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Functional network topology 
of the right insula affects 
emotion dysregulation 
in hyperactive‑impulsive 
attention‑deficit/hyperactivity 
disorder
Tammo Viering1,2*, Pieter J. Hoekstra2, Alexandra Philipsen3, Jilly Naaijen4,5, 
Andrea Dietrich2, Catharina A. Hartman6, Jan K. Buitelaar4,5,7, Andrea Hildebrandt8, 
Carsten Gießing1,11 & Christiane M. Thiel1,9,10,11

Emotion dysregulation is common in attention-deficit/hyperactivity disorder (ADHD). It is highly 
prevalent in young adult ADHD and related to reduced well-being and social impairments. 
Neuroimaging studies reported neural activity changes in ADHD in brain regions associated with 
emotion processing and regulation. It is however unknown whether deficits in emotion regulation 
relate to changes in functional brain network topology in these regions. We used a combination 
of graph analysis and structural equation modelling (SEM) to analyze resting-state functional 
connectivity in 147 well-characterized young adults with ADHD and age-matched healthy controls 
from the NeuroIMAGE database. Emotion dysregulation was gauged with four scales obtained from 
questionnaires and operationalized through a latent variable derived from SEM. Graph analysis was 
applied to resting-state data and network topology measures were entered into SEM models to 
identify brain regions whose local network integration and connectedness differed between subjects 
and was associated with emotion dysregulation. The latent variable of emotion dysregulation was 
characterized by scales gauging emotional distress, emotional symptoms, conduct symptoms, and 
emotional lability. In individuals with ADHD characterized by prominent hyperactivity-impulsivity, 
the latent emotion dysregulation variable was related to an increased clustering and local efficiency of 
the right insula. Thus, in the presence of hyperactivity-impulsivity, clustered network formation of the 
right insula may underpin emotion dysregulation in young adult ADHD.
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Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by core symp-
toms of inattention and/or hyperactivity-impulsivity that may persist well into adulthood1. Emotion dysregula-
tion, although not a core symptom, is a frequently co-occurring clinical problem2. Emotion dysregulation refers 
to the inability to adequately modulate and control emotions3. Its prevalence within the ADHD population 
changes with age, from 25 to 45% in children to 30–70% in adults, and its co-occurrence is associated with 
reduced well-being, risky behavior, and social impairments2. Especially individuals with ADHD and impulsivity-
hyperactivity symptoms often suffer from emotion dysregulation4. However, the neural roots of ADHD associated 
emotion dysregulation remain unclear.

In emotion dysregulation, a distinction between explicit and implicit emotion regulation has been made. 
Explicit emotion regulation requires conscious effort and is commonly achieved by applying cognitive control 
and reappraisal strategies. While cognitive control and reappraisal are particularly associated with activity in 
structures of the ventral attention and frontoparietal network5, it is precisely these structures in which deviant—
often reduced—activity is frequently found in childhood and adult ADHD studies1. Implicit emotion regulation, 
on the other hand, is an unconscious stimulus-driven process based on experience-based reward estimations. 
The ventromedial prefrontal cortex and the anterior cingulate cortex have been linked to implicit emotion 
regulation5. With regard to ADHD, it appears that not only structures related to explicit emotion regulation, 
i.e. structures for cognitive control and reappraisal, are affected, but also those associated with implicit emotion 
regulation and rather fundamental emotion reactivity processes6. Functional connectivity studies consistently 
showed deviations in structures of the limbic system including the orbitofrontal, ventromedial prefrontal and 
anterior cingulate cortex in patients with ADHD7–13. Also, task-based fMRI studies using emotion perception 
and processing tasks in individuals with ADHD found evidence for functional abnormalities in the amygdala 
and insula, possibly indicating increased bottom-up emotional reactivity14,15. Task-based fMRI studies related 
to implicit emotion regulation, i.e., using fear extinction via habituation or emotional Stroop paradigms, which 
controlled for differences in cognitive control, found ADHD-specific differences in the ventral anterior cingulate 
and ventromedial prefrontal cortex16–18. Given the heterogeneity of ADHD, existing neuroimaging studies, and 
postulated neurocognitive models, e.g., the dual-pathway model19, one might expect ADHD-associated emotion 
dysregulation to be similarly complex, with both explicit and implicit regulatory processes accounting for it.

While several studies, using task-based as well as resting state fMRI, reported brain activity deviations in 
structures commonly associated with emotion processing and emotion regulation, few have attempted to directly 
correlate corresponding activation patterns with emotion dysregulation and none has investigated changes spe-
cific to ADHS presentations. Two childhood ADHD studies used seed-based connectivity approaches focusing 
on the amygdala. They reported associations between high emotion dysregulation scores and reduced nega-
tive connectivity with the insula and frontoparietal structures as well as increased positive connectivity with 
the anterior cingulate cortex20,21. Connectivity changes beyond the amygdala have, however, not been investi-
gated, and it remains uncertain whether the reported associations are indeed ADHD- or possibly even ADHD 
presentation-specific.

To investigate the relationship between emotional dysregulation and functional brain network organization, 
we used graph theory to analyze fMRI resting-state data from healthy individuals and individuals with ADHD 
with and without hyperactivity-impulsivity symptoms. We captured the centrality of each brain network node 
and analyzed whether nodes were highly integrated and connected, either locally towards their direct neigh-
boring nodes or globally with the entire network. Graph theory-based methods have previously been used in 
ADHD research10,11,13 to describe changes in network topology of functional connectivity. These studies show 
increased local connectivity and efficiency and decreased global integration. It is however unclear how such 
changes in information processing properties of brain networks relate to emotional deficits. We gauged emotional 
dysregulation through structural equation modelling (SEM), using a combination of several self and informant 
scales assessing emotional problems, emotional lability, and conduct problems as well as one experimental task 
of emotion recognition. SEM is particularly well suited for testing the significance of certain assumed (group-
specific) relations while simultaneously estimating latent variables embedded within the relational model. We 
focused our analysis on nodal topology measures and aimed to identify those brain regions whose local, func-
tional brain network integration specifically contributes to emotion dysregulation in predominately inattentive 
ADHD (ADHD-I) and ADHD with symptoms of hyperactivity-impulsivity (ADHD-C/H).

We hypothesized that an ADHD-specific association exists between the functional brain network measures 
for local network integration and emotion regulation. Thereby, we focused on measures of network topology 
within frontoparietal and limbic brain regions that have previously been associated with emotion regulation 
and processing. We assumed that the strongest relation would be found in individuals with predominately 
hyperactive-impulsive ADHD.

Results
Sample characteristics.  Age and sex did not significantly differ between the ADHD and control group. 
Participants with ADHD showed higher scores on all four measures of emotional problems and dysregulation. 
Further, compared to controls, participants with ADHD had a significantly lower IQ, partially showed opposi-
tional defiant disorder (ODD) or conduct disorder (CD) comorbid diagnoses and, in general, more often used 
stimulant medication. ADHD presentations groups did not significantly differ with regard to age, sex, IQ, the 
four measures of emotion dysregulation, or stimulant use. The demographic details of the sample are given in 
Table 1.
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Structural equation models.  To identify brain regions in which emotion dysregulation is specifically 
linked with functional brain network topology as a function of ADHD presentation we combined graph analysis 
with SEM.

Variable selection.  In a first step, several tasks, questionnaires, or questionnaire subscales that capture different 
aspects of emotion dysregulation were examined to identify variables for estimating a latent emotion dysregula-
tion variable. To construct the latent emotion dysregulation variable, we used multi-group confirmatory factor 
analysis. Significant loadings for the constructed latent variable were found for the emotional distress scores 
of K-10 (z = 6.008, p < 0.001, β = 0.909), SDQ’s emotional symptoms subscale (z = 4.745, p < 0.001, β = 0.603), 
SDQ’s conduct symptoms subscale (z = 3.734, p < 0.001, β = 0.546), and CPRS-R:L’s emotional lability subscale 
(z = 3.044, p = 0.002, β = 0.428). These variables were considered for the subsequent SEM, while MINDS-GERT 
for emotion recognition (z = 0.019, p = 0.983, β = 0.002) and ICU for callousness-unemotional traits (z = 1.953, 
p = 0.051, β = 0.163) were discarded. Compared to healthy controls ( s2

HC
 = 0.300) and participants with ADHD-

C/H ( s2
ADHD - C/H = 0.340), latent variable variance of participants with ADHD-I (standardized variance, 

s
2
ADHD - I

 = 1) was greatest.

Three‑group structural equation model.  Second, to identify group dependent differences between network 
topology and the latent variable gauging emotion dysregulation, we used three-group SEM and estimated regres-
sion parameters for the group-specific relationship between the latent emotion dysregulation variable and meas-
ures of nodal network topology. Pooling over different density levels of connectivity, the SEM revealed group 
differences in the relation between clustering coefficient as well as local efficiency measures, respectively, and the 
latent variable for emotion dysregulation in the right insula (see Fig. 1a). For participants with ADHD-C/H the 
regression parameter estimates of the SEM were greatest, while they were smallest for participants with ADHD-I 
(see Fig. 1b). Table 2 displays the group-specific z-values for the relation between the latent variable and the right 
insula’s clustering and local efficiency measures. It also shows p-values (uncorrected), and parameter estimates of 
the completely standardized solution. Further, Table 2 gives model-specific χ2, degrees of freedom, p-values of 
the models, goodness-of-fit measures (CFI, SRMR, and RMSEA), p-values that are the result of the χ2 difference 
tests between the main models and the corresponding models with fixed regression parameters, and significant 
pairs of the post-hoc two-group SEM.

Table 1.   Sample characteristics of the control and ADHD groups as well as of presentation-specific ADHD 
subgroups. Means between groups were compared with independent sample t-tests or Mann–Whitney-U-
tests. Frequency distributions were compared with Pearson’s Chi-square (χ2)-test. For the CPRS-R:L t-scores 
are presented, while for the SDQ and K-10 the questionnaire scores are given. ADHD = Attention Deficit/
Hyperactivity Disorder; ADHD-C/H: attention-deficit/hyperactivity disorder, combined or predominantly 
impulsive/hyperactive attention-deficit/hyperactivity disorder; ADHD-I: predominately inattentive 
attention-deficit/hyperactivity disorder; CD = Conduct Disorder; CPRS-R:L = Conners’ parent rating 
scale, revised, long version; DSM-IV = Diagnostic and Statistical Manual of Mental Disorders, 4th Edition; 
HC = Healthy Controls; IQ = Intelligence Quotient; K-SADS = Kiddie Schedule for Affective Disorders and 
Schizophrenia; K-10 = Kessler Psychological distress scale, NESDA version; N = number of participants; 
n = number of participants within subgroups; ODD = Oppositional Defiant Disorder; SD = Standard Deviation; 
SDQ = Strength and Difficulties Questionnaire; WAIS: Wechsler Adult Intelligence Scale; WISC: Wechsler 
Intelligence Scale for Children. a Combined symptom counts were derived from DSM-IV subscales of K-SADS 
and the Conners’ rating scales.

Group

Controls

ADHD

Controls versus ADHD group 
comparisons

Total ADHD-I ADHD-C/H

N = 91 N = 56 N = 31 N = 25

M ± SD M ± SD M ± SD M ± SD Test statistic ρ-value Effect-size

Age (years) 20.2 ± 3.5 19.6 ± 3.5 19.5 ± 3.8 19.7 ± 3.2 T = 1.004 0.317 d = 0.170

IQ (WISC/WAIS) 111.4 ± 13.2 95.9 ± 18.0 98.0 ± 17.7 93.2 ± 18.4 U = 3846  < 0.001 d = 0.501

ADHD, inattention symptomsa 0.5 ± 1.1 7.2 ± 1.4 7.2 ± 1.3 7.1 ± 1.6 U = 25.5  < 0.001 d = 0.990

ADHD, hyperactive-impulsive 
symptomsa 0.5 ± 0.9 5.0 ± 2.4 3.4 ± 1.9 7.0 ± 0.96 U = 291.5  < 0.001 d = 0.890

K-10 psychological distress 12.9 ± 3.6 19.7 ± 5.7 19.3 ± 5.8 20.3 ± 5.6 U = 795  < 0.001 d = 0.688

CPRS-R:L emotional lability 44.2 ± 3.3 50.9 ± 9.4 49.5 ± 8.4 52.6 ± 10.5 U = 1412  < 0.001 d = 0.446

SDQ emotional symptoms 1.7 ± 1.6 2.9 ± 2.5 3 ± 2.6 2.8 ± 2.3 U = 1897 0.008 d = 0.255

SDQ conduct symptoms 1.1 ± 1.1 2.1 ± 1.6 2.0 ± 1.6 2.2 ± 1.6 U = 1598  < 0.001 d = 0.373

n n n N

Sex (male) 48 (53%) 36 (64%) 20 (65%) 16 (64%) χ2 = 1.443 0.230 φc = 0.010

Stimulant user (yes) 3 (3%) 30 (54%) 22 (65%) 10 (40%) χ2 = 47.484  < 0.001 φc = 0.323

DSM-IV ODD (K-SADS) 0 (0%) 13 (23%) 4 (13%) 9 (36%) χ2 = 20.384  < 0.001 φc = 0.139

DSM-IV CD (K-SADS) 0 (0%) 3 (5%) 1 (3%) 2 (8%) χ2 = 2.658 0.103 φc = 0.018
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Only in the ADHD-C/H group were the topology measures of the insula significantly related to emotion 
dysregulation. The respective models showed satisfactory goodness-of-fit measures. Results were highly sig-
nificant for the density-integrated models and significant group-specific differences were found across multiple 
density thresholds below 25% connectivity (see Fig. 1c, d). Results for SEM with clustering coefficients and local 
efficiency were very similar, as the measures themselves are very similar. Correspondingly, both measures, at the 
integrated level, showed a correlation of 0.913 for the right insula. Post-hoc two-group comparisons revealed 
significant group differences between the participants with ADHD-I and ADHD-C/H as well as between partici-
pants with ADHD-C/H and controls. For the other nodal topology measures no significant results were found 
in the right insula.

While not surviving FDR-controlling procedures on the integrated level, SEM with density thresholds between 
35 and 40% connectivity revealed group differences in the relationship between eigenvector centrality and the 
latent variable for emotion dysregulation in the right DLPFC. For participants with ADHD-C/H the regression 
parameter estimates of the SEM were greatest, while they were smallest for healthy controls. Significant group-
specific differences in the relation between topology measures and emotion dysregulation on the uncorrected 
level occurred for measures of nodes in the right ventromedial prefrontal cortex, frontal pole, right insula, right 
anterior mid-cingulate cortex, and left insula (all uncorrected p-values < 0.01). For none of the other regions 

Figure 1.   Brain nodes whose nodal network properties are associated with emotional dysregulation in young 
adult participants with ADHD. Results are shown for the latent variable in relation to local efficiency and 
clustering measures of the right insula. (a) The right insula showed a significant association with emotional 
dysregulation. Here the underlying parcel is shown. (b) Group-specific parameter estimates for the relation 
between the emotional latent variable and the topology measures (density-integrated) significantly differed 
between the participants with ADHD-I and ADHD-C/H as well as between participants with ADHD-C/H 
and controls. 95% confidence interval are displayed. Asterisks give significant group-specific differences (as 
calculated with χ2 difference tests) of the corresponding post-hoc two-group SEM (***p < 0.001, **p < 0.01, 
*p < 0.05, n.s. p > 0.05; ADHD-C/H: attention-deficit/hyperactivity disorder, combined or predominantly 
impulsive/hyperactive attention-deficit/hyperactivity disorder; ADHD-I: predominately inattentive attention-
deficit/hyperactivity disorder). (c, d) Group-specific differences in the relation between the latent variable 
and topology measures exist across graphs with different density thresholds (below 0.25). p-values of the χ2 
difference tests are shown. Asterisks signify significance after FDR-correction. The dashed red line represents 
p = 0.05. Figure (a) was created using FSLeyes (version 0.22.6, https://​fsl.​fmrib.​ox.​ac.​uk/​fsl/​fslwi​ki/​FSLey​es). 
Figures (b, c, and d) were created with R software (version 3.6.0, https://​cran.r-​proje​ct.​org/).

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLeyes
https://cran.r-project.org/
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examined did we find significant group-specific differences in the relationship between the latent emotion dys-
regulation variable and measures of nodal network topology.

Additional analyses.  Robustness of the results was controlled by evaluating the group-specific differences in 
overall connectivity strength of the individual networks. The analysis of overall connectivity did not reveal sig-
nificant group differences. Finally, the multi-group SEM analysis was repeated using an alternative parcellation 
scheme to investigate the robustness of the results with respect to the chosen parcellation. The repetition of 
the main analysis with an alternative parcellation scheme revealed a group-specific difference in the relation 
between the clustering or local efficiency, respectively, and emotion dysregulation in the right insula. Further 
significant differences were found for the left insula and the right ventromedial prefrontal corex and frontal 
pole. The significant frontal pole difference also showed for the density-integrated values and after applying 
FDR-controlling procedures (clustering coefficient: p = 0.047, FDR-corrected; see Supplementary Table S1). The 
significant right insula result, however, was not revealed using threshold-integrated values but only with a den-
sity threshold of 25% connectivity and not after FDR-controlling procedures (clustering coefficient: p = 0.033, 
uncorrected; local efficiency: p = 0.030, uncorrected).

Table 2.   Results of multi-group structural equation model analysis. Significant results after FDR-correction 
are given for the SEM with local efficiency, clustering coefficient of the right insula. All but the last column 
refer to the three-group SEM with group-specific regression parameter estimates. Group-specific z-statistics for 
the relation between the latent emotion dysregulation variable and the topology measures, parameter-specific 
p-values (uncorrected), which were obtained by using the quotient of the estimates and their standard error 
as a test statistic, and β estimates of the completely standardized solution are displayed for significant density-
integrated models and the corresponding density-specific models (as calculated with χ2-difference tests). The 
table also displays model-specific χ2, degrees of freedom, p-values of the models, goodness-of-fit measures 
(CFI, SRMR, and RMSEA), p-values that are the result of χ2 difference tests between the main models and 
the corresponding models with fixed regression parameters, and significant pairs of the post-hoc two-group 
SEM. Significant two-group differences mainly exist between the ADHD-C/H group and the other two groups. 
ADHD-C/H: combined or predominantly impulsive/hyperactive attention-deficit/hyperactivity disorder; 
ADHD-I: predominately inattentive attention-deficit/hyperactivity disorder; HC: healthy controls.

Measure Density

HC ADHD-I ADHD-C/H

χ2 df p-value
Fit-measures 
CFI|SRMR|RMSEA

χ2 
difference 
test 
p-value 
(FDR-
corr.)

Sig. pairs in 
Post-hoc χ2 
difference 
tests 
(Bonferroni-
corr.)z p-value β z p-value β z p-value β

Right insula

Cluster-
ing

0.10  − 0.609 0.543  − 0.060  − 0.167 0.868 0.543 3.512  < 0.001 0.754 25.652 21 0.220 0.944|0.880|0.067 0.042
HC vs.  
ADHD-C/H
ADHD-I vs. 
ADHD-C/H

0.15  − 0.483 0.629  − 0.246  − 1.453 0.146  − 0.246 3.308 0.001 0.735 26.140 21 0.201 0.939|0.087|0.071 0.035
HC vs.  
ADHD-C/H
ADHD-I vs. 
ADHD-C/H

0.20 1.539 0.124 0.172  − 2.110 0.035  − 0.366 3.293 0.001 0.734 23.578 21 0.314 0.970|0.075|0.050 0.012

HC vs. 
ADHD-I
HC vs.  
ADHD-C/H
ADHD-I vs. 
ADHD-C/H

0.25 1.256 0.209 0.140  − 2.206 0.027  − 0.392 3.339 0.001 0.733 21.857 21 0.408 0.990|0.063|0.029 0.034

HC vs. 
ADHD-I
HC vs.  
ADHD-C/H
ADHD-I vs. 
ADHD-C/H

Inte-
grated 0.820 0.412 0.091  − 1.559 0.119  − 0.279 3.746  < 0.001 0.844 23.472 21 0.319 0.971|0.075|0.049 0.008

HC vs.  
ADHD-C/H
ADHD-I vs. 
ADHD-C/H

Local 
efficiency

0.15  − 1.086 0.277  − 0.108  − 1.322 0.186  − 0.215 3.730  < 0.001 0.830 25.535 21 0.225 0.948|0.084|0.066 0.005
HC vs.  
ADHD-C/H
ADHD-I vs. 
ADHD-C/H

0.20 1.435 0.151 0.158  − 1.761 0.078  − 0.301 3.297 0.001 0.740 22.604 21 0.365 0.980|0.073|0.039 0.023
HC vs.  
ADHD-C/H
ADHD-I vs. 
ADHD-C/H

Inte-
grated 0.424 0.672 0.046  − 1.259 0.208  − 0.222 3.919  < 0.001 0.882 23.693 21 0.308 0.969|0.078|0.051 0.005

HC vs.  
ADHD-C/H
ADHD-I vs. 
ADHD-C/H
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Discussion
Emotion dysregulation is a key component of many psychiatric conditions, including young adult ADHD. We 
identified properties of functional brain network topology related to a latent measure of emotion dysregulation 
by using a combination of graph theoretical methods with structural equation modelling. Our results provide 
evidence that only in individuals with ADHD-C/H emotion dysregulation is accompanied by increases in local 
efficiency and clustering of the right insula.

Local efficiency and clustering measure how interconnected a node’s neighbors are to each other. Increases 
imply stronger functional connections between structures directly connected to the respective brain region. 
Here the insula was identified as showing increased connections to its nearest neighbors contributing to emotion 
dysregulation in ADHD-C/H. The insula integrates interoceptive states with emotional information via con-
nections to other limbic regions such as the amygdala22. It plays an essential role in implicit emotion regulation 
via reciprocal connections with the ventromedial prefrontal cortex and other regions particularly associated 
with experience-based reward estimations23. Throughout brain maturation, functional network formation is 
characterized by specific patterns of integrative and segregating processes24. These processes are also reflected in 
measures such as the clustering coefficient and local efficiency. Local efficiency in particular has previously been 
used as a measure of local brain segregation and it was suggested that increased local efficiency goes along with a 
loss of global brain network integration. For example, it was shown that higher local efficiency is associated with 
lower global efficiency and reduced performance during cognitive tasks25. Prior research consistently provides 
evidence of delays in the neural maturation of individuals with ADHD7,26,27. Increases in the insula’s clustering 
and local efficiency, i.e. functional connectivity increases between neighboring nodes, may indeed, originate 
from reduced or delayed network-forming processes. This may negatively affect the efficiency with which the 
insula performs its integrative tasks and helps to appropriately evaluate emotional stimuli or to facilitate emo-
tion regulation. Our results may reflect ADHD presentation-specific deficiencies in functional network forming 
processes. At the behavioral level, this could lead to inappropriate behavior and some of the commonly observed 
emotional problems in ADHD.

The positive association between the functional connectivity of structures directly connected to the insula, i.e. 
local efficiency and clustering, and emotional functioning in ADHD-C/H was neither found in healthy controls 
nor participants with ADHD-I. Our results are consistent with expectations, given that this subgroup was shown 
to be most severely affected by co-occurring emotion dysregulation4. Indeed, in the comparison of the different 
ADHD presentations, the combined type had shown local functional hyperconnectivity in regions associated with 
emotion processing and implicit emotion regulation, namely the vmPFC28. Previously, it was observed that devia-
tions of functional connectivity in ADHD-I occur most clearly in areas of the frontoparietal network, especially 
the dorsolateral prefrontal cortex, whereas for ADHD-C deviations are most pronounced in areas of the default 
mode network, i.e. in areas associated with motivation and emotion processing. Since ADHD-I is predominantly 
characterized by inattention symptoms, it has been suggested that problems in top-down control systems are 
more likely to underlie this presentation, whereas predominately combined ADHD appears to be more clearly 
associated with motivation and emotion processing networks29. This could not be confirmed with the analysis 
carried out here. We found no evidence that nodal topology in top-down control regions would be associated 
with emotion dysregulation in ADHD-I. On the contrary, the right dorsolateral prefrontal cortex showed an 
ADHD-C/H dependent association between eigenvector centrality and emotion dysregulation. However, these 
results should be regarded with caution, as they were only seen at two density thresholds. Taken together, the 
clinical distinction between ADHD presentations with and without hyperactivity-impulsivity symptoms and the 
associated prevalence differences commonly observed in co-occurring problems such as emotion dysregulation 
may be reflected in differential deviations of the underlying functional organization of the brain.

Significant results were found for the right insula only. While ADHD is not understood as a generally right-
lateralized disorder, some functions are more strongly associated with right hemisphere processing30. Indeed, 
the right hemisphere is assumed to take a dominant role in emotion processing. Regarding the regulation of 
emotions, findings are not as conclusive. However, evidence concerning the insula suggests that processes for 
integrating interoceptive and emotional/motivational information are rather right lateralized31. Note that the 
left insula yielded—like the dorsolateral prefrontal cortex, right ventromedial prefrontal cortex, frontal pole and 
cingulate cortex—similar but weaker results, which did, however, not survive correction for multiple comparisons 
on the integrated level.

The latent variable for emotion dysregulation encompassed self-reported emotional distress, emotional and 
conduct symptoms and informant-reported emotional lability. Callous-unemotional traits and emotion recogni-
tion did not contribute significantly. Their relation to the other emotional measures (i.e., emotional distress and 
lability) appeared to be rather negligible. This is not surprising as callous-unemotional traits are characterized 
by deficient affect and lack of empathy, which is a conceptually different aspect of emotion32. While emotion 
recognition is an important prerequisite for the regulation of emotions, adolescents with and without emotion 
dysregulation have shown similar abilities in recognizing emotions, suggesting again a conceptual difference33. 
Nevertheless, deficits in both are frequent in ADHD, a common occurrence is, however, not imperative34.

The novel combination of SEM and graph theory presented here enabled us to reliably assess the functional 
network topology underlying emotion dysregulation. By using a SEM approach, it was possible to simultane-
ously determine emotional dysregulation as a latent variable of several emotion questionnaires and assess the 
group-specific relationships of emotion dysregulation with different measures of nodal brain topology. Previous 
approaches were limited in focusing on seed based functional connectivity of the amygdala only20,21 and using 
only unidimensional emotional measures. Compared to prior neuroimaging studies, we used a relatively large 
and well characterized sample of young adult ADHD participants and healthy controls. Also, cases with missing 
values were excluded from the data set before performing the analyses. Nevertheless, even larger sample sizes 
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may be required in future studies to obtain appropriate power and avoid parameter biases in SEM (see Supple-
mentary Fig. S1). Note however that simple models, as used here, require smaller samples (e.g., about 30 cases 
for a simple CFA with four indicator variables) and larger samples are often only necessary if missing values 
exist35. The robustness of the findings was further tested by conducting an additional analysis with an alternative 
parcellation scheme. Even though we were able to replicate the increased local efficiency and clustering in core 
regions of the implicit emotion regulation network, effects in the insula were weaker and those in ventromedial 
prefrontal cortex and frontal pole more pronounced. The present study focused on static functional connectivity, 
not considering the dynamic changes that functional connectivity may show across time, e.g., across the dura-
tion of MRI data acquisition. Increasingly, it is suggested that dynamics of functional connectivity are related to 
behavior and psychopathology36, making it a worthwhile target for potential future studies investigating emotion 
dysregulation in ADHD.

In conclusion, the present study shows a positive relation of the right insula’s clustering and local efficiency 
with emotion dysregulation in young adult individuals with ADHD-C/H. A similarly strong connection was 
not found for individuals with ADHD-I or healthy controls. The results suggest ADHD-type specific deficien-
cies in network forming processes that are associated with emotion processing and its implicit regulation. The 
commonly observed emotional problems in ADHD may partially be linked to the present findings. Given that 
emotion dysregulation is present in many other psychiatric disorders it is interesting to note that several of 
those, i.e. major depressive disorder, bipolar disorder, anxiety disorders and schizophrenia are also associated 
with changes in the structural and functional connectivity of the insula 37, which may represent a worthwhile 
target area for future treatment efforts.

Methods and materials
Participants and procedures.  Data were taken from NeuroIMAGE II, the third wave of an integrated 
genetics-cognition-MRI-phenotype project on ADHD38. It includes resting-state fMRI data of 249 individuals 
with ADHD as well as age- and sex-matched healthy controls. Initial recruitment criteria for ADHD participants 
were an ADHD combined type diagnosis, availability of one or more siblings, age between 6 and 18 years and 
availability of subject, sibling, and at least one biological parent for DNA collection. Exclusion criteria (for all 
participants) were IQ (as measured by Wechsler Intelligence Scale for Children/Wechsler Adult Intelligence 
Scale) < 70, diagnoses of autism or schizophrenia, and neurological disorders. For controls, it was required that 
neither they nor any of their first-degree relatives had a prior ADHD diagnosis.

Reassessment of the ADHD diagnosis was established by combining information from the Kiddie Sched-
ule for Affective Disorders (K-SADS)39 and parent, teacher, and self-report versions of the Conners’ rating 
scale (CPRS-R:L, CTRS-R:L and CAARS-R:L)40–42. Both the K-SADS and the Conners’ rating scales provide 
operational definitions of the 18 behavioral ADHD symptoms defined in the DSM-IV. In both, symptoms are 
subdivided by symptom type, i.e., inattentive symptoms and hyperactive-impulsive symptoms. All diagnostic 
and phenotypic data was acquired on the same day as the fMRI data. A detailed description of the diagnostic 
procedures is given by von Rhein et al.38.

Participants with a subthreshold ADHD diagnosis (2–4 ADHD-specific symptoms), left-handedness, exces-
sive movement during the scanning, or insufficient quality of rs-fMRI or questionnaire data were excluded. 147 
participants were used for the final analysis, including 31 participants with ADHD but without hyperactivity-
impulsivity symptoms, i.e., predominantly inattentive ADHD (ADHD-I), 25 participants with ADHD and 
hyperactivity-impulsivity symptoms (ADHD-C/H), i.e., 21 with combined type ADHD and 4 with predomi-
nantly hyperactive-impulsive ADHD, and 91 healthy controls. Demographic information are given in Table 1.

Forty-eight hours prior to testing, stimulant medication use was discontinued. Data acquisition took place 
at the Donders Institute for Cognitive Neuroimaging, Radboud University Nijmegen, Netherlands. Participants 
(and their parents when < 18 years old) gave written informed consent for participation. In accordance with 
relevant guidelines and regulations, ethical approval was granted by the regional ethics board (Centrale Com-
missie Mensgebonden Onderzoek: CMO Regio Arnhem Nijmegen, ABR: NL41950.091.12). Data analysis was 
pre-registered using the open science framework (osf.io/rdyp6) 43.

Resting‑state fMRI data acquisition and preprocessing.  Whole-brain imaging was performed on a 
1.5 T Magnetom Avanto (Siemens AG, Erlangen, Germany). BOLD-sensitive resting-state functional volumes 
were acquired using a T2*-weighted EPI sequence (TR = 1960 ms, TE = 40 ms). Each of the 266 volumes consisted 
of 37 axial slices of size 64 × 64 (flip angle = 80°, FoV = 224 × 224 mm2, voxel-size = 3.5 × 3.5 × 3.0 mm3, inter-
slice gap = 0.5 mm). T1-weighted high-resolution structural volumes were acquired with an MPRAGE sequence 
(TR = 2730 ms, TE = 2.95 ms, TI = 900 ms, flip angle = 9°, FoV = 256 × 256 mm2, voxel-size = 1.0 × 1.0 × 1.0 mm3, 
GRAPPA 2).

Preprocessing mostly relied on FMRIB algorithms (FSL 5.0.11, https://​fsl.​fmrib.​ox.​ac.​uk/​fsl/) 44. The resting-
state time series data were skull stripped, realigned to the middle volume of the series, co-registered to the 
structural T1, and spatially smoothed using a 6 mm full width at half maximum Gaussian kernel (FWHM). 
ICA-AROMA45 was used to account for secondary movement artefacts. Residual noise was further reduced 
by nuisance regression including a linear trend and average times series measured within the white matter and 
cerebrospinal fluid. High-pass filtering was conducted at 0.008 Hz. Prior to network analysis, time series were 
warped to MNI152 space (Montreal Neurological Institute, Montreal, Canada). Root mean squared framewise 
displacement was calculated. A threshold of 0.25 was applied to exclude 25 participants with extreme movement 
from further analysis. Root mean squared framewise displacement did not significantly differ between the groups 
(healthy controls: 0.087 ± 0.071; ADHD-I: 0.128 ± 0.096; ADHD-C/H: 0.111 ± 0.096).

https://fsl.fmrib.ox.ac.uk/fsl/
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Graph analysis.  For graph analysis we used Python 3.5 (version 3.5.10, https://​www.​python.​org) with Net-
workX (version 2.2, https://​netwo​rkx.​org) 46. Parcellation of preprocessed time series data was realized using 
a hemisphere-specific functional brain template with 268 parcels47. It was created using graph-theory based 
parcellation that ensures functional homogeneity within the parcels of the atlas, even across different individu-
als. The atlas thus minimizes the likelihood that different functional areas lie within a single parcel47. For 221 
relevant parcels, covered by the MR measurement, subject-specific average intensity time series were calculated. 
Correlation matrices were created by computing pairwise Pearson’s correlations between the extracted time 
series. Matrices were Fisher’s z-transformed and absolute values were taken. Absolute value transformation was 
performed as preprocessing of the present data did not involve global signal regression and as anti-correlations 
are thought to be functionally relevant48. Due to the naturally low density of negative correlations, we refrained 
from performing specific analysis for positive and negative correlations. To distinguish differences in network 
density from those of network topology49, matrices were binarized based on seven equally spaced density thresh-
olds with a minimum density of 0.10 and maximum density of 0.4050. In this range of low to medium network 
densities, previous studies found significant associations between network topology and ADHD symptoms10,11,13. 
Thus, seven threshold-specific graphs for each subject were investigated in the following graph analysis. Nodal 
topology measures were calculated for 70 of the 221 nodes. These 70 nodes were chosen based on their associa-
tion with parcels overlapping with the orbitofrontal cortex, dorsolateral prefrontal cortex, ventromedial prefron-
tal cortex, anterior cingulate cortex, posterior parietal cortex, insula, ventral striatum, amygdala, and hippocam-
pus as defined by the Harvard–Oxford Brain Atlas by more than 30%. These brain regions have been previously 
documented to be involved in emotion processing, its regulation, and brain dysfunctions in ADHD6.

Here, we captured the centrality of each node and analyzed whether nodes were highly integrated and con-
nected, either locally towards their direct neighboring nodes or globally with the entire network. Thus, our focus 
is on six nodal measures, that is betweenness, closeness, eigenvector centrality, clustering coefficient, nodal 
efficiency, and local efficiency, which were used in previous studies on ADHD and showed ADHD-specific 
deviations10,11,13. Betweenness, closeness, and eigenvector centrality are measures that describe the centrality of 
a node within a network. While betweenness describes how often a node is part of the shortest path between 
two other nodes, closeness describes how many of the theoretically possible direct connections to other nodes 
actually exist. Eigenvector centrality also considers the centrality of the node’s direct neighbors. The clustering 
coefficient of a node describes how strongly its neighboring nodes are interconnected. Efficiency values indicate 
how directly nodes can be reached from other nodes of the network. In the case of nodal efficiency, this refers to 
the shortest connection from a particular node to all other nodes, while in the case of local efficiency it refers to 
the efficiency amongst the nodes adjacent to a particular node of interest. See Supplementary Fig. S2 for a more 
detailed description of the topology measures. All measures entered into separate SEM models described in 2.4.

Density-integrated topology measures were calculated49. Differences between populations of weighted net-
works may be due to the networks’ wiring costs and not the targeted topological features. Density-integration of 
measures from binarized networks, however, can eliminate cost-related differences and also allow the assessment 
of topology measures under different density-thresholds. Figure 2 summarizes the functional connectivity and 
network analysis.

Statistical analysis and structural equation modeling.  Variable selection.  Statistical analyses were 
conducted with R software (version 3.6.0, https://​cran.r-​proje​ct.​org/) 51. Lavaan (version 0.6-8, https://​lavaan.​
ugent.​be/) was used for SEM52. Prior to SEM, multi-group confirmatory factor analysis was used to identify 
data suitable for calculation of the latent emotion dysregulation variable. NeuroIMAGE II includes 6 tasks, 
questionnaires, or questionnaire subscales, respectively, that gauge emotional problems, emotional lability, and 
associated features: the Kessler Psychological distress scale, NESDA version of K-1053 with 10 items for the as-
sessment of emotional problems including anxiety and depression, the strength and difficulties questionnaire 
subscales (SDQ; five items about anxieties, worries, happiness, and physical symptoms of emotional stress for 
the emotional symptoms subscale and five items about temper tantrums, compliance, quarrelsomeness, stealing, 
and lying for the conduct symptoms subscales)54, the emotional lability subscale of the Conners’ parent rating 
scale (CPRS-R:L consisting of three items for unpredictable mood changes, temper tantrums, and tearfulness)42, 
the Inventory of Callous-Unemotional traits (ICU)55 (24 items with a callousness and unemotional traits score), 
and the MINDS Testmanager’s gradual emotion recognition task (GERT)56 (accuracy of correct emotion clas-
sification).

Mediation structural equation model.  The latent variable was used to investigate the relationship between 
functional brain network activity, emotion dysregulation, and ADHD. In the initial, preregistered analysis plan, 
we intended to use SEM mediation models in which the relationship between topological measures and the 
emotional latent variable was mediated by ADHD scores (CPRS-R:L) without taking into account the different 
ADHD presentations. However, those models did not produce good model-fit (as measured by the standard 
goodness-of-fit measures described below) and had no significant results. One reason may be that the ADHD 
scores were derived from a parents’ questionnaire for children’s ADHD symptoms (CPRS-R:L) which may be 
less valid than a clinical diagnosis.

Three‑group structural equation model.  Alternatively, we chose a multi-group SEM approach using the clinical 
diagnoses. The diagnoses reflect all available diagnostic information and may thus provide more accurate mod-
els. We investigated the group dependent differences (i.e., healthy controls, ADHD-I participants, and ADHD-
C/H participants) in the association between topology measures and the latent variable gauging emotion dys-
regulation. Note, that by investigating group-related differences we aimed to identify associations between 

https://www.python.org
https://networkx.org
https://cran.r-project.org/
https://lavaan.ugent.be/
https://lavaan.ugent.be/
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inter-individual differences in local brain network topology and emotional dysregulation that are specific for 
individuals with different ADHD presentation. This is different from a mediation model approach (see above) 
that aims to identify brain regions whose significant correlation with emotional dysregulation only reflects 
an indirect link via ADHD severity and thus might not directly involve emotion regulation. For each node of 
interest and each density-specific topology measure, one multi-group model was built. Models consisted of the 
latent variable, questionnaire scores, associated parameter estimates and variances as well as the nodal topology 
measure variable with its regression parameter for the latent variable (see Fig. 3). Factor loadings of the latent 
variable were fixed across groups, latent variable variance was standardized, and to account for between-group 
mean differences, group-specific intercepts were added. Models were compared with almost identical models, 
in which however the regression parameters between the network topology variable and the latent emotion 
dysregulation variable were fixed across groups. Model estimation was conducted using maximum likelihood 
procedures. To evaluate the significance of the group effects, model-specific χ2-values were compared between 
the two models (χ2-difference-test). Following the approach of Ginestet et al.49, a model was considered sig-
nificant if it revealed a significant effect on the density-integrated level (averaged over densities). Subsequently, 
significance was tested on each density threshold to provide detailed information on whether effects were found 
with stronger or weaker network connections.

Post‑hoc analysis, multiple comparison procedures and goodness‑of‑fit.  We used post-hoc two-group SEMs 
with Bonferroni-corrected p-values to investigate pairwise between-group differences. These two-group models 
resembled the three-group models described above, except that each only considered participants from two of 
the three groups. Alpha inflation due to multiple comparisons was controlled by the Benjamini–Hochberg false 
discovery rate (FDR) procedure57. The comparative fit index (CFI), standardized root mean square residual 
(SRMR), and root mean square error of approximation (RMSEA) were calculated to evaluate the models’ good-
ness-of-fit. Acceptable goodness-of-fit measures should at least be above 0.95 for the CFI, below 0.08 for the 
SRMR, and below 0.10 for the RMSEA58.

Additional analyses.  To further control the robustness of the results, we evaluated whether group-specific dif-
ferences in overall connectivity strength of the underlying adjacency matrices exist59. Furthermore, an alterna-
tive parcellation scheme was used to investigate the robustness of the results with respect to the chosen parcel-

Figure 2.   Resting-state functional connectivity analysis pipeline. Preprocessing included skull stripping, 
co-registration to structural images, realignment to middle volume, spatial smoothing (6 mm FWHM), ICA-
AROMA, high-pass filtering (0.008 Hz), nuisance regression, and MNI152-space warping (a). Mean activation 
time series for parcels of functional connectivity template20,21 were extracted after exclusion of “outside-field 
of view” parcels (90% of the time 80% of voxels in a parcel had to have an intensity of > 1000) (b, c). Individual 
Fisher’s z-transformed correlation matrices were created (d). Each correlation matrix was binarized using 7 
different density thresholds (0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40) (e). Graphs were created based on binarized 
matrices and for 70 relevant nodes. Density-integrated as well as threshold-specific topological network 
measures were calculated (f, g). Figure was created using FSLeyes (version 0.22.6, https://​fsl.​fmrib.​ox.​ac.​uk/​fsl/​
fslwi​ki/​FSLey​es) and R software (version 3.6.0, https://​cran.r-​proje​ct.​org/).

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLeyes
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLeyes
https://cran.r-project.org/
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lation approach. For this, we used the AAL atlas60, further subdivided with K-mean clustering to adapt the size 
and number of parcels to that of Finn et al.47. Procedures for calculating topology measures and SEM analyses 
were conducted as described above.

Data availability
The data are property of the Donders Institute for Cognitive Neuroimaging and are available on request from the 
corresponding author. The data are not publicly available due to privacy or ethical restrictions. Further informa-
tion about the NeuroIMAGE Project may be requested via the Project leader Jan K. Buitelaar.
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