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Deep radiomics‑based survival 
prediction in patients with chronic 
obstructive pulmonary disease
Jihye Yun1, Young Hoon Cho2, Sang Min Lee1, Jeongeun Hwang3, Jae Seung Lee4, 
Yeon‑Mok Oh4, Sang‑Do Lee4, Li‑Cher Loh5, Choo‑Khoon Ong5, Joon Beom Seo1* & 
Namkug Kim1,6*

Heterogeneous clinical manifestations and progression of chronic obstructive pulmonary disease 
(COPD) affect patient health risk assessment, stratification, and management. Pulmonary function 
tests are used to diagnose and classify the severity of COPD, but they cannot fully represent the type 
or range of pathophysiologic abnormalities of the disease. To evaluate whether deep radiomics from 
chest computed tomography (CT) images can predict mortality in patients with COPD, we designed 
a convolutional neural network (CNN) model for extracting representative features from CT images 
and then performed random survival forest to predict survival in COPD patients. We trained CNN‑
based binary classifier based on six‑minute walk distance results (> 440 m or not) and extracted high‑
throughput image features (i.e., deep radiomics) directly from the last fully connected layer of it. The 
various sizes of fully connected layers and combinations of deep features were experimented using a 
discovery cohort with 344 patients from the Korean Obstructive Lung Disease cohort and an external 
validation cohort with 102 patients from Penang General Hospital in Malaysia. In the integrative 
analysis of discovery and external validation cohorts, with combining 256 deep features from the 
coronal slice of the vertebral body and two sagittal slices of the left/right lung, deep radiomics for 
survival prediction achieved concordance indices of 0.8008 (95% CI, 0.7642–0.8373) and 0.7156 (95% 
CI, 0.7024–0.7288), respectively. Deep radiomics from CT images could be used to predict mortality in 
COPD patients.

Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory lung disease that causes airflow limi-
tation and symptoms include shortness of breath, frequent coughing or wheezing, and excess mucus (sputum) 
production. COPD is a major cause of chronic morbidity and mortality throughout the world; many people suffer 
from this disease for years and die prematurely from it or its  complications1. Pulmonary function tests (PFTs) 
are currently used to diagnose and classify the severity of COPD, but they cannot fully represent the type and 
range of pathophysiological abnormalities of the disease. In particular, PFTs tend to be relatively insensitive to 
early COPD symptoms and subtle symptom  changes2. Furthermore, patients with similar PFT values may exhibit 
completely different clinical and radiologic phenotypes.

Medical imaging, which provides multiparametric morphologic and functional information, plays an increas-
ingly significant role in precision medicine. Chest computed tomography (CT) provides in vivo visual informa-
tion that can be used to investigate structural and underlying pathophysiologic changes in COPD patients, and 
thus allows analysis of primary features of COPD including morphologic characteristics and the distribution 
of both emphysema and small airway  disease3–6. However, qualitative CT assessment by radiologists, which has 
been the mainstream method for acquiring information from CT scans, is prone to inter-reader, and sometimes 
even intra-reader, variability, limiting its application to broad clinical and experimental  settings7. Therefore, the 
need for more objective CT-based measures has grown significantly.
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Radiomics has been proposed to explore the correlation among medical images, other -omics, and clinical 
parameters, and interest in its application has been growing since it has the potential to provide significant 
interpretive and predictive information to support decision making. Radiomics is the process of extracting 
high-throughput quantitative features from radiographic images and building predictive models relating image 
features to genomic patterns and clinical  outcomes8. In the past few years, a number of radiomics models have 
been proposed for tumor  classification9–11, survival  prediction12,13, and recurrence  prediction14,15.

In radiomics-based analysis, high-throughput feature extraction (i.e., radiomics) is a critical task. In previous 
studies, most extracted features were designed by hand or explicitly. In the field of COPD, quantitative CT imag-
ing methods have been proposed to provide more precise and reproducible estimates of the severity and distri-
bution of emphysema and airway  disease16. In the early days of quantitative imaging biomarkers, research was 
weighted toward quantification of emphysema, and there has recently been an increasing number of publications 
targeting the airway component of COPD, which includes direct airway parameter measurements and quantifi-
cation of air trapping as functional manifestations of small airway  disease17. Moreover, quantitative pulmonary 
vascular features turned out to be associated with COPD severity and emphysema  extent18. Although the number 
of handcrafted features can reach tens of thousands, these features are shallow and low order. They may not fully 
characterize image heterogeneity and may limit the potential of radiomics models. Therefore, it is necessary to 
assess deeper and higher-order features that may improve the predictive performance of radiomics models.

Recently, the performance of deep learning has been intensively demonstrated in computer vision. In particu-
lar, a convolutional neural network (CNN), which uses a trainable filter bank with an extensive weight-sharing 
scheme, can quickly outperform state-of-the-art approaches in many computer vision tasks, including image 
classification and  segmentation19–22. These deep learning-based approaches have also impressive results for CT 
analysis in  COPD23.

CNN can be incorporated into current radiomics models by extracting many deep features from hidden 
 layers24,25. These deep features, extracted not by feature engineering (handcrafting) but by feature learning, could 
contain more representative and high-level medical image information and provide more predictive patterns 
compared to handcrafted features. In this paper, we propose a deep feature-based radiomics model for predicting 
the overall survival of COPD patients.

Materials and methods
Patients. There were two groups of patients: (1) a discovery cohort with 344 patients from the Korean 
Obstructive Lung Disease (KOLD) cohort and (2) an external validation cohort with 102 patients from Penang 
General Hospital in Malaysia. The inclusion and exclusion criteria for the discovery cohort have been published 
 previously26. In short, patients over 18 years of age with chronic respiratory symptoms and airflow limitations 
or bronchial hyperresponsiveness were included. Between June 2005 and April 2012, 344 patients with an estab-
lished COPD diagnosis and available volumetric chest CT scans taken at the time of registration were enrolled. 
Subjects underwent PFTs within two weeks of volumetric chest CT image acquisition. Baseline clinical charac-
teristics, PFT results, six-minute walk distance (6MWD) results, and survival information were documented 
for all patients. Our institutional review board approved this study, and written informed consent was obtained 
from all patients. The external validation cohort included patients in the chest clinic of the 1200-bed Penang 
General Hospital, which is part of the Asian Network of Obstructive Lung  Disease27. All patients with stable 
COPD who were referred to or followed up were invited to participate. Prospective data of 112 eligible COPD 
subjects was available for mortality analysis. Inclusion and exclusion criteria have been published  previously28. 
Of 112 patients initially eligible, 10 were excluded due to poor CT image quality. The median follow-up time was 
1000 days (range, 60–1400). Quantitative CT and clinical demographic data were collected at the time of study 
entry. Written informed consent was obtained from all participants. Research and ethical approval was obtained 
from the National Research and Ethics Committee of Malaysia (NNMR-13-313-15138). All methods were per-
formed in accordance with the relevant guidelines and regulations.

Volumetric chest data acquisition. Discovery cohort volumetric chest CT scans were obtained using 
16- or 64-slice multidetector CT (MDCT) scanners produced by two different manufactures (259 CT scans using 
SOMATOM Sensation 16 or SOMATOM Definition AS from Siemens Healthineers AG, Bonn, Germany; 85 
CT scans using Philips Brilliance 16, 40, or 64 from Philips Medical Systems, Best, Netherlands). Patients were 
scanned craniocaudally in the supine position during full inspiration. Routine administration of intravenous 
contrast media was not required for image acquisition using either type of scanner. CT scan parameters were: 
collimation of 16 × 0.75 mm, effective mAs of 100, kVp of 140, and pitch of 1. CT data were reconstructed at a 
0.75-mm slice thickness and 0.7-mm increment using a B30f kernel for Siemens scanners and a 0.8-mm slice 
thickness and 0.8-mm increment using a standard reconstruction algorithm for Philips scanners.

External validation cohort volumetric chest CT scans were obtained using a 64-slice MDCT scanner 
(SOMATOM Sensation 64; Siemens Healthineers AG, Forchheim, Germany) at the Loh Guan Lye Specialist 
Centre in Penang, Malaysia. CT scans were obtained using standardized protocol from the Research Institute of 
Radiology of the Asan Medical Center in Seoul, South  Korea4,29. The CT scan parameters were a collimation of 
0.75 mm, effective mAs of 100, kVp of 140, and pitch of 1. Patients were scanned craniocaudally in the supine 
position during full inspiration. Images were reconstructed using a soft kernel (B30f; Siemens Healthineers AG) 
from thoracic inlet to lung base. Image quality and protocol compliance were verified by the Asan Medical Center.

Deep features extraction. We trained a CNN model to obtain high-level representative information from 
medical images, and high-throughput image features (i.e., deep radiomics) were directly extracted from the last 
fully connected layer. The CNN performed binary classification based on 6MWD testing, one of the most impor-
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tant factors for evaluating the ability to perform activities of daily living. According to the 2015 European Society 
of Cardiology/European Respiratory Society Guidelines for diagnosing and treating pulmonary hypertension, a 
6MWD result > 440 m is one of several factors associated with low one-year  mortality30, so 440 m was selected 
as the optimal threshold. Therefore, training the classifier with deep learning using 6MWD results > 440 m could 
not only reveal known prognostic features but also potentially identify previously unknown ones. With the 
value of 440 m, the discovery cohort consisted of 157 patients with 6MWD over 440 m and 187 patients with 
6MWD less than 440 m, not causing data imbalance in binary classification. The baseline clinical characteristics 
and the Kaplan–Meier-estimated cumulative survivals of these two groups were compared in Table 1 and Fig. 1, 
respectively, and a CNN-based binary classifier was designed to distinguish these two groups. Due to the nature 
of the discovery cohort and the limited processing capabilities of existing graphical processing units, the whole 
slices were not available. Even if it is possible to utilize the whole slices with reduced resolution, there should be 
a sufficient number of datasets to be able to train them. Considering the number and mortality of our dataset, 
training the whole slices was difficult. So, with  the advices of expert radiologists, 11 representative CT slices 
were selected for each patient based on predetermined anatomic landmarks and used for CNN input: (1) three 
coronal slices at the vertebral body, center of the tracheal carina, and superior vena cava, (2) two sagittal slices at 
the center of the left and right lung, and (3) six axial slices (two uppers, center and three lowers) at 2-cm intervals 
at the center of the tracheal carina (Fig. 2). Anatomic landmarks were selected via consensus of two thoracic 
radiologists (each with more than 20 years of experience) with the idea that information on the distribution of 
emphysema or airway changes should be necessary, and 11 CT slices in both cohorts were manually selected by 
an experienced research assistant, and then finally confirmed by a thoracic radiologist. In the case of axial slices, 
2-cm intervals were adopted as a way of obtaining the maximum information with a small number of slices. To 
classify low-risk patients based on 6MWD results, the CNN was designed to have five convolution blocks and 
one fully connected layer (Fig. 3). Each convolution block consisted of a convolutional layer with 32 learnable fil-
ters followed by batch normalization, rectified linear unit activation, and max-pooling. To prevent overfitting, a 
connection dropout probability of 0.5 was added to the fully connected layer. Finally, low-risk probabilities were 
calculated using the softmax function. Using the same CNN architecture, 11 models were separately trained 
with each of the 11 selected slices and then used to extract deep features from each image. The performances of 
11 models were validated using five-fold cross-validation (Supplementary Table S1). We could not verify them 
with the external validation cohort since there was no 6MWD information, but performance can be inferred 

Table 1.  Baseline clinical characteristics and mortality data. Continuous variables are presented as 
mean ± standard deviation and categorical data are presented as the number of patients with percentages in 
parentheses. ‘Follow-up’ and ‘6MWD’ are presented as the mean with minimum and maximum values in 
parentheses. 6MWD six-minute walk distance, PFT pulmonary function test, FEV1 forced expiratory volume 
in 1 s, FVC forced vital capacity, GOLD Global Initiative for Chronic Obstructive Lung Disease. *Overall 
survival was investigated as study end-point, which is defined as the time until death from any cause. **6MWD 
information was only in the discovery cohort, and Supplementary Figure S2 shows the distribution of it.

Discovery cohort

External 
validation cohort

p-value 
(discovery vs
external 
validation 
cohort)6MWD > 440 m 6MWD ≤ 440 m

p-value (> 440 m 
vs. ≤ 440 m) Total

Patients (N) 157 187 344 102

Mortality* (N) 12 (7.6%) 31 (16.6%) 0.018 43 (12.5%) 18 (17.6%) 0.185

Follow-up 
(months) 84.8 (2, 149) 57.1 (2, 148) < 0.001 69.8 (2, 149) 32.9 (2, 47) < 0.001

Age (years) 64.0 ± 7.0 69.8 ± 7.4 < 0.001 67.2 ± 7.8 68.3 ± 8.0 0.601

Gender 0.151 0.006

Male (N) 156 (99.4%) 182 (97.3%) 338 (98.3%) 95 (93.1%)

Female (N) 1 (0.6%) 5 (2.7%) 6 (1.7%) 7 (6.9%)

Height 167.0 ± 5.4 164.4 ± 6.3 < 0.001 165.6 ± 6.1 –

Weight 66.0 ± 8.7 61.2 ± 10.1 < 0.001 63.4 ± 9.8 –

6MWD (meters)** 499.7 (441, 652) 368.8 (120, 440) < 0.001 428.6 (120, 652) –

PFT

FEV1 (% pre-
dicted) 57.9 ± 16.5 53.5 ± 18.0 0.022 55.5 ± 17.4 47.9 ± 21.3 < 0.001

FVC (% predicted) 87.5 ± 17.4 84.6 ± 17.8 0.137 85.9 ± 17.7 65.1 ± 22.9 < 0.001

FEV1/FVC 47.7 ± 9.8 43.9 ± 11.3 0.001 45.7 ± 10.8 53.0 ± 11.1 < 0.001

Gold stage < 0.001 < 0.001

Stage I (N) 23 (14.7%) 13 (7.0%) 36 (10.5%) 5 (4.9%)

Stage II (N) 84 (53.5%) 87 (46.5%) 171 (49.7%) 37 (36.3%)

Stage III (N) 44 (28.0%) 70 (37.4%) 114 (33.1%) 42 (41.2%)

Stage IV (N) 6 (3.8%) 17 (9.1%) 23 (6.7%) 18 (17.6%)
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by whether our survival prediction model works well. Nevertheless, the fact that our CNN models for extract-
ing deep features have not been tested well enough to prove their performances is a limitation of our model. 
Deep features were obtained by normalizing the information of the last fully connected layer; we designed and 
compared models with various sizes of fully connected layers of 128, 256, 512, and 1024. The CNN designed for 
extracting deep features was implemented in Keras with a Theano backend.

Survival analysis and statistical comparison. To predict overall survival in COPD patients, random 
survival forest (RSF) with deep features of each slice was performed. Our deep features were predominantly 
black box features so that it was difficult to effectively reduce multiple collinear and correlated predictors that 
could produce unstable estimates and might overfit predictions. RSF is a censored data extension of the Random 
Forest method, where the ensemble survival function is constructed by aggregating tree-based  estimator31. We 
expected that RSF would effectively ensemble the features extracted from our censored data to predict mortality. 
RSF analysis was implemented using the randomForestSRC R package with default settings. RSF calculated a 
survival curve for each patient, grew a forest using log-rank splitting, and then averaged the results of the forest, 
obtaining a stable result. Using RSF, we could predict the survival and cumulative hazard function of individuals. 
The performance of the proposed deep radiomics-based survival prediction model was evaluated in two inde-
pendent datasets: (1) the discovery cohort  (KOLD26) and (2) the external validation cohort  (Malaysia28). For a 
quantified comparison, we computed the concordance probability (C-index) and time-dependent area under the 
receiver operating characteristic (ROC) curve (AUC). C-index is the frequency of concordant pairs among all 
pairs of subjects and can be used to measure and compare the discriminative power of a risk prediction model. 
The time-dependent AUC has incorporated time dependency in AUC in time-event data for individuals instead 
of using the standard ROC curve  approach32,33, dealing with censored data and yielding different values of AUC 
at each time point. Internal validation used ROC curves for 3- and 5-year survival, but external validation was 
not calculated time-dependent AUC because of its follow-up duration. The time-dependent AUC was imple-
mented using the timeROC R package.

Results
There were two groups of patients: (1) a discovery cohort with 344 patients from KOLD  cohort26 and (2) an 
external validation cohort with 102 patients from Penang General Hospital in  Malaysia28. Baseline clinical char-
acteristics and mortality data are summarized in Table 1. Overall survival was investigated as the study end-point, 
which is defined as the time until death from any cause, and Supplementary Figure S1 shows the Kaplan–Meier 
survival curves of two cohorts.

Internal validation. Deep feature-based survival analysis was performed via five-fold cross-validation of 
the discovery cohort to determine which features provide more high-level medical image information and pre-
dictive patterns. In order to find the optimal number of features suitable for predicting overall survival in COPD 
patients, we trained the binary classifier of 6MWD test results with various sizes of fully connected layers of 128, 
256, 512, 1024, and then extracted deep features using the representative 11 CT slices. Mortality prediction per-
formance was evaluated using combinations of deep features of each slice, which were obtained by pooling (e.g., 
for the combination of C1 and C2 with 256 deep features, 512 deep features were used as the input to the RSF). 
We performed RSF for all combinations of 11 slices. Depending on the number of selected samples, the follow-
ing numbers of combinations were produced, and RSF was performed for a total of 2047 combinations: 1- and 
10-selection, 11 combinations; 2- and 9-selection, 55 combinations; 3- and 8-selection, 165 combinations; 4- and 

Figure 1.  Kaplan–Meier survival curves for patients with 6MWD over and less than 440 m in discovery 
cohorts. We designed and trained a CNN-based binary classifier to obtain high-level representative information 
from chest CT that can predict mortality in patients with COPD. This CNN-based binary classifier was based 
on the 6MWD testing results, and the discovery cohort was divided into two groups with the value of 440 m: 
157 low-risk patients and high-risk 187 patients. The estimated cumulative survivals of these two groups were 
significantly different.
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7-selection, 330 combinations; 5- and 6-selection, 462 combinations; 11-selection, 1 combination. The number 
of k-element (k-selection) combinations of n objects without repetition is nCk = n!/k!(n− k)!—for example, 
2- and 9-selection lead to 

11
C2 = 11

C9 = 11!/2!9! = 55 distinct combinations. Eventually, the experiments were 
performed with size of deep features of 128, 256, 512, and 1024, and the performance of all combinations of 11 
representative CT slices in each size of deep features was compared and top 5 combinations were summarized 
in Table 2. The performance of 256 deep features was superior, and the highest C-index of 0.8008 (95% CI, 
0.7642–0.8373) was obtained by combining the coronal slice of the vertebral body and two sagittal slices of the 
left/right lung (C1 + S1 + S2). At this combination, AUC for 3- and 5-year survival was and 0.8878 (95% CI, 
0.7900–0.9856) and 0.8411 (95% CI, 0.7901–0.8922), respectively.

Figure 2.  Convolutional neural network (CNN) model input to extract deep features. To extract deep features, 
11 computed tomography slices were selected for CNN model input based on predetermined anatomic 
landmarks. (A) Coronal slices at the vertebral body (C1), center of the tracheal carina (C2), and superior vena 
cava (C3). (B) Sagittal slices at the center of the left (S1) and right (S2) lung. (C) Axial slices at two upper slices 
(A1, A2), center slice (A3), and three lower slices (A4, A5, A6) at 2-cm intervals at the center of the tracheal 
carina.



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:15144  | https://doi.org/10.1038/s41598-021-94535-4

www.nature.com/scientificreports/

Figure 3.  Convolutional neural network (CNN) model architecture. CNN architecture for classification of 
six-minute walk distance test results (> 440 m or not) to extract deep features. Each of the 11 selected slices 
was trained separately using the same architecture, which was designed to have five convolution blocks 
and one fully connected layer. Deep features were obtained by normalizing the information of the last 
fully connected layer (yellow). Each convolution block consisted of a convolutional layer followed by batch 
normalization (BatchNorm), rectified linear unit activation (Relu), and max-pooling.

Table 2.  Survival prediction performance of deep features in the discovery and external validation cohort. C1, 
C2, C3 coronal slices at the vertebral body, center of the tracheal carina, and superior vena cava, respectively; 
S1, S2 sagittal slices at the right and left lung, respectively; A3 axial slice at the center of the tracheal carina; 
A1, A2, A4, A5, A6 upper two and lower three axial slices at 2-cm intervals at the center of the tracheal carina, 
respectively. Bold values denote best-performed combinations of each column.

No. of 
features Combinations

Internal validation External validation

C-index (95% CI)
AUC for 3-year 
survival

AUC for 5-year 
survival C-index (95% CI)

128

1. C3 + S2 0.7753 (0.7411, 0.8095) 0.8042 (0.6254, 0.9831) 0.8364 (0.7895, 0.8833) 0.6502 (0.6394, 0.6610)

2. S2 0.7745 (0.7237, 0.8253) 0.8198 (0.6552, 0.9844) 0.8197 (0.7639, 0.8756) 0.6577 (0.6466, 0.6688)

3. C1 + C3 + S2 + A6 0.7711 (0.7210, 0.8212) 0.7922 (0.5860, 0.9984) 0.8247 (0.7889, 0.8605) 0.6424 (0.6268, 0.6580)

4. C1 + C3 + S2 0.7706 (0.7291, 0.8121) 0.7928 (0.5943, 0.9913) 0.8311 (0.7850, 0.8772) 0.6217 (0.6085, 0.6348)

5. C2 + C3 + S2 0.7676 (0.7209, 0.8143) 0.8175 (0.6404, 0.9945) 0.8334 (0.7888, 0.8779) 0.5803 (0.5656, 0.5951)

256

1. C1 + S1 + S2 0.8008 (0.7642, 
0.8373)

0.8878 (0.7900, 
0.9856)

0.8411 (0.7901, 
0.8922)

0.7156 (0.7024, 
0.7288)

2. C1 + C2 + S1 + S2 + A4 0.7959 (0.7682, 0.8236) 0.8642 (0.7638, 0.9646) 0.8400 (0.7865, 0.8935) 0.7130 (0.7009, 0.7252)

3. S1 + S2 + A4 + A5 0.7948 (0.7655, 0.8240) 0.8543 (0.7638, 0.9448) 0.8390 (0.7871, 0.8954) 0.6742 (0.6625, 0.6858)

4. S1 + S2 + A1 + A4 + A6 0.7938 (0.7719, 0.8157) 0.8337 (0.7101, 0.9573) 0.8371 (0.7819, 0.8923) 0.6404 (0.6274, 0.6533)

5. S1 + S2 + A4 0.7930 (0.7593, 0.8267) 0.8338 (0.7259, 0.9416) 0.8512 (0.8007, 0.9017) 0.6400 (0.6274, 0.6527)

512

1. C1 + C3 + S2 + A4 0.7750 (0.7432, 0.8068) 0.8310 (0.7301, 0.9319) 0.8254 (0.7892, 0.8616) 0.6713 (0.6600, 0.6825)

2. C1 + C3 + S1 + S2 + A4 0.7716 (0.7346, 0.8085) 0.8356 (0.7027, 0.9685) 0.8251 (0.7684, 0.8817) 0.6714 (0.6606, 0.6822)

3. 
C1 + C3 + S1 + S2 + A1 + A3 0.7659 (0.7343, 0.7975) 0.8194 (0.7260, 0.9129) 0.8078 (0.7926, 0.8230) 0.6277 (0.6153, 0.6401)

4. C1 + C3 + S1 + S2 + A1 + 
A2 + A3 + A6 0.7657 (0.7430, 0.7884) 0.8261 (0.7294, 0.9228) 0.7891 (0.7606, 0.8177) 0.6660 (0.6533, 0.6786)

5. C1 + C3 + S2 0.7657 (0.7250, 0.8064) 0.8338 (0.7259, 0.9416) 0.8238 (0.7861, 0.8615) 0.6411 (0.6273, 0.6549)

1024

1. S2 + A2 + A5 0.7813 (0.7333, 0.8294) 0.7255 (0.5634, 0.8877) 0.8257 (0.7969, 0.8544) 0.6805 (0.6186, 0.7424)

2. S2 + A2 + A5 + A6 0.7765 (0.7439, 0.8090) 0.7712 (0.6367, 0.9056) 0.8094 (0.7517, 0.8672) 0.6515 (0.6024, 0.7007)

3. A2 + A5 0.7744 (0.7310, 0.8179) 0.7990 (0.7072, 0.8908) 0.8181 (0.7318, 0.9045) 0.6305 (0.5686, 0.6924)

4. S2 + A2 0.7729 (0.7181, 0.8278) 0.7864 (0.6722, 0.9006) 0.8300 (0.7413, 0.9187) 0.6119 (0.5226, 0.7013)

5. C1 + C3 + S2 + A5 0.7729 (0.7337, 0.8120) 0.6881 (0.4501, 0.9261) 0.8167 (0.7563, 0.8770) 0.6844 (0.6664, 0.7023)
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External validation. The deep radiomics model was evaluated against an external validation cohort (102 
CT scans). Top 5 combinations of deep features were used to evaluate the proposed method since they had the 
best results on internal validation (Table 2). In the external validation, the Rank 1 combination of the internal 
validation showed also the best C-index of 0.7156 (95% CI, 0.7024–0.7288).

Discussion
The current study found that a deep radiomics approach for survival prediction in COPD patients was feasible 
and showed acceptable performance, which was confirmed by concordant results in an external validation cohort. 
The deep features from the CNN model using COPD patients’ chest CT data were found to be significant and 
independent predictors of mortality in both the discovery and external validation groups.

Many methodologies using quantitative CT features for quantitative assessment of different COPD compo-
nents have been studied, but few studies have adapted an integrative  approach3,34,35. A deep radiomics approach 
using a CNN to extract many learned features from chest CT images may be helpful in developing clinically 
useful decision support models.

In this study, a chest CT-based deep radiomics approach with a CNN was used for the first time to predict 
survival in COPD patients. The CNN performed binary classification based on 6MWD results (> 440 m or not). 
In the discovery and external validation cohorts, with combining the coronal slice of the vertebral body and two 
sagittal slices of the left/right lung (C1 + S1 + S2, 256 × 3 deep features), deep radiomics for survival prediction 
achieved C-indices of 0.8008 (95% CI, 0.7642–0.8373) and 0.7156 (95% CI, 0.7024–0.7288), respectively, and 
AUC for 3- and 5-year survival was and 0.8878 (95% CI, 0.7900–0.9856) and 0.8411 (95% CI, 0.7901–0.8922), 
respectively. Comparing performances of the best combination to using all slices for each number of deep fea-
tures (Supplementary Table S2), it is meaningful to use slices selectively. Among studies using quantitative CT 
features as a predictor of survival in COPD  patients36–38, Cho et al.38 reported the performance using the same 
datasets of ours. Five features were selected as the final radiomics signature; (1) a percentage of low attenuation 
area; (2) airway wall thickness of 6th generation bronchus at an internal perimeter of 10 mm; (3) heterogeneity 
of percentage wall area; (4) heterogeneity of airway wall thickness at an internal perimeter of 10 mm; (5) aver-
age pulmonary vessel cross-sectional area measured at 18 mm from the pleural surface. C-indices of five final 
radiomics signature were 0.699, 0.531, 0.615, 0.542, and 0.605, respectively, and the combinations of radiomics 
signature were 0.774. In the same datasets, our deep feature-based survival prediction model outperformed com-
pared to the quantitative CT features. Moll et al.37 proposed a survival prediction model using a combination of 
clinical and quantitative CT features which reported a C-index ≥ 0.7 and showed 6MWD as the most important 
predictor. In our discovery cohort, a prediction model with only 6MWD achieved C-index of 0.6072 (95% CI, 
0.6014–0.6130), and our model surpassed it. The mortality prediction performance of our model was externally 
validated in a separate group of patients. Patient enrollment for the discovery cohort began much earlier (June 
2005) than for the external validation cohort (September 2013), which inevitably led to differences in follow-up 
duration (mean, 69.8 vs. 32.9 months). Although there were some differences in characteristics between two 
groups including a considerable difference in follow-up duration, external validation was performed to demon-
strate the generalizability and transportability of our model.

Both spirometry and multidimensional indices are limited in that they cannot fully represent the type and 
range of morphologic alterations that may be detectable before functional parameters begin to deteriorate. With 
a deep radiomics approach, essential information related to phenotypic heterogeneity and pathophysiology may 
be learned from medical images and used to improve medical decision-making in COPD patients. In the current 
study, the deep radiomics approach was confined to survival prediction in COPD patients. However, we believe 
that a deep radiomics approach could potentially be applied to other facets of COPD, such as reliable phenotyp-
ing, predicting acute exacerbation, and monitoring treatment response.

The current study is subject to several limitations. First, although our deep feature-based survival prediction 
model has been integrally analyzed in the discovery and external validation cohorts, a larger study population 
would have been beneficial, especially in the external validation group. Second, because all patients included in 
this study were Asian, the results may not be applicable to patients of other ethnicities. However, a major strength 
of the current research is that the positive discovery group findings were externally validated using a group of 
patients of a different nationality. That said, further validation of the findings in a larger-scale study with patients 
of different ethnicities is warranted. Third, the proportion of males in our discovery and external validation 
cohorts amount to 98.3% and 93.1% respectively, resulting in the striking gender imbalance. The imbalance can 
partly be explained by the cultural environment where the smoking rate in men (36.7% in South Korea, and 
43.0% in Malaysia) is overwhelmingly higher than that of women (7.5% in South Korea, and 1.4% in Malaysia) 
in general  population39,40, and sexual difference in COPD  prevalence40–42. Nevertheless, we should admit that 
our model is likely to be bias/specific for male lungs due to the anatomical and physiological differences between 
males and females. Fourth, our model requires that 11 representative CT slices should be manually selected by 
an expert. It can be an additional workload for the radiologists, and it has the possibility of incorrect selection 
of them. The development of a deep learning-based system for detecting anatomic landmarks could be helpful. 
Fifth, the deep radiomics features were predominantly black box features; therefore, they need to be interpreted 
by case review and other technical methods. Lastly, the survival prediction performance of the deep radiom-
ics model was not directly compared with that of other various clinical risk-scoring systems such as the Body 
mass index, airflow Obstruction, Dyspnea, and Exercise (BODE) index, and the incremental value of the deep 
radiomics model was not fully investigated. In the future, evaluating the relationship between deep features and 
traditional lung density measurements would be useful and potential added value.

In conclusion, a deep radiomics approach for survival prediction was feasible. The performances of 20 
models (top 5 combinations in each size 128, 256, 512, and 1024 of deep features) were compared, and the 
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highest C-index of 0.8088 8008 (95% CI, 0.7642–0.8373) was obtained by combining 256 features each from a 
coronal slice and two sagittal slices (C1 + S1 + S2), as confirmed by concordant results (C-index, 0.7156; 95% 
CI, 0.7024–0.7288) in an external validation group. The models with 256 deep features performed superior, 
C1 + S1 + S2 performed best, but there is a risk of false discovery because the differences in the results of differ-
ent combinations are insignificant.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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