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Quantification of tumor 
microenvironment acidity 
in glioblastoma using principal 
component analysis of dynamic 
susceptibility contrast enhanced 
MR imaging
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Glioblastoma (GBM) has high metabolic demands, which can lead to acidification of the tumor 
microenvironment. We hypothesize that a machine learning model built on temporal principal 
component analysis (PCA) of dynamic susceptibility contrast-enhanced (DSC) perfusion MRI can 
be used to estimate tumor acidity in GBM, as estimated by pH-sensitive amine chemical exchange 
saturation transfer echo-planar imaging (CEST-EPI). We analyzed 78 MRI scans in 32 treatment naïve 
and post-treatment GBM patients. All patients were imaged with DSC-MRI, and pH-weighting that 
was quantified from CEST-EPI estimation of the magnetization transfer ratio asymmetry  (MTRasym) 
at 3 ppm. Enhancing tumor (ET), non-enhancing core (NC), and peritumoral T2 hyperintensity 
(namely, edema, ED) were used to extract principal components (PCs) and to build support vector 
machines regression (SVR) models to predict  MTRasym values using PCs. Our predicted map correlated 
with  MTRasym values with Spearman’s r equal to 0.66, 0.47, 0.67, 0.71, in NC, ET, ED, and overall, 
respectively (p < 0.006). The results of this study demonstrates that PCA analysis of DSC imaging data 
can provide information about tumor pH in GBM patients, with the strongest association within the 
peritumoral regions.

Glioblastoma (GBM) is the most common malignant primary brain tumor in adults, characterized with vasular 
proliferation, diffuse infiltration in the adjacent brain parenchyma, and resistance to the standard  therapies1. 
The tumor microenvironment plays an important role in abundant infiltration of GBM tumor cells, its resistance 
to standard therapies, recurrence and therefore, poor patient  prognosis2. Due to rapid growth of GBM tumors 
and actively migrating cell population, hypercellular regions are formed typically surrounding the necrotic foci 
tissues and have a high metabolic  demand3. When the tumor grows, the lack of sufficient circulation compared 
to the cell population of the tumor results in ischemia and secretion of angiogenic factors, which in turn leads 
to proliferation of new  vessels4.
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Neo-angiogenesis forms a tortuous and branched vascular structure with increased blood volume and perme-
ability, and impaired cerebral perfusion with subsequent  necrosis3,5. These alterations promote tumor growth, 
decrease oxygen, increase glycolysis and lactic acid, decrease extracellular pH, facilitate cell  invasion6. This aug-
ments the probability of mutations, such as vascular endothelial growth factor (VEGF) gene expression triggered 
by the hypoxia-inducible factor (HIF) family of transcription  factors7,8. Even in presence of abundant oxygen, 
glycolysis is often enhanced in cancers due to elevated concentration of lactic acid, resulting in a substantial 
decrease in extracellular pH which leads to escalated invasion and aggressiveness of the tumor, and decreased 
immune  response6,9,10.

Various MRI techniques have been used to measure tumor PH. Magnetic resonance spectroscopy (MRS) 
reveals the amount and spatial distribution of particular biochemical substances involved in metabolic processes 
in tumoral  tissues11. 1H MRS, 13C MRS, and phosphorus MRS (31PMRS) can estimate levels of cellular metabolites 
and tumoral  pH11,12. Chemical exchange saturation transfer (CEST) is a relatively new MR technique that images 
certain compounds at very low concentrations that are too low to be directly detected by MRS  technique13. Tumor 
blood perfusion may also reflect the underlying tumor pH, as well-perfused tumors have more efficient removal 
of excess lactic acid, protons,  CO2, and other metabolic byproducts. Dynamic susceptibility contrast (DSC) per-
fusion is a widespread clinical MRI approach for quantification of cerebral perfusion and is often collected for 
assessment of brain  tumors14. As DSC-MRI can measure tissue perfusion and compromised microvasculature 
in GBMs, it might be able to quantify tumor acidity.

Amine CEST echo-planar imaging (CEST-EPI) is a fast molecular imaging MRI technique to measure tumor 
 pH6. In a recent study, a positive linear correlation between cerebral blood volume (CBV) obtained from DSC 
perfusion MRI and acidity was demonstrated in areas of T2-hyperintense, non-enhancing tumor in glioma 
 patients15. We hypothesize that principal component analysis (PCA) of DSC-MRI perfusion images in conjunc-
tion with machine learning (ML) techniques in patients with GBM may quantify microvascular structure at 
the voxel level and infer capillary-level hemodynamics that correlates with tumor acidity. PC analysis of DSC-
MRI has shown potential in predicting the location of future  recurrence16,17, patient’s survival 18, arteriovenous 
 shunting4, and EGFRvIII  status19. The aim of this analysis is to use ML methods based on perfusion MRI scans 
to uncover unique tissue characteristics that correlate with tissue acidity and might provide insights about the 
tumoral and peritumoral tissue metabolism to guide treatment planning.

Results
In this prospective study, we included 32 patients (19 males, 13 females; age, 64.6 ± 10.11 years old), who were 
confirmed to have GBM tumors (Table 1). A total of 101 CEST-MRI scans were acquired from the study subjects 
(12 patients had pre-surgical and 89 had imaging during active treatment with radiation and/or chemotherapy), 
of which, 78 scans with their corresponding DSC-MRI scans passed our data preparation and pre-processing 
steps. The SVR machine learning method based on PCA was applied in a cohort of 78 cases.

Principal component analysis of perfusion time-series revealed that the tumor subregions, i.e., ET, NC, 
ED, form characteristic clusters (Fig. 1B), which facilitate specification of the tissues and allow for mapping 
the heterogeneity within a specific tissue. Figure 2 illustrates structural MRI scans, including T1, T1-Gd, T2, 
T2-FLAIR images for a male patient (58 years old) with GBM. Furthermore, relative cerebral blood volume 
(rCBV) map generated from DSC-MRI scans using CaPTk software, PC1–PC3 images derived from PC analysis 
of the hemodynamic curves, the  MTRasym image constructed using our proposed approach, along with the actual 
 MTRasym image quantified from CEST imaging are shown in the whole pathogenic region. As it can be inferred, 
our constructed  MTRasym provides more accurate voxel-wise mapping of the actual  MTRasym image, compared 
to the rCBV map. Among the seven PCs used in building our model, the visual similarity is most striking for 
the first three PC images since the components progressively capture less variance.

Table 1.  Patient demographics.

Total no. of patients 32

Pre-surgery timepoints 12

Post-surgery timepoints 89

Age (years)

Mean 64.6 ± 10.11

Median 66.5

Range 40

Sex

Male 19

Female 13

IDH status

Wild-type 29

Mutant 3

MGMT-promoter methylation status

Methylated 20

Unmethylated 12
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The  MTRasym image constructed from perfusion PCs using our proposed regression method showed moder-
ate to strong agreement with the  MTRasym image, with R of 0.47 (p = 0.006), 0.66 (p = 0.0009), 0.67 (p = 0.00001) 
in the ET, NC, and ED regions, respectively, and 0.71 (p < 10e-6) in the whole pathogenic region, as a union of 
ET, NC, and ED areas, averaged over all the patients. Figure 3 demonstrates a strong association of the  MTRasym 
image built from the perfusion PCs and the actual  MTRasym image, implying the potential of ML in distinguish-
ing the tumorous regions with specific metabolism characteristics.

This method outperforms the conventional DSC-MRI analysis, as displayed in Fig. 4, where panel (A) presents 
the signal intensity–time curves of the voxels located in the high (red) and low (blue)  MTRasym image. While 
the voxels have been selected from the regions with different levels of acidic pH, the perfusion curves are not 
discriminant. Applying PC analysis differentiates the clusters of the same high and low  MTRasym, as it can be 
observed from panel (B) of Fig. 4. The bottom panel (part C) shows three PCs quantified for the higher and lower 
 MTRasym regions. Figure 4C reveals that the first principal component (PC1) is primarily related to the level of 
the perfusion signal, as evidenced by the large variance throughout the signal time course. The second principal 

Figure 1.  An illustration of the perfusion time-series in tumorous subregions, i.e., ET, NC, and ED (A); and 
the clustering of each tissue type using PC analysis (B), signifying the potential of the PCs in capturing tissue 
characteristics. PC1, PC2, and PC3 represent the first, second, and third principal components, respectively. ET 
Enhancing tumor, NC Necrotic core, ED paeritumoral edema.

Figure 2.  Conventional MRI, including T1, T1-Gd, T2, and T2-FLAIR, scans of a 58-year-old male patient 
included in our study. Map of a proxy to relative cerebral blood volume (ap-rCBV) derived from DSC-MRI 
scans with CaPTk software. Three principal components (PCs), PC1 to PC3, calculated using PCA of the 
hemodynamic perfusion curves, along with the  MTRasym image constructed using the seven PCs in association 
with the actual  MTRasym image. CaPTk version 1.8.1 (www. med. upenn. edu/ cbica/ captk/).

http://www.med.upenn.edu/cbica/captk/
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component (PC2) is related to the depth of the perfusion signal drop, in relation to the baseline level, and the 
third principal component (PC3) relates to the shape of the drop of the perfusion signal, e.g., steepness of the 
signal drop and recovery. As a comparison, Fig. 5 displays the signal intensity–time curves in the highest (red) 
and lowest (blue) voxels in PC1, PC2, and PC3 images, suggesting the differentiability of the tissues based on PC 
analysis. Specifically, PC1 provides a noticeable discrimination between the areas with different hemodynamic 
properties. The discrimination diminishes in larger PCs as evidenced by this illustration.

Discussion
Our study showed that high‐resolution pH‐sensitive imaging in brain tumors can be achieved on clinical 3T 
MR systems using DSC-MRI with strong correlation to CEST-EPI PH imaging. DSC-MRI can characterize 
microvascular circulation in GBM patients, and the respective acidity can be extracted using PCA and ML 
techniques. The proposed techniques are ideally suited for evaluation of malignant gliomas since GBM remains 
the most angiogenic primary brain tumor and therefore exhibits extensive neovascularization, compromised 
brain blood barrier, and heterogeneous acidity. DSC-MRI without proper processing cannot discern the pH 
heterogeneity of the tumoral regions, but as proposed in this study, PCA of the perfusion time-series can be 
used to differentiate tissue acidity.

GBMs have unique pathophysiological characteristics such as significant invasiveness, fast growth, and rapid 
seeding. Also, similar to the other cancers, GBMs prefer glycolysis over oxidative phosphorylation even in the 
presence of ample oxygen (Warburg effect) that results in increased intracellular lactate and elevated acidification. 
These tumors also cause direct destruction of surrounding tissue, including both neuronal death via glutamate 
 excitotoxicity20 and degradation of the extracellular matrix via metalloproteinases and other  proteases21 that are 
pH-dependent22,23. Since, ion movement is directly coupled to movement of other ions, pH not only serves as a 
regulator of cell activity, but also an indirect surrogate marker of other cellular functions. PH heterogeneity in 
the tumor microenvironment is critical for surgical and chemo-radiation planning. Weak base and weak acidic 
drugs get trapped in either the intracellular or extracellular spaces due to “ion trapping”  phenomena24.

Wang et al. investigated association between pH-sensitive CEST-EPI and relative cerebral blood volume 
(CBV) measurements obtained from DSC-MRI in patients with  gliomas15. They reported a strong correlation 
between acidity and CBV in the T2-hyperintense regions, but not in the areas of enhancing tumor. In agreement 
with this study, our results demonstrated that the correlation between our constructed  MTRasym map and the 
actual  MTRasym, as quantified by CEST-EPI, is highest in the peritumoral T2-hyperintense areas, followed by 
necrotic tumor core, and contrast-enhancing tumor regions. However, in our study, in different subregions of 
each tumor, a heterogeneous distribution of high-acidity tissues was observed.

The proposed PCA-derived features integrated with SVR method uses temporal dynamics of DSC-MR imag-
ing. Our results indicate that a more comprehensive analysis of DSC along with machine learning, can unravel 
useful information related to tumor acidity, which is typically not obtained with traditional CBV or CBF maps. 
Specifically, higher acidotic tissues demonstrate higher level of DSC signal based on PC1, consistent with higher 
necrosis and free water mobility. PC2 mainly represents the depth of drop in DSC signal, and deeper drop in the 
signal shows higher acidity. Integrative information of signal drop and recovery is stored in PC3, where lower 
signal recovery is associated with higher acidotic tissues.

CEST-EPI has been shown to be effective an a non-invasive biomarker to distinguish between IDH1 mutant 
and wild type gliomas, and also 1p/19q codeleted from intact IDH1 mutant  gliomas25,26. In addition, it has been 
shown to be of value as an early imaging biomarker for bevacizumab treatment response and failure in recurrent 

Figure 3.  Demonstration of (A) bivariate histogram of the constructed in comparison with actual  MTRasym 
images; and (B) association of the clusters of tumor tissues in the constructed versus actual  MTRasym image.
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 glioblastoma27. Our proposed approach could support measuring tumor acidity with DSC-MRI, as a more 
widely-accessible imaging method compared with CEST-EPI.

There are limitations to our study, including limited sample size and single institutional data collection; these 
results need to be validated in a large multi-institutional study.

In conclusion, the results of this study indicate that PCA analysis of DSC-MRI in conjunction with machine 
learning techniques, can potentially enable better localization of highly acidic regions. In turn, this information 
may be used for tumor prognostication and treatment response evaluation.

Methods
Patients. Institutional review board (IRB) approval of the University of Pennsylvania was obtained for this 
prospective study and informed consent was collected from the participants. All methods were carried out in 
accordance with relevant guidelines and regulations. 32 subjects with intra-axial brain mass suggestive of high-
grade glioma, who were referred to the radiology department of hospital of University of Pennsylvania from 
March 2018 to February 2020 and were subsequently proven by histopathology to be GBM were included in 
this study.

Figure 4.  (A) Perfusion curves calculated within regions of low and high  MTRasym (shown in blue and red 
colors, respectively), suggesting poor discrimination of the regions solely based on hemodynamic curves. 
(B) Discrimination of low and high  MTRasym regions based on PC analysis; PC1 = principal component 1; 
PC2 = principal component 2; PC3 = principal component 3. (C) The three principal components for high 
 MTRasym regions, yielding a marked differentiation of these regions based on the PCs.
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Image acquisition. All MRI scans were performed on a Magnetom Tim Trio 3 Tesla scanner (Sie-
mens, Erlangen, Germany) using a 12-channel phased array head coil. Conventional MRI sequences 
included axial T1-weighted (T1) before and after administration of gadolinium contrast agent (T1-Gd) with 
matrix size = 192 × 256 × 192, resolution = 0.98 × 0.98 × 1.00  mm3, repetition time (TR in ms)/echo time (TE 
in ms) = 1760/3.1, T2-weighted (T2) with matrix size = 208 × 256 × 64, resolution = 0.94 × 0.94 × 3.00, TR/
TE = 4680/85; T2 fluid-attenuated inversion recovery (T2-FLAIR) with matrix size = 192 × 256 × 60, resolu-
tion = 0.94 × 0.94 × 3.00, TR/TE = 9420/141.

DSC-MR imaging was performed by a gradient-echo echo-planar (GE-EPI) imaging sequence during a second 
0.1-mmol/kg bolus of Dotarem (Gadoterate Meglumine) with the following parameters: TR/TE = 2000/45 ms, 
FOV = 22 × 22  cm2, resolution = 1.72 × 1.72 × 3  mm3, 20 sections. A bolus of contrast agent with a dose of 
0.1 mmol/kg which was done for DCE (dynamic-contrast-enhanced) imaging served as a preload dose for DSC 
imaging to reduce the effect of contrast agent leakage on relative cerebral blood volume (rCBV) measurements.

Acquisition of pH‐sensitive information was performed through an amine contrast specific for 
single-echo CEST-EPI  sequence15,28. MR imaging acquisition parameters included the following: 
FOV = 240–256 × 217–256 mm, matrix size = 128 × 116–128, slice thickness = 4 mm with no inter-slice gap, 25 
consecutive slices, excitation pulse flip angle = 90°, TE = 27 ms, bandwidth = 1628 Hz, and generalized auto-
calibrating partially parallel acquisition factor = 2–3. Off-resonance saturation was applied using a pulse train 
of 3 × 100 ms Gaussian pulses with a peak amplitude of 6 microtesla. A total of 29 off-resonance or z-spectral 
points were sampled at frequency offsets of − 3.5 to − 2.5 ppm, − 0.3 to + 0.3 ppm, and − 2.5 to + 3.5 ppm, all in 
increments of 0.1 ppm. A reference scan (S0) was obtained with the same acquisition parameters, without the 
saturation pulses. Total scan time for CEST-EPI was approximately 6 min.

MRI pre-processing. For each patient, all MRI volumes (T1, T2, T2-FLAIR, DSC-MRI and  MTRasym) were 
rigidly co-registered with their corresponding T1-Gd using the Greedy registration  method29 (https:// github. 
com/ pyush kevich/ greedy). Subsequently, all conventional MRI scans (T1, T1-Gd, T2, T2-FLAIR) were smooth-
ened to remove any high frequency intensity variations (i.e., noise)30, corrected for magnetic field inhomogenei-
ties using N4ITK  method31 and skull-stripped using FSL  BET32 followed by manual revision when needed. For 
brain tumor segmentation in the images,  DeepMedic33, a Deep Learning (DL)-based segmentation algorithm 
in Cancer Imaging Phenomics Toolkit (CaPTk) v.1.7.834,35 which had been trained on BraTS 2017 training data, 
was applied to the co-registered conventional MRI scans. Brain tumor segmentation delineated three regions of 
interest (ROIs), i.e., enhancing tumor (ET), necrosis (NC), and peritumoral edema (ED), in the GBM tumors.

Amine CEST-EPI post-processing. Clinical post-processing of CEST-EPI consisted of affine motion cor-
rection (MCFLIRT; FSL, https:// fsl. fmrib. ox. ac. uk/ fsl/ fslwi ki/ MCFLI RT) and B0 correction via a z-spectra-based 
K-means clustering and Lorentzian fitting  algorithm36. An integral of the width of 0.4 ppm was then obtained 
around both the − 3.0 and + 3.0 ppm (− 3.2 to − 2.8 and + 2.8 to + 3.2 ppm, respectively) spectral points of the 
inhomogeneity-corrected data. These data points were combined with the S0 image to calculate the asymmetry 
in the magnetization transfer ratio  (MTRasym) at 3.0 ppm as defined by equation  MTRasym (ω) = S(− ω) − S(ω)/S, 
where ω is the offset frequency of interest (3.0 ppm). All resulting maps were registered to high-resolution post-
contrast T1-weighted images for subsequent analyses.

Temporal principal component analysis. Principal component analysis (PCA) is a dimensionality 
reduction  method17 which was used in this study to distill the DSC-MRI time series down to a few components 
that capture the temporal dynamics of blood perfusion. All hemodynamic perfusion curves were aligned and 
normalized for the baseline and maximum drop across the  patients37. We randomly selected voxels in each 
tumor subregion, i.e., ET, NC, and ED, and generated their signal intensity–time curves (Fig. 1A). PCA was sub-
sequently applied to capture the variance of the time series in all the ROIs and all subjects. Because of the relative 

Figure 5.  The perfusion curves calculated form the regions with highest (red) and lowest (blue) values on 
individual Principal Component images: (left) Principal Component 1; (middle) Principal Component 2; and 
(right) Principal Component 3.

https://github.com/pyushkevich/greedy
https://github.com/pyushkevich/greedy
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MCFLIRT
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consistency in the perfusion patterns of the various ROIs, seven principal components were sufficient to capture 
more than 99% of the variance in the perfusion signal for all tumor subregions and all patients.

Generation of  MTRasym images based on PCs using machine learning. We built several regression 
models for tumor subregions using support vector machine regression (SVR) aiming to predict the  MTRasym 
values from the seven PCs on a voxel-by-voxel basis to create a PC-derived  MTRasym image, referred to as con-
structed  MTRasym image. Leave-one-subject-out cross-validation of these predictive models was performed to 
ensure that the model and the associate estimates of accuracy would likely generalize to new patients. We trained 
the SVR models separately in ET, NC, and ED regions using Gaussian kernel functions with an automatic kernel 
scale and sequential minimal optimization (SMO) configuration. Performance of the SVR method was evalu-
ated using Spearman’s correlation. All machine learning and statistical analyses was performed in MATLAB 
9.4.0.949201 (R2018a) Update 6.

Received: 17 April 2021; Accepted: 28 June 2021
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