. Therefore, off-target inhibition effects are most likely 
captured completely. An alternative could be to use information on which signaling pathways are affected by a 
drug since this information is often provided in drug databases. However, clearly the information about target 
pathways is only high-level, less detailed than using kinase binding data, and suffers from incomplete understand-
ing about the complete set of pathways that a drug effects in different cellular contexts.

Despite its advantages, the data used to describe the drugs can also be seen as a source of limitation of this 
study. While usage of continuous inhibition profiles provides more information regarding drugs’ action, these 
types of data are available only for a subset of drugs. In comparison, utilizing raw data (e.g. SMILES) would 
lead to more labelled samples for training, which could improve the predictive performance. However, using 
continuous inhibition profiles sheds a light on drugs’ mechanisms of action w.r.t. their response on cell lines and 
provide more interpretable drugs’ representations. The ablation study regarding inhibition profiles and putative 
targets shows that drugs’ interactions across a large enough panel of kinases can provide more informative profile 
of drugs, even in the absence of their putative targets. This provides valuable insight on which properties of the 
drugs are useful to model in these kind of prediction tasks.

The DEERs model aims at two goals: (1) high predictive performance and (2) outstanding model interpret-
ability. Our analysis constitutes a thorough comparative assessment of model performance, evaluating both 
traditional and variants of matrix factorization-based methods. Out of the two traditional models, XGBoost 
achieves better results than Elastic net, indicating that accounting for non-linear interactions among features is 
crucial for prediction performance. DEERS outperforms the other two matrix factorization-based approaches, 
Lin MF (basic matrix factorization model) and Autoen MF (a model using autoencoders for dimensionality 
reduction and a dot-product for combining the reduced data to make prediction). We observe little difference 
in performance between the Lin MF model and Autoen MF (Tables 1, 2), although, importantly, the latter has 
a more difficult optimization goal. Indeed, similar to DEERS, Autoen MF reconstructs the input features from 
the reduced representations. The advantage of DEERS over these two MF-based models is most likely caused 
by the incorporation of the feed-forward network which combines the hidden representations, instead of the 
simple dot product. Compared to the dot product, which only considers element-wise product, these additional 
feed-forward network layers allow the system to adjust the weights after the data encoding step and to estimate a 
more complex function that maps from the hidden representations to the response. Importantly, despite the more 
complex mapping, the hidden dimensions in the DEERS model are still clearly indicative of the true response 
in some cases. Across all compared models, both DEERS and XGBoost show top and very similar performance. 
In contrast to XGBoost, however, DEERS is easier to interpret, as it provides highly informative 10-dimensional 
representations of the input cell lines molecular setup and the drug features.

A model by Manica et al.50 aims at similar objectives as DEERS, and accounts for information about both 
drugs and cell lines, but is not directly comparable to DEERS, as it bases on different input data and uses a dis-
tinct interpretability approach. The best model of Manica et al.50 achieves 0.104 RMSE between scaled predicted 
and true IC50 for the strict data split, compared to 0.08 obtained by DEERS. Importantly, this result cannot be 
interpreted in favor of DEERS, since in the strict data split in Manica et al.50 subsets of both drugs and cell lines 
are left out in the validation set, therefore posing a more challenging problem. The interpretability analysis in 
the Manica et al.50 model is of the “ante-hoc”-type as it utilizes the neural attention mechanisms. In this way, 
the interpretability is intrinsically build into the  system51. Some other examples of attention-based methods 
and  transformers52 have been successfully applied in related  fields53,54. Regarding the drugs this model identi-
fies molecular substructures that are the most responsible for making a prediction for a given drug. This differs 
from DEERS, since we used the higher-level drugs’ features in the form of the inhibition profiles, which are not 
explicitly connected with the drugs’ chemical structure. Both for the Manica et al.50 model and DEERS, external 
evidence validating the interpretability results can be found.

Extensive interpretability analysis demonstrates that the 10 hidden dimensions of the drug and cell line 
autoencoders seem to capture the majority of important information for both drugs and cell lines. The results 
imply mutual independence of hidden dimensions (Fig. 2, S1, S2) and also suggest that the hidden representa-
tions are representative of the drug and cell line input data. In particular, hidden dimensions 3 and 4 show as 
most relevant for driving the cell lines drug response for the majority of drugs (Figs. 2, 4), as demonstrated by 
the presented examples (Fig. 3, bottom panels). The correlation analysis of genome-wide cell lines features and 
hidden representations, combined with GSEA, helps to provide biological meaning to the hidden dimensions 
(Fig. 2). The same analysis performed using the restricted set of kinase- and tissue type-related 241 cell lines 
features that are used to train the models would have resulted in the bias towards GO terms or pathways related 
to protein kinases in general. Instead, using genome-wide gene expression helps to identify the enriched terms 
which are not influenced by the choice of features in the training data and spanning a broader range of biological 
processes. Moreover, this methodology is potentially very versatile, as different drugs and cell lines properties 
outside of the training data can be correlated, and different gene set libraries can be queried for enrichments. We 
show that combining the influence of distinct hidden dimensions for drug response, and biological processes 
associated with the hidden dimensions constitutes a framework which can directly explain drug response by 
concrete biological mechanisms. Such a map facilitates the easier explanation of drugs’ mechanisms of action 
and can potentially identify the new, unexpected ones (Fig. 4). Overall, this study shows how data encoding 
combined with the series of analyses can help to increase the interpretability even in the case of deep neural 
network recommender models, while maintaining the complex nature of such systems.
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Methods
Analyzed data. The analyzed dataset comprised measurements of drug sensitivity of cell lines using viabil-
ity assays for a total of 922 cell lines and 74 drugs, corresponding to 52,730 drug-cell line pairs. Both sensitivity 
metrics provided by the GDSC (AUC and IC50) were used to train and assess the performance of the presented 
models. Drug sensitivity of a cell line is the prediction target of our modeling approach.

The group of 74 drugs selected for modeling consisted exclusively of kinase inhibitors. The drugs in this 
group differ from other cancer drugs by their mode of action. Data to characterize the 74 kinase inhibitors 
were extracted from the HMS LINCS KINOMEscan data  resource55. The features set of these drugs consisted 
of binding strength across a panel of 294 protein kinases (Fig. 1a). The value for a given compound-kinase pair 
represents a percent of control, where a 100% result means no inhibition of kinase binding to the ligand in the 
presence of the compound, and where low percent results mean strong  inhibition56,57. The data was acquired for 
those 74 drugs which were also present in the GDSC database, yielding a final drug characterization matrix for 
74 drugs and 294 protein kinases.

Data to characterize the 922 cell lines were downloaded from the GDSC. For the molecular features of the 
cell lines, we considered only the genes coding for kinases present in KINOMEscan dataset, as well as any puta-
tive gene targets of all considered compounds. This resulted in the set of 202 genes, for which mRNA expression 
levels (202 features) and binary mutation calls (21 features) were extracted for all cell lines. Furthermore, the 
dummy-encoded tissue type was added, producing additional 18 binary features, yielding the final set of 241 
biological features for 922 cell lines (Fig. 1a).

DEERS: a deep neural network model of drug sensitivity accounting for inhibition of protein 
kinases by drugs and cancer cell line features. The goal of the proposed model is to predict a response 
of a given cell line to a given drug, i.e. estimate the corresponding AUC or IC50 value, given the drug and cell 
line feature representations (Fig. 1a). The final prediction is computed in two steps: first, we compute lower-
dimensional representations of the considered drug and cell line, and second, the representations are combined, 
in order to make the sensitivity estimation. This problem can be viewed as a matrix factorization task, where 
every element of the target matrix y(i,j) is modeled as some form of a transformation of the corresponding hid-
den representations of the drug and cell line (Fig. 1a).

DEERS is a deep neural network-based recommender system. It consists of three major parts: drug autoen-
coder, cell line autoencoder and the subsequent feed-forward neural network. (Fig. 1b)58,59. The two autoencoder 
networks have the same architecture, with one 128-dimensional hidden layer in both encoder and the decoder 
with the rectified linear unit (ReLU) activation function, and the 10-dimensional hidden representation layer. 
The subsequent feed-forward network consists of a 20-dimensional input layer, followed by two hidden layers of 
length 512 and 256 with the ReLU activation. The regularization of the system is incorporated via the dropout 
with 0.5 probability, applied in the first, 512-dimensional hidden layer of the feed-forward network.

Consider a training data point consisting of original drug i and cell line j feature vector representations 
along with the corresponding response value, (xD(i), xC

(j), y(i,j)) . The input training data vectors are first passed 
into drug and cell line autoencoders, producing reduced, 10-dimensional vector representations (the hidden 
representations) (zD(i), zC

(j)) and reconstructed inputs (x′

D

(i)
, x

′

C

(j)
) (Fig. 1b). The hidden representations zD(i) 

and zC (j) are then concatenated, forming a 20-dimensional vector, which serves as an input for the subsequent 
feed-forward neural network, which in turn computes the final response estimate ŷ(i,j) (Fig. 1b).

DEERS has three outputs and three main optimization goals: minimizing the differences between xD(i) and 
x
′

D

(i)
 , minimizing the differences between xC (j) and x′

C

(j)
 , and minimizing the errors between y(i,j) and ŷ(i,j) . The 

incorporation of reconstruction errors causes the network to find informative representations of the input drug 
and cell line features. In addition, it is desired for the hidden dimensions to be independent. This enables the 
hidden representations to capture more information about the full input data and facilitates easier interpreta-
tions of the hidden dimensions. In the proposed model, it is achieved by minimizing the squared values in 
the off-diagonal entries of the drugs and cell lines covariance matrices in the latent space. All of the described 
optimization tasks are captured by a single cost function, which is iteratively minimized for each training batch 
to train the model:

where J is the cost function, MSE denotes mean squared error, W is a set of the model parameters (weights), rD 
is the real-valued weight of the drugs reconstruction error, XD is the drugs’ data matrix in the training batch, 
X

′

D is the drugs data reconstruction matrix in the batch, rC is a real-valued weight of the cell lines reconstruction 
error, XC is the cell lines data matrix in the batch, X ′

C is the cell lines data reconstruction matrix in the batch, d 
is a weight of the dependence penalty, KD is the covariance matrix of drugs hidden representations in the batch, 
and KC is the covariance matrix of cell lines hidden representations in the batch, and K [m, n] denotes the m, nth 
entry of matrix K .

Intuitively, the cost function weights rD , rC and d control the contribution of the particular optimization task 
in the general optimization goal of the system. Setting all of these weights to zero would result in a network 
without decoding tasks and no dependence restrictions on the hidden dimensions of the drugs and cell lines.

(1)

J(W) = MSE(y − ŷ)

+ rD ·MSE(XD − X
′

D)+ rC ·MSE(XC − X
′

C)

+ d ·
∑

m,n,m �=n

(KD[m, n])2 + d ·
∑

m,n,m �=n

(KC[m, n])2,
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Compared models. We compare the proposed model to four other methods; two of which are based on 
traditional machine learning algorithms, while the other two are forms of matrix factorization.

In order to evaluate the traditional methods in a multi-task setting, where the data for all drugs and all cell 
lines are modeled at once, the traditional methods are used to predict drug response for the union of drugs and 
cell lines features. To this end, for every data point ( xD(i), xC

(j), y(i,j)) , we first concatenate vectors xD(i) and xC(j) , 
forming one 535-dimensional vector per drug-cell line pair. Applying this to all available data points produces a 
52, 730× 535 input data matrix X and the corresponding 52,730-dimensional vector with true response values 
y . This data is used to train and evaluate two common machine learning algorithms: Elastic  net60 and  XGBoost61. 
The former is a linear model and the latter is a more complex, nonlinear model.

The compared matrix factorization models aim at solving a similar matrix-factorization type of problem 
(Fig. 1a) and can be seen as simpler or reduced versions of the proposed model. The first is a basic matrix factori-
zation with side information method, reducing the dimension of the additional information about both drugs and 
cell lines using linear projections, and applying a dot product to produce the prediction of the response variable 
(here, the sensitivity of cell lines to drugs). We refer to this model as Lin MF (Fig. S3a). The basic architecture of 
this model is the same as the model applied by Yang et al.30.

The second of the compared matrix factorization-based models is an non-linear extension of the basic model, 
where the dimensionality reduction is performed via one-layered autoencoders and data reconstruction is also 
taken into consideration (Fig. S3b). Similarly as in Lin MF, the final prediction is obtained by taking the dot 
product of the corresponding hidden representations, in contrast to the proposed DEERS model, where a separate 
feed-forward network is used to obtain the response estimate (Fig. 1b). We refer to this model as Autoen MF. 
To estimate the parameters of both Lin MF and Autoen MF we use gradient descent optimization implemented 
in Adam  optimizer62.

Experimental setup and model training. In order to assess the performance of the considered models 
on the unseen cell lines, we construct the validation and test sets by first randomly selecting two sets of 100 
unique cell lines each. We then extract the data points containing selected cell lines, producing the validation 
and test sets with ∼ 5000 drug-cell line pairs each. The rest of the pairs corresponding to the remaining 722 
unique cell lines (with ∼ 42, 000 pairs) constitute the training set.

Before the training, the input cell line data were preprocessed by standard scaling of the continuous gene 
expression data so that every feature has zero mean and unit standard deviation, while binary coding variants 
and dummy encoded tissue types were unmodified. For the input drug data, all features were standardized in 
the same way as the gene expression. Since the GDSC AUC values are in the range of [0, 1], they were not scaled, 
while the log IC50 values were linearly preprocessed with min-max scaler to the [0, 1] range. Notably, all values 
necessary to perform each of the applied preprocessing schemes were calculated only on the training set and 
applied to the validation and test sets.

We use the training and validation sets in order to find the optimal set of hyperparameters, consisting of: 
network architecture, cost function weights rD , rC and d, regularization type and learning rate. We establish 
the DEERS architecture as consisting of two-layer autoencoders, with 10-dimensional hidden representations 
(Fig. 1b). The subsequent feed-forward network has two hidden layers of size 512 and 256. The optimal cost 
function weights were set to rd = 0.1 , rC = 0.25 and d = 0.1 . As a regularization type, we use combination of 
dropout applied in the first hidden layer of the feed-forward network (Fig. 1b) and early stopping. With these 
hyperparameters fixed, for every split of the data (into the training, validation and test sets) we tune the learning 
rate, dropout rate and number of epochs for early stopping.

After all parameters are found, we use them to train the model using the union of training and validation sets, 
and apply the resulting model to the test set in order to assess the performance. We repeat this procedure ten 
times with different cell lines in training, validation and test sets in order to improve the robustness of the results.

We adopt the similar methodology for the compared models, where we first tune the hyperparameters using 
training and validation sets, and then apply the final retrained model to the test set, using the same data splits 
for training, validation and testing for all models. For the compared models, we perform this experimental 
procedure five times. In addition, we incorporate a simple data augmentation scheme, where we add a random 
gaussian noise with zero mean to the cell lines gene expression data and the corresponding AUC or IC50 values. 
The standard deviations of cell lines and response noise were 0.6 and 0.15, respectively. The augmentation was 
performed iteratively in every batch during training, tripling the original batch size. This data augmentation 
scheme was added for the two models involving autoencoders, i.e. both the Autoen MF and the DEERS model.

Interpretation of hidden dimensions in DEERS. This analysis aims at an explanation of the model 
predictions from the biological standpoint. In order to incorporate all available data for model interpretation, we 
first re-train the model with all available 922 cell lines and 74 drugs, without excluding any cell lines, and using 
IC50 as a drug response metric.

The interpretation of the hidden dimensions concerns assigning a biological meaning to the individual dimen-
sions of the hidden space. To this end, we first pass the input drugs and cell lines input representations into their 
corresponding, already trained autoencoders, producing a 10-dimensional representation for each 294-dimen-
sional input data vector corresponding to a drug and a 10-dimensional representation for each 241-dimensional 
input data vector corresponding to a cell line, respectively.

Associating input features with hidden dimensions. To compute the association of each input feature with each 
hidden dimension, we utilize the Integrated Gradients  method39, by computing the attributions between input 
features and the ten neurons constituting the hidden representation layers. This is performed separately for the 
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drug and the cell line autoencoders, and the attributions are averaged across the drugs and cell lines, respec-
tively. As a result, we obtain drugs and cell lines feature-representation attribution matrices of size 294× 10 and 
241× 10 , respectively, where each entry is a score reflecting how much a given feature impacts the given variable 
in the hidden space. We then perform the row-wise hierarchical clustering on the resulting attribution matrices, 
grouping features associated with the same dimension together. The clustering was performed after normalizing 
the rows to unit norm, using the Ward linkage method and the Euclidean distance metric. This interpretability 
approach is applied separately for the 10 dimensions encoding the drugs and for the 10 dimensions encoding 
the cell lines.

Associating biological processes with hidden dimensions encoding the cell lines data. In this interpretability anal-
ysis, we exploit the fact that the cell line autoencoder in DEERS is trained to reconstruct the data and to find 
low-dimensional representations that reflect the true properties of the analyzed cell lines. The produced hidden 
representations of the cell lines are organized into a 922× 10 matrix ZC , where every row j corresponds to a 
single cell line hidden representation, and every column c represents the values of a given hidden variable across 
all cell lines. Next, we examine the full genome-wide gene expression data of the full set 17,419 genes extracted 
from GDSC. In this way, this analysis goes beyond the restricted set of the modeled input 241 cell line features. 
Using this data, we construct a 922× 17, 419 matrix GC , where every row j corresponds to a single cell line gene 
expression profile, and every column g represents the expression values of a given gene across the examined cell 
lines. We then compute a 17, 419× 10 correlation matrix C , where every entry C[g , c] corresponds to Spearman 
correlation coefficient between gth column of GC and cth column of ZC , i.e. the correlation between the expres-
sion of a given gene and a value of a given hidden dimension across 922 considered cell lines (Fig. 1c).

Given such correlation matrix C , we create a ranked list of genes for every hidden dimension, where the rank-
ing metric is the correlation coefficient of the genes with that dimension. The genes at the top and bottom of the 
ten resulting ranked lists are the ones that are most positively or negatively correlated with the corresponding 
dimensions, respectively. We then take the first and the last 1000 genes with corresponding correlation coef-
ficients for every hidden dimension and run the GSEA Preranked  analysis63 against gene sets that are involved 
in specific biological processes as defined by the Biological Process GO Terms (Fig. 1c). The GSEA Preranked is 
performed using the gseapy Python  package63–65. We then extract the top 15 enriched terms with the smallest 
FDR value for every hidden dimension, which indicates the general biological mechanisms are most related to 
that dimension. Finally, we eliminate the redundant gene ontology terms using the Revigo  tool66, assigning the 
set of biological mechanisms to every dimension of the cell lines hidden space.

Data availability
The datasets generated and/or analysed during the current study are available in the GDSC (https:// www. cance 
rrxge ne. org/ downl oads/ bulk_ downl oad and HMS LINCS KINOMEscan (https:// lincs. hms. harva rd. edu/ kinom 
escan/) repositories. Preprocessed datasets and source code used for the analysis are available at https:// github. 
com/ kkoras/ rec- system- for- drug- respo nse.
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