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Discovery of novel Li SSE 
and anode coatings using 
interpretable machine 
learning and high‑throughput 
multi‑property screening
Shreyas J. Honrao1, Xin Yang2, Balachandran Radhakrishnan1*, Shigemasa Kuwata2, 
Hideyuki Komatsu3, Atsushi Ohma3, Maarten Sierhuis2 & John W. Lawson4*

All‑solid‑state batteries with Li metal anode can address the safety issues surrounding traditional 
Li‑ion batteries as well as the demand for higher energy densities. However, the development of solid 
electrolytes and protective anode coatings possessing high ionic conductivity and good stability with 
Li metal has proven to be a challenge. Here, we present our informatics approach to explore the Li 
compound space for promising electrolytes and anode coatings using high‑throughput multi‑property 
screening and interpretable machine learning. To do this, we generate a database of battery‑related 
materials properties by computing Li+ migration barriers and stability windows for over 15,000 
Li‑containing compounds from Materials Project. We screen through the database for candidates 
with good thermodynamic and electrochemical stabilities, and low Li+ migration barriers, identifying 
promising new candidates such as Li

9
S
3
 N, LiAlB

2
O
5
 , LiYO

2
 , LiSbF

4
 , and Sr

4
Li(BN

2
)
3
 , among others. 

We train machine learning models, using ensemble methods, to predict migration barriers and 
oxidation and reduction potentials of these compounds by engineering input features that ensure 
accuracy and interpretability. Using only a small number of features, our gradient boosting regression 
models achieve R2 values of 0.95 and 0.92 on the oxidation and reduction potential prediction tasks, 
respectively, and 0.86 on the migration barrier prediction task. Finally, we use Shapley additive 
explanations and permutation feature importance analyses to interpret our machine learning 
predictions and identify materials properties with the largest impact on predictions in our models. 
We show that our approach has the potential to enable rapid discovery and design of novel solid 
electrolytes and anode coatings.

High energy density batteries that are, both, safe from volatile reactions with air and water, and capable of quick 
charging, are the holy grail of the electric vehicles industry  today1–5. While advances in controls and engineer-
ing of battery modules are paving the way for highly optimized batteries, theoretical limits on battery perfor-
mance have been largely determined by the underlying choice of materials and  electrochemistry6,7. Previous 
developments in battery materials were driven by long cycles of experiments involving several expensive and 
time-consuming synthesis-and-characterization loops. Recently, high-throughput computations of materials 
properties, made possible by the exponential growth in computational capabilities of supercomputers and cluster-
computing facilities, have resulted in the development of large open-source databases like Materials  Project8, 
 OQMD9,  AFLOWLIB10, etc. Such databases provide valuable opportunities for many data mining and machine 
learning (ML)  approaches11–18. Over the past few years, materials science researchers have implemented ML 
models to predict stoichiometries and  geometries19–22, atomization  energies23–26, formation  energies27–29, diffu-
sion  barriers30, band  gaps31,32, and many other materials properties. When used in conjunction with experiments 
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and computations, ML approaches allow for the rapid exploration and discovery of new materials at much lower 
cost, significantly speeding up the materials design process.

Traditional Li-ion batteries use flammable organic liquid electrolytes that are prone to fire-hazards. Further-
more, the conventional choice of carbon-based anodes limits the specific energies of these batteries to less than 
300 Wh/kg33. Ionic liquid electrolytes have been widely studied as a safer alternative due to their non-volatility 
and thermal  stability34, however their high viscosity, and thus relatively low conductivity, have limited their 
 appeal35. An all-solid-state battery (ASSB) with a Li metal anode can address the safety issues as well as the 
demand for higher energy densities. The major obstacle to creating such a battery involves the development of 
solid electrolytes and protective anode coatings possessing high ionic conductivity, wide electrochemical window, 
good stability against Li metal, and inertness to environmental elements like water and air.

Computational approaches to understand ionic migration in solids include the nudged elastic band method 
(NEB)36 and molecular dynamics (MD) methods based on density functional theory (DFT)37,38, space topology 
analysis based on the Voronoi-Dirichlet partitioning of crystal  space39,40, and bond valence (BV) estimation 
 techniques38,41–44. Although DFT methods provide the most accurate measurement of migration barriers, they 
are extremely expensive, thus limiting their applicability for high-throughput screening approaches. The BV 
method, on the other hand, can be used to quickly identify low mismatch pathways between Li sites, represent-
ing probable Li+ transport paths in these structures. By linking the BV mismatch to the absolute energy scale 
using a Morse potential, percolating migration barriers can be extracted from the energy landscape in a quick 
and accurate  manner45. While the accuracy of the BV approach is contingent upon the development of accurate 
empirical potentials, results show a consistent trend against DFT  values45,46, making it a quick screening filter 
for identifying fast ion-conducting solid electrolytes and coatings.

A lot of recent work has focused on screening for fast Li-conductors. Recently, Xiao et al.38 used BV calcu-
lations to identify oxide candidates with low migration barriers from a set of 1000 Li-containing compounds 
in the inorganic crystal structure database (ICSD)47. In two other publications,  He48,49,  Zhang50, and others 
developed a platform for performing high-throughput screening for over 29,000 inorganic compounds from the 
ICSD using a combination of topology features, bond valence energies, and NEB calculations. Another study 
involved the use of topological analysis and ab-initio MD simulations to quantify key structural features of fast 
ion  conductors51. First-principles calculations have also been performed to assess electrochemical stability for a 
wide range of electrolyte/electrode  combinations52,53, where exceptional agreement with experimental results was 
found. Several studies have focused on screening for coatings for Li and Li-ion  batteries54–56. In one particular 
study, it was found that nitrides have a significantly lower reduction potential than sulfides, oxides, and fluorides, 
making them more suitable for anode  coatings57.

ML approaches to identify promising solid electrolytes are also getting more attention. Recently, Tian et al.58 
performed clustering based on modified XRD patterns of the anion sub-lattice to identify 16 promising Li-con-
ductors. Sendek et al.59 screened for Li superionic conductors using a logistic regression ML model trained on a 
relatively small set of 40 experimentally measured ionic conductivity values. The model identified 21 compounds 
as being possible superionic conductors, 8 of which were actually predicted to have an ionic conductivity > 10−4 
S/cm based on high temperature DFT-MD  simulations60.

In the following sections, we describe our approach to quickly explore the Li compound space for promising 
solid electrolyte and anode coating candidates. First, we create an extensive database of battery-related materi-
als properties of electrolyte candidates based on over 15,000 Li compounds catalogued by Materials  Project8. 
For each compound, we compute both transport and stability based properties. Our database can be used for 
multi-property screening and is distinguished from previous work which has been primarily based on single 
property descriptors and smaller datasets. Second, we screen our database for new compounds and identify 
over 250 promising candidates spanning different chemistries and structures. We find many compounds with 
low 3D barriers and wide stability. These candidates include some well-known names as well as several novel 
and unexpected compounds, which have not been previously reported. Third, we train accurate and interpret-
able multi-property ML models to predict 3D migration barriers as well as oxidation and reduction potentials. 
The ML models will permit broader searches for materials outside the original database. Previously, only one 
group has reported a supervised ML model for solid electrolytes, based on single property predictions of ionic 
conductivity trained on a small experimental  dataset59. Arguably, our ML model is an improvement over these 
previous results and is also the first to predict electrochemical stability. In addition, our models are completely 
interpretable, and allow us to explain individual machine learning predictions in a way no other models do. We 
believe our multi-property ML model will be a valuable tool for future electrolyte design.

Database of Li compounds
To identify novel candidates for Li ASSB, we first create a database of 15,446 Li-containing compounds with 
their computed materials properties. Most well-known solid electrolytes have, in common, the same few char-
acteristics - high ionic conductivity, wide electrochemical stability window, low electronic conductivity, good 
chemical, thermal, and mechanical stability etc. In order to identify good solid electrolytes and anode coatings, 
we focus on three important characteristics in this work: i. fast ionic migration; ii. wide electrochemical stability 
window; and iii. stability against Li metal.

Ionic migration. Ionic conductivity is the property most often used to study ionic migration in solids. The 
ionic conductivity of a solid measures how easily an ion can move from one site to another through defects in the 
crystal lattice. While the ionic conductivity clearly depends on the underlying crystal structure, experimentally 
measured values are also greatly influenced by the synthesis method, sample preparation, and measurement 
 technique61. Additionally, the availability of, and access to, experimental ionic conductivity data is mostly lim-
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ited; the only way to obtain such data is by text mining through existing publications or having access to internal 
databases maintained by individual research groups. Even then, the total accessible data is quite small. At the 
same time, theoretical ionic conductivity measurements using DFT-MD simulations are also quite expensive 
and not ideal for a high-throughput based approach. Instead, we compute Li+ migration barriers using the 
softBV  tool45 developed by Chen et al. to measure ionic migration in Li compounds.

The softBV tool is based on the BV method, more generally used to examine the stability of chemical struc-
tures or estimate the oxidation state of  atoms42,62,63. At the heart of the BV method is the valence sum rule which 
states that the sum of bond valences ( Sij ) around any atom, i, with neighboring atoms j, should be equal to the 
atomic valence, ( Vi ) i.e., the oxidation state.

Sij , considered a measure of the electrostatic strength of a bond, can be written as a simple two-parameter alge-
braic equation:

where Rij is the observed bond length between atoms i and j, and R0 and b are bond valence parameters that 
depend entirely on the nature of the bond. Every pair of elements can be fitted with unique R0 and b values 
associated with their interaction. The BV mismatch is defined as

where Vid
i  is the ideal valence state of atom i. Sites in a crystal structure where |�Vi| ≈ 0 are considered acces-

sible sites for atom i. The BV method postulates that paths between accessible sites along which |�Vi| remains 
sufficiently low represent probable ion transport pathways. Chen et al. linked the BV mismatch, |�Vi| , to the 
energy scale, in order to compute activation energies, by developing a BV-based force field method using a 
general Morse-type interaction  potential45. The isosurfaces of fixed |�Vi| then represent regions that atom i can 
reach with a certain activation energy.

According to the original definition of the valence sum rule, only interactions with atoms, j, in the first 
coordination shell are considered in Equation (1). However, it was later demonstrated that by incorporating 
information from higher coordination shells, R0 and b can, in most cases, be refined further. The new parameters 
thus obtained by incorporating higher shell information are referred to as the bond softness parameters, and the 
resulting tool based on this approach is called softBV.

In addition to describing migration pathways between lattice sites, softBV can also find the lowest energy 
isosurfaces that percolate through the X, Y, and Z directions of the unit cell. The 1D barrier represents the low-
est energy required by a diffusing species to hop across between two opposite faces of a unit cell, in any one of 
the three directions. The 2D and 3D barriers, similarly, represent the lowest energies required to hop between 
opposite faces in any two or all three directions, respectively. It should be evident that the 1D barrier ≤ 2D bar-
rier ≤ 3D barrier for all solids. For the purpose of this study, we only use the 3D barriers. Supplementary Fig. S1 
shows the 3D migration pathway for Li+ in Li3PS4 , evaluated using the softBV tool. The lowest activation energy 
required to connect every point on the shaded pathway is the 3D migration barrier, and it provides a quantitative 
measure of the achievable Li-ion conductivity in Li3PS4.

Using the softBV tool, we calculate 3D barriers for Li+ diffusion in all 15,446 Li compounds in a high-through-
put manner. While the accuracy of softBV depends on the accuracy of underlying bond softness parameters 
and empirical potential energy functions, a consistent trend between Li+ barriers computed using softBV and 
DFT has been shown to  exist45,46. It is important to remember that materials with potential for fast migration 
may not necessarily show high ionic conductivity unless there is a high concentration of mobile ions to carry 
the  charge64. It is, thus, possible that Li compounds with extremely low 3D barriers have large associated defect 
formation energies that prevent them from being superionic conductors. The ionic conductivity of such mate-
rials can generally be enhanced by the introduction of additional charge carriers. Furthermore, since the BV 
approach does not allow for the structural relaxation of neighboring atoms that accompanies migration, softBV 
barriers tend to be overestimated in some  cases65. Hence, softBV barriers should not be used to directly estimate 
the ionic conductivity.

Electrochemical stability window. The electrochemical stability window of a material represents the 
electrode potential range in which it is neither oxidized nor reduced. We use the grand potential phase diagram 
 approach66,67 to calculate the electrochemical stability window of materials. The grand potential phase diagrams 
represent phase equilibria that are open to Li. Here, the chemical potential of Li ( µLi ) is the external input 
variable that can be controlled. The relevant thermodynamic potential to study phase equilibria is the Li grand 
potential, defined as

where, e is the elementary charge, φ is the electrode potential, E is the total energy computed using DFT, and NLi 
is the number of Li atoms in the system. The resulting phase diagram provides information about the equilibrium 
phases at different values of µLi.

(1)Vi =
∑

j

Sij

(2)Sij =

(

R0 − Rij

b

)

,

(3)|�Vi| = Vi − Vid
i ,

(4)eφ = E − µLiNLi
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As an example, we use the grand potential phase diagram of the ternary Li−P−S system to calculate voltage 
profiles depicting the lithiation and delithiation of Li3PS4 (Supplementary Fig. S2). At low electrode potentials, 
we see that Li3PS4 undergoes reduction and uptakes Li to form Li2S and P, while at higher potentials, Li3PS4 is 
oxidized and loses Li forming LiS4 and P2S7 . The electrochemical stability window of Li3PS4 ( 1.7− 2.2 V) is the 
range in which no lithiation or delithiation occurs i.e. where Li uptake is zero.

The grand potential analyses performed in this study include only the lowest energy phase at each composi-
tion. Thus, only 8,924 Li compounds in the database have reported electrochemical stability windows. In the 
case of meta-stable compounds that do not lie on the convex hull, the stability window is represented by the 
oxidation and reduction potentials of their decomposition components in the grand potential phase diagram. 
We use the DFT energies obtained from Materials Project for our calculations.

Stability against Li metal. Stability against Li metal represents a material’s inertness to lithium. A mate-
rial is considered stable if it does not undergo spontaneous reaction with Li at 0 V. Thus, materials that are stable 
against Li have a reduction potential (vs. Li/Li+) of 0 V. According to Supplementary Fig. S2, Li3P and Li2S are 
the only two phases in the Li−P−S system that are stable against Li metal.

Besides the three characteristics described above, we include in our database DFT computed values of energy 
above the convex hull ( Ehull ) and band gap ( Eg ) for all 15,446 Li compounds, also obtained from Materials 
Project. Ehull , which is a measure of thermodynamic stability at 0 K, is defined as the vertical distance of a phase 
from the convex hull in terms of energy per atom. A stable compound has Ehull = 0 eV . Compounds with non-
zero Ehull values are thermodynamically unstable at 0 K, although they may be stabilized at higher temperatures 
through entropic contributions. We use Eg as a measure of the electronic conductivity in a solid. Materials with 
Eg > 0 eV are known to be bad electronic conductors. In the future, we plan to extend the database to include 
other properties like elastic moduli, stability in water and air, etc.

Screening
We use the database generated in section "Database of Li compounds" to screen for promising solid electrolyte 
and anode coating candidates. To identify fast Li-conducting solid electrolytes, we focus on materials with low 
migration barriers. We select an arbitrary cutoff of 0.5 eV, and screen for all Li compounds with 3D barriers 
≤ 0.5 eV.

For protective coatings on the anode, stability against Li metal on one side, and the electrolyte on the other, 
is more important. Hence, we identify compounds with reduction potentials (vs. Li/Li+) of 0 V and an elec-
trochemical stability window wider than 1 V. We restrict the 3D barriers of coatings to 1 eV, to achieve a good 
balance between electrochemical stability and ionic conduction. Because coatings are generally applied as thin-
films, they allow for a comparatively low ionic conductivity.

To ensure that our screened solid electrolytes and coatings are also thermodynamically stable and possess 
low electronic conductivities, we add a second filtering step to only include compounds with Ehull ≤ 30meV 
and Eg ≥ 1 eV . We use a relatively safe lower bound of 1 eV to ensure minimal electronic conduction across 
the solid electrolyte or coating layer, accounting for the fact that local and semi-local DFT functionals tend to 
underestimate band  gaps68. Finally, compounds with transition metal atoms are generally known to be suscep-
tible to reactions with Li, as transition metals have many stable oxidation states. We, therefore, filter out most 
compounds with d- and f-block elements.

Although we calculate electrochemical stability windows only for the lowest energy phase at every composi-
tion, limiting our search to candidates with Ehull ≤ 30meV ensures that the stabilities of all identified compounds 
at a given composition are fairly similar. It should be noted that since the grand potential phase diagram depends 
on all existing phases in a given chemical subspace, it is prone to change when new phases are discovered or get 
added to Materials Project. This would affect the electrochemical stability windows of all compounds within the 
subspace. However, many of these systems are fairly well-studied and this should not be a major issue.

We identify over 250 promising solid electrolyte candidates using the above criteria. Few of them are high-
lighted in Fig. 1. The screened compounds are classified based on their chemistries into sulfides, halides, oxides, 
and other compounds. Supplementary Figs. S3–S6 show expanded results for each class. Among the sulfide 
compounds, well-known superionic conductors like Li7P3S11 and Li3PS4 are  identified69,70. While Li10GeP2S12 
(LGPS) does not show up due to its marginally higher Ehull (32 meV), its Si counterpart ( Li10SiP2S12 ) gets picked 
up by our screening  algorithm71. In addition, we identify several new sulfides, including Li9S3N , as promising 
electrolyte candidates based on their low 3D barriers. Among halides, the argyrodite Li6PS5 I is  identified72, 
but Li6PS5 Br and Li6PS5 Cl are excluded due to their higher Ehull values. Other known fast Li-conductors like 
Li3YBr6 (0.55 eV), Li3InCl6 (0.59 eV), Li3ScCl6 (0.56 eV) fall just above the 3D barrier cutoff of 0.5 eV and are 
also excluded. However, both LiBF4 and LiSbF4 are identified as having extremely low 3D barriers. LiAlB2O5 is the 
best performing oxide identified through screening, having a low 3D barrier of 0.175 eV. Other screened oxides 
include NASICON-type solid electrolytes like LiTi2(PO4)3 and LiZr2(PO4)3 , as well as garnets like Li7La3Zr2O12 
(LLZO) and Li7La3Hf2O12 (LLHfO), all of which have measured ionic conductivities ranging between 10−5 to 
10−3 S/cm2. Li2CO3 is also identified as a fast Li-conductor with a low 3D migration barrier. DFT studies have 
confirmed the low migration barrier for Li2CO3

73, however it has been shown that an increase in its charge car-
rier concentration through the introduction of intrinsic defects or dopants is required to overcome the relatively 
high defect formation energies in this  compound74.

For anode coatings, the stringent requirement of stability against Li metal leaves us with only 26 compounds, 
including some binaries like Li2O , Li2S , Li2Se , and LiX ( X = halide) which have already been tested as thin-film 
 coatings75,76 (see Supplementary Table S1). We identify Sr4Li(BN2)3 as an extremely promising anode coating 
candidate with a low 3D barrier and wide electrochemical stability window. Similarly, LiYO2 and Li7La3Hf2O12 , 
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both of which have been previously studied as potential solid electrolyte  candidates77,78, also get picked up by 
the screening algorithm. The success of such thin-film coatings largely depends on striking the right balance 
between thickness of the coating, achieved by deposition or chemical reaction methods, and complete coverage 
of the Li metal anode surface.

Li+ migration pathways for a few chosen electrolyte and anode coating candidates are shown in Supplemen-
tary Fig. S7.

Machine learning
Screening, as described above, helps us explore the database of Li compounds for promising solid electrolyte and 
anode coating candidates. ML, on the other hand, provides us a way to not only extend this search to materials 
outside the database, but to also explain individual predictions and generate model-level insights that can be 
used for designing new compounds. Training ML models on properties within the database gives us the ability 
to quickly test new Li compounds in the future without the need for explicit computations. Additionally, ML 
models can solve the problem of estimating 3D barriers for compounds for which softBV parameters have not 
yet been calculated.

We train independent ML models using Li compounds in the database to predict 3D barriers and electro-
chemical stability windows. ML regression models take a vector x ∈ IRn as input and return a value y. To utilize 
these models for predictions, we therefore construct a vector based data representation that encodes relevant 
physical information about the crystal structure and/or composition of the compounds. We compare the per-
formance of two ensemble learning algorithms on our regression tasks – random forests (RF)79 and gradient 
boosting decision trees (GB)80,81. Ensemble methods combine predictions from several base estimators to reduce 
bias and variance, thus improving performance. They work extremely well with small and medium sized datasets 
that have a mix of categorical and continuous features spanning various scales. As an additional bonus, ensemble 
algorithms do not require feature scaling of components of input vectors. We use the implementations of RF and 
GB regression available from the sci-kit learn python  package82. We perform hyperparamter selection using a 
grid-based search of the hyperparameter space and ten-fold cross-validation. R2 values are obtained by averaging 
over 20 randomized 90%-10% training-test set splits and are reported for the held-out test set only.

3D barriers. For the task of predicting 3D barriers, we use the crystal structures of Li compounds as input. 
We identify features that are both physically motivated and easy to compute in order to represent the crystal 
structures. Based on previous  research2, we know that structures with a large number of connected sites available 
for mobile ions to occupy, and small migration barriers between these sites, are ideal for fast ionic migration. To 
leverage this information, we include features describing the Li concentration, local geometry, sublattice chem-
istry, and topology into our ML models. We use several existing features, like those developed by Sendek et al.59 
and Ward et al.83, as well as introduce some new ones. We perform feature selection to identify a final set of 22 
features that provide a good balance between accuracy and simplicity in our model. The complete list is shown 
in Table 1 and described in Supplementary section S1.

We use features like Li atomic fraction (Li), mean Li neighbor count (LNC), and mean Li-Li bonds per Li atom 
(LLB) to feed information about the concentration and arrangement of Li atoms to our models. Other features 
like mean sublattice neighbor count (SNC), mean sublattice bond ionicity (SBI), and mean electronegativity of the 
sublattice (ENS) provide similar details about the sublattice elements i.e. non-Li constituents in the compounds. 
Local geometry is also captured in our models through features like mean Li-Li, Li-Anion, and Anion-Anion 
separation distances (LLSD, LASD, AASD), mean neighbor distance variation (NDV), and mean ordering param-
eters (OP_1, OP_2, OP_3).

Topological features provide details about the channels available for Li+ diffusion within the crystal structure. 
Such information is incorporated into the model through features including diameter of the largest free sphere 

Figure 1.  Promising electrolyte and anode coating candidates identified through the screening approach. 
Complete screening results can be found in Supplementary Figs. S3–S6 and Supplementary Table S1. [3D barrier 
≤ 0.5 eV , Ehull ≤ 30meV , Eg ≥ 1 eV].
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(DLFS), calculated using the Zeo++  tool84, mean straight line path width (SLPW), sublattice packing fraction 
(SPF), and maximum packing efficiency (MPE).

Additionally, in order to also include a single representative fingerprint of the entire crystal structure, we use 
a reduced version of the powder X-ray diffraction (XRD) pattern, consisting of the first five eigenvectors (XRD_1 
to XRD_5) calculated using principal component analysis, as additional inputs to our models. The fraction of 
variance explained by the first five principal components together is 0.65. Our final choice of 22 assorted features 
are meant to provide high accuracy in our models while still maintaining interpretability.

Oxidation and reduction potentials. Since electrochemical stability windows are calculated for a single 
(lowest energy) phase at each composition, we decide to use only the composition of Li compounds as input 
for training the corresponding ML models. We break the stability window prediction problem into two tasks: 
predicting oxidation potentials (vs. Li/Li+) and reduction potentials (vs. Li/Li+), using the same set of input 
features for both tasks.

As before, we test an assortment of different features to represent the composition of Li compounds in the 
database. These are based on physical and chemical properties of individual elements present in the compound, 
weighted by composition. They include eight simple element properties, each measured through three statis-
tics – mean, maximum, and range – resulting in a total of 24 distinct features. In addition, we introduce 4 new 
features based on oxidation states. The first two measure the total difference between the oxidation states of 
elements present in the compound and their lowest, or highest, possible oxidation states. For compound X, the 
two features are given by

where, {X} is the set of elements present in X, VX
i  is the oxidation state of element i in compound X, and {Vi} is 

the set of possible oxidation states of i. The remaining two features measure the same quantity, but are weighted 
by the Pauling electronegativities of the elements.

oxid.state −min.oxid.state(X) =
∑

i∈{X}

|VX
i −min {Vi}|

max.oxid.state − oxid.state(X) =
∑

i∈{X}

|max {Vi} − VX
i |

Table 1.  List of 22 structure-based features used to predict 3D barriers for Li+ migration in Li compounds. A 
complete description of the individual features can be found in Supplementary section S1.

No. Feature Acronym

1. Li atomic fraction Li

2. Mean Li neighbor  count59 LNC

3. Mean Li–Li bonds per  Li59 LLB

4. Mean sublattice neighbor  count59 SNC

5. Mean sublattice bond  ionicity59 SBI

6. Mean electronegativity of  sublattice59 ENS

7. Mean Li–Li separation  distance59 LLSD

8. Mean Li-anion separation  distance59 LASD

9. Mean anion-anion separation  distance59 AASD

10. Mean neighbor distance  variation83 NDV

11. Mean ordering parameter shell  183 OP_1

12. Mean ordering parameter shell  283 OP_2

13. Mean ordering parameter shell  383 OP_3

14. Diameter of largest free  sphere84 DLFS

15. Mean Straight Line Path  Width59 SLPW

16. Sublattice packing  fraction59 SPF

17. Max packing  efficiency83 MPE

18. XRD principal component 1 XRD_1

19. XRD principal component 2 XRD_2

20. XRD principal component 3 XRD_3

21. XRD principal component 4 XRD_4

22. XRD principal component 5 XRD_5
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The final list of 28 features is given in Table 2.

Shapley explanations and permutation feature importances. To interpret a ML model, it is useful 
to know which features have the highest impact on predictions. SHapley Additive exPlanations (SHAP)85 and 
Permutation Feature Importance analysis (PFI)79 are two model inspection techniques that we use to explain 
the output from our ML models. Shapley explanations use a game theoretic approach to break down individual 
predictions. Specifically, SHAP measures the impact of having a certain value for a given feature in comparison 
to the feature taking some baseline value.

On the other hand, PFI provides an overall metric of the most important features for a given model. It 
measures the change in model score when a single feature vector is randomly permuted; a higher score reflects a 
higher dependence of the model on the corresponding feature. The shap and  rfpimp86 python packages are used 
to calculate SHAP and PFI values in this work. We report SHAP values for both training and test data, whereas 
PFI is measured, using R2 values, on the test set only.

Although tree-based methods also provide an inbuilt measure of feature importance, based on the decrease in 
impurity, they are always computed on the training set and, therefore, do not reflect the predictive ability of the 
feature on unseen data. Furthermore, impurity-based feature importance schemes are strongly biased towards 
high cardinality features. PFI does not exhibit any such biases. It must be noted that PFI, just like impurity-based 
metrics, can still be affected by the presence of highly correlated features. When a correlated feature is permuted, 
the model still has access to the feature through its correlated counterpart, thereby lowering the apparent impor-
tance value for both features. A common solution, and one we use for the oxidation and reduction potentials 
models, is to cluster the correlated features prior to performing feature analysis.

Results and discussion
3D barriers. The structure-based features introduced above are used to train RF and GB regression models 
to predict 3D barriers. To avoid outliers, we restrict our models to compounds with 3D barriers ≤ 5 eV. Table 3 
shows the cross-validated results on the barrier prediction task. We see that the GB model performs slightly bet-
ter than the RF model, providing R2 values of 0.86 on average. To study the importance of feature selection, we 
also compare the performance of our input features against other structure-based representation schemes from 
literature. We find that our set of 22 input features performs better than all others at the 3D barrier prediction 
task. Supplementary Fig. S8 shows parity plots comparing the 3D barriers predicted using the GB model against 
barriers computed using softBV.

Although our database contains 1D, 2D, and 3D migration barriers calculated by softBV, we only use the 
3D barriers for screening and ML. In isotropic materials, where ionic conduction is equally fast in all three 
dimensions, the three barriers are equal. Other compounds like LiFePO4 , LiCoO2 etc. have dominant 1D or 2D 
conduction  pathways87,88, and thus have 1D and 2D barriers that are significantly lower than their 3D barrier. 
However, crystal defects and imperfections can potentially obstruct these low barrier conduction pathways, and 

(oxid.state −min.oxid.state) ∗ E_neg (X) =
∑

i∈{X}

|VX
i −min {Vi}| ∗ ENi

(max.oxid.state − oxid.state) ∗ E_neg (X) =
∑

i∈{X}

|max {Vi} − VX
i | ∗ ENi

Table 2.  List of 28 element property features used for predicting oxidation and reduction potentials (vs. Li/
Li+). Each of eight standard element properties are weighted by composition and measured through three 
different statistics to obtain the first 24 features. The other 4 are new oxidation state features introduced in 
“Oxidation and reduction potentials”.

Composition-weighted element properties Statistics

Standard features

Atomic number Mean

Electronegativity Maximum

Valence d-electrons Range

Unfilled d-electrons

Unfilled p-electrons

Band gap

Magnetic moment

Melting temperature

New oxidation state features

oxid. state − min. oxid. state

max. oxid. state − oxid. state

(oxid. state − min. oxid. state) * E_neg

(max. oxid. state − oxid. state) * E_neg
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special material preparation and processing is needed to take advantage of them. The 3D barrier provides a much 
better estimate of the overall ionic migration in these compounds.

To test the validity of this idea, we consider the 21 compounds identified as being possible superionic conduc-
tors by the Sendek  model59. Table 4 ranks the compounds in increasing order of their softBV 3D barriers. Where 
the calculated barriers are missing, we use predictions from our GB model instead. Among the 21 compounds, 8 
are predicted to have an ionic conductivity > 10−4 S/cm based on high temperature DFT-MD simulations, while 
2 more are identified as marginal  cases60. 8 of these 10 total compounds also have a low calculated 3D barrier and 
occupy the top half of the table. However, our models estimate much larger barriers for LiMgB3(H9N)2 as well 
as for LiErSe2 , which is structurally similar to LiErS2 . On the other hand, our models also perform well on the 
remaining 11 compounds that the Sendek model identifies as being superionic, but for which DFT-MD simula-
tions predict ionic conductivities < 10−4 S/cm. We estimate high 3D barriers for all but one of these compounds. 
The exception, SrLi(BS2)3 , has the lowest calculated 3D barrier among the 21 compounds and is explored further 
below. LiCl, which appears to have a moderately low 3D barrier, is already identified as a promising anode coating 
candidate in "Screening" section. It must be noted that the LiCl structure identified by us is the DFT ground state 
structure, and slightly differs from the one identified by the Sendek model. Overall, our calculated and predicted 
3D barriers show good agreement with high temperature DFT-MD simulation results.

In addition to being good at predicting Li+ migration barriers, our models are also interpretable. Fig. 2 shows 
Shapley  explanations89 for individual predictions made by our GB model. Red arrows represent feature effects 
that drive the predicted 3D barrier higher, while blue arrows represent those that drive the prediction lower. 

Table 3.  The cross-validated performance of our RF and GB models trained using 22 input features on the 3D 
barrier prediction task. Also compared are three other structure-based representations from literature (with 
the same GB model in each case).

Features + model R
2 Vector length

Current work + GB 0.86 22

Current work + RF 0.84 22

Sendek conductivity  features59 + GB 0.76 20

Coulomb  matrix23 + GB 0.72 200

Powder X-ray diffraction pattern + GB 0.70 128

Table 4.  Li compounds identified as possible superionic conductors by the Sendek  model59 are arranged in 
increasing order of their softBV 3D barriers. Where calculated barriers are missing, ML predictions are used 
instead. The rightmost column indicates whether the compound was predicted to have an ionic conductivity > 
10−4 S/cm based on high temperature DFT-MD  simulations60. d ML prediction

No. mp_id Formula 3D barrier (eV) DFT-MD predicted ionic conductivity > 10−4 S/cm

1. mp-558219 SrLi(BS2)3 0.340 No

2. mp-532413 Li5B7S13 0.487 Yes

3. mp-643069 Li2HIO 0.519 Yes

4. mp-7744 LiSO3F 0.529 Yes

5. mp-569782 Sr2LiCBr3N2 0.548 Marginal

6. mp-676109 Li3InCl6 0.595 Yes

7. mp-676361 LiErCl6 0.664 Yes

8. mp-22905 LiCl 0.735 No

9. mp-559238 CsLi2BS3 0.780 Yes

10. mp-29410 Li2B2S5 0.972d Yes

11. mp-34477 LiSmS2 0.977 No

12. mp-8430 KLiS 1.720d No

13. mp-8751 RbLiS 1.727d No

14. mp-554076 BaLiBS3 2.035 No

15. mp-866665 LiMgB
3
(H9N)2 2.330d Yes

16. mp-19896 Li2GePbS4 2.835 No

17. mp-561095 LiHo3Ge2(O4F)2 3.259 No

18. mp-15791 LiErS2 4.698d No

19. mp-15790 LiHoS2 4.749d No

20. mp-15789 LiDyS
2

4.872 No

21. mp-15797 LiErSe2 4.884 Marginal
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The lengths of the arrows indicate the magnitude of the effects, referred to as SHAP values. We first consider 3D 
barrier predictions of compounds identified by the screening model as potential solid electrolyte candidates in 
"Screening" section. These are training set predictions that give us an insight into how the GB model uses input 
features to make decisions. We see that Li9S3N , the most promising sulfide compound, has an extremely small 
sublattice packing fraction (SPF) = 0.082 and extremely large Li fraction (Li) = 0.692 , driving its 3D barrier pre-
diction from the base value of 1.490 eV, which is the GB model’s average prediction over the entire training set, 
down to 0.198 eV. Similarly, Li2CO3 also has a very small SPF = 0.068 , moderate Li fraction = 0.333 , as well as 
high mean electronegativity of sublattice (ENS) = 3.218 , resulting in a similarly low 3D barrier prediction of 0.182 
eV. LiBF4 , on the other hand, does not have a large Li fraction. However, a small SPF = 0.058 , high ENS = 3.592 , 
and lower-than-average sublattice neighbor count (SNC) = 17.20, all drive its 3D barrier prediction down to 0.134 
eV. All three compounds have reasonably large diameters of largest free spheres (DLFS). Sr4Li(BN2)3 , with one of 
the lowest computed 3D barriers, is a peculiar case. A small Li fraction = 0.071 and extremely large SPF = 0.707 , 
which in fact drives the prediction higher for Sr4Li(BN2)3 , are counterbalanced by a low SNC = 18.615 and 
several other negative contributions from local geometry based features.

We use similar plots to explain GB predictions for compounds from Table 4 with contradicting softBV and 
high temperature DFT-MD results. We see that LiErSe2 has an extremely large predicted 3D barrier of 4.889 
eV, even though its ionic conductivity is predicted to be marginal by DFT-MD. Supplementary Fig. S9 reveals 
that the the major contributors driving the 3D barrier prediction of LiErSe2 higher are a large SPF = 0.384, 
high maximum packing efficiency MPE = 0.522, and low ENS = 2.113, all indicators of sluggish Li+ migration. 
Similarly, LiMgB3(H9N)2 is also predicted to have an ionic conductivity > 10−4 S/cm by DFT-MD, but its small 
SPF = 0.126 is more than made up for by a very high SNC = 34.5 , extremely small Li fraction = 0.04 , and low 
mean sublattice bond ionicity (SBI) = 0.284 and ENS = 2.213 , resulting in a high predicted 3D barrier of 2.330 
eV. Finally, although SrLi(BS2)3 has a small Li fraction = 0.09 and above-average SPF = 0.279 , atypical of fast 
Li+ conductors, it also has extremely low SNC = 10.30 and LNC = 11.0 , and large DLFS = 1.111 , explaining 
its low barrier prediction.

Figure 2.  Shapley explanations for individual predictions made by the GB model trained on 3D barriers. Red 
arrows represent feature effects that drive the predicted 3D barrier higher, while blue arrows represent those that 
drive the prediction lower. The lengths of the arrows indicate the magnitudes of the effects. From top to bottom: 
Li9S3N , Li2CO3 , LiBF4 , and Sr4Li(BN2)3.
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In addition to providing explanations for individual predictions, our ML models can also be used to study the 
impact any given feature has on overall predictions through PFI analysis. The PFI values measured on the test set 
of the GB model are shown in Fig. 3. It is evident from looking at the figure that SPF, by far, has the largest impact 
on overall predictions of 3D barriers. The feature importance plot indicates that if SPF values were to be randomly 
permuted for the test set, the resulting R2 of the GB model would drop by ∼ 0.3 . In addition to SPF, we see other 
features discussed above like Li, SNC, and DLFS also have high impact on overall predictions. Both, SPF and 
DLFS, measure the void space inside the crystal structure available for Li+ ions to diffuse through, making them 
excellent predictors of ionic migration. A low SPF, or wide DLFS, implies a low 3D barrier and, thus, fast ionic 
migration. Similarly, a high Li fraction or low SNC indicates a higher proportion of candidate Li sites for Li+ to 
hop onto, also favoring fast migration. Although XRD_1, as a feature, is hard to interpret, its overall importance 
highlights the fact that crystal geometry largely determines the Li+ migration barrier in these compounds.

Supplementary Fig. S10 shows a heatmap of the Pearson correlation coefficients between each pair of input 
features and between individual features and the 3D barrier. These coefficients measure the strength of the linear 
association between two variables, taking values between -1 and 1. Positive values imply a positive correlation 
whereas negative values imply an inverse correlation. We observe the same positive and negative correlations 
discussed in the paragraphs above, between the top five features and the 3D barrier.

Oxidation and reduction potentials. Just like the 3D barriers, we also train ML models to predict oxida-
tion and reduction potentials. Table 5 provides a comparison between R2 values for RF and GB models against 
other composition-based representation schemes from literature. We again see the GB model marginally out-
perform the RF model at both tasks. Comparison against other representations confirms the superior predictive 
performance of our selected features. Supplementary Fig. S11 shows parity plots comparing the oxidation and 
reduction potentials predicted using GB models against those calculated directly from DFT energies. We see 
excellent agreement between the two sets of values with no clear outliers.

Shapley explanations for oxidation and reduction potential predictions are less intuitive because of the cor-
related nature of input features, which measure the same property through different statistics. Hence, we only 
perform PFI analysis to study overall feature importance for these GB models. We still need to cluster input 
features describing the same property into individual groups to understand the impact of each element property 
on the oxidation and reduction potential predictions. Additionally, we also combine the oxidation state features 
into two groups as shown in Fig. 4.

Figure 3.  Permutation feature importance plot for the 3D barrier GB model showing the decrease in R2 values 
upon random permutation of individual feature vectors. Higher values indicate a larger impact on predictions. 
Only features with the top 10 PFI scores are shown.

Table 5.  The cross-validated performance of our RF and GB models trained using 28 input features on 
the oxidation and reduction potential prediction tasks. Also compared are three other composition-based 
representations from literature (with the same GB model in each case).

Features + model Reduction potential Oxidation potential Vector length

Current work + GB 0.95 0.92 28

Current work + RF 0.93 0.91 28

Roost90 + neural networks 0.92 0.92 64

Magpie element  features12 + GB 0.89 0.84 132

Element fractions + GB 0.87 0.87 103
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We see that electronegativity features have the largest impact on predictions of oxidation and reduction 
potentials. The electronegativity of an element represents its tendency to attract electrons, and largely determines 
whether it gets oxidized or reduced. Hence, the major influence on calculated oxidation and reduction potentials 
is expected. Additionally, the new oxidation state features introduced in this work also seem to be quite effective 
at predicting electrochemical windows. These features account for the variations in oxidation states of multiva-
lent elements, making them excellent predictors of stability. Other input features that have a noticeable impact 
include the number of valence d-electrons and unfilled p-electrons.

It is important to point out that PFI and SHAP values are not intrinsic predictors of feature importance. They 
are model dependent, and only represent the importance a given value or feature has on predictions made using 
that particular model. However, for accurate models with physically motivated and interpretable features, these 
results can still be useful. For example, Li10SiP2O12 (LSiPO) has a 3D barrier of 0.305 eV. We would expect a 
compound with the same crystal structure as LSiPO, but with larger sublattice ions, to exhibit a higher 3D bar-
rier due to its large SPF, all other features being equal. We can test this by substituting Sn for Si in the structure. 
Sn belongs to the same group (IVA) and has a similar electronegativity as Si (1.96 vs. 1.90), but a bigger ionic 
radius. By simply changing the SPF, we find that the 3D barrier of LSnPO increases to 0.518 eV. Similarly, if we 
substitute the O in LSiPO with S instead, we would expect the new compound to have a lower ENS due to the 
lower electronegativity of S compared to O (2.58 vs. 3.44), as well as a higher SPF due to the larger S ions. This 
would also drive the barrier higher, which is exactly what we see for LSiPS, whose 3D barrier is 0.457 eV.

The above example shows that, even though PFI analysis and Shapley explanations do not necessarily provide 
causality, they can still serve as a useful guide for designing new compounds with tailored 3D barriers. Besides 
substitutions, the introduction of intrinsic defects and dopants can also be used to alter the geometry, electron-
egativity, and the Li fraction in the compounds. Such an approach has the potential to enable the discovery of 
promising new solid electrolytes and will be the focus of our future work.

Summary
In summary, we developed a materials informatics approach to explore and identify promising candidates for 
solid electrolytes and protective anode coatings in all-solid-state Li batteries. By combining high-fidelity DFT 
calculations with quick BV-based computations, we generated a database of battery-related materials properties 
for all Li compounds on Materials Project. We screened through the database to identify over 250 electrolyte and 
26 anode coating candidates that span a wide range of structures and compositions. We found new compounds 
like Li9S3N , LiAlB2O5 , LiYO2 , LiSbF4 , and Sr4Li(BN2)3 , that have extremely low 3D barriers, and provide a good 
balance of electrochemical stability and fast ionic migration.

We also trained machine learning models, using ensemble methods, to predict 3D migration barriers and 
oxidation and reduction potentials for Li compounds, to identify promising compounds outside our database. 
By using an assorted set of physically motivated features, we showed that our models can achieve high accuracy 
combined with interpretability. We compared our carefully selected features against common descriptors from 
literature to show that our features achieved better performance. Additionally, we explained individual predic-
tions and provided model-level insights, useful for designing new electrolyte and coating materials in the future.

Our database and the subsequent screening, machine learning, and model interpretation techniques, together, 
provide a comprehensive strategy to efficiently explore the Li compound space for promising solid electrolyte 
candidates. Our approach has the potential to accelerate the discovery and design of novel electrolyte and coat-
ing materials for Li ASSB. Future work will involve designing and testing new Li compounds using the trained 
models, as well as accurate DFT simulations and experiments to perform rigorous validation of the screening 
and machine learning results. We also plan to extend our database to include other properties such as elastic 
moduli, which are predictors of dendrite formation, and stability in air and water in the future.

Figure 4.  Permutation feature importance plots for the (a) reduction potential and (b) oxidation potential 
GB models. Features describing the same element property, measured through different statistics, are clustered 
together to avoid highly correlated features.
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Data and code availability
Data not found in the main text or SI is available from the corresponding authors upon request. The developed 
ML model was implemented using the scikit-learn library in python. All the scripts for generating input features 
for the ML models are also available upon request from the corresponding authors.
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