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A multi‑hazard map‑based 
flooding, gully erosion, forest fires, 
and earthquakes in Iran
Soheila Pouyan1, Hamid Reza Pourghasemi1*, Mojgan Bordbar2, Soroor Rahmanian3 & 
John J. Clague4

We used three state‑of‑the‑art machine learning techniques (boosted regression tree, random forest, 
and support vector machine) to produce a multi‑hazard (MHR) map illustrating areas susceptible 
to flooding, gully erosion, forest fires, and earthquakes in Kohgiluyeh and Boyer‑Ahmad Province, 
Iran. The earthquake hazard map was derived from a probabilistic seismic hazard analysis. The mean 
decrease Gini (MDG) method was implemented to determine the relative importance of effective 
factors on the spatial occurrence of each of the four hazards. Area under the curve (AUC) plots, based 
on a validation dataset, were created for the maps generated using the three algorithms to compare 
the results. The random forest model had the highest predictive accuracy, with AUC values of 0.994, 
0.982, and 0.885 for gully erosion, flooding, and forest fires, respectively. Approximately 41%, 40%, 
28%, and 3% of the study area are at risk of forest fires, earthquakes, floods, and gully erosion, 
respectively.

Hazard can be defined as a source of potential harm, a threat to natural environments, and human health. The 
causes of natural hazards may be geological (e.g., earthquakes, tsunamis, landslides, volcanic eruptions, etc.) 
and climatic (e.g., floods, windstorms, droughts, and wildfires)1. Many parts of the world are at risk from one or 
more natural hazards, and although many studies have focused on single hazards, there is a need for integrated 
assessments of multi-hazards for more efficient land  management2. The concept of multi-hazards was introduced 
by the United Nations Environment Programme through its policies on sustainable development and its call for 
"comprehensive investigation of multi-hazards" to plan and manage residential areas prone to natural  disasters3. 
Damage from natural disasters is increasing worldwide, providing an impetus to hazard researchers to develop 
new tools to reduce economic losses and injuries from future disasters. These tools include multi-hazard maps 
created using machine learning tools that show the spatial distribution of the full spectrum of hazards in a 
 region2. Examples of areas where such multi-hazard evaluations have been performed include Greece (flooding 
depth, lateral erosion, earthquakes, and landslides)4, the United States (weather and climate hazards)5, Sikkim 
State, India (landslide and earthquake)6, the Adriatic Sea (smothering and sealing, abrasion and extraction, 
underwater noise, sea surface temperature variation, and sea surface salinity variation)7, and Chile (weather-
related hazards, including coastal flooding, fluvial flooding, water scarcity, heat stress, and wildfire)8. The inter-
action of these multi-hazards could be useful for further research in this field. Previous studies have shown that 
landslides and flash floods are natural hazards that are frequently triggered simultaneously due to heavy or pro-
longed rainfall on steep  mountains9. In other words, heavy rainfall causes flash floods that can lead to soil erosion 
and landslide  events10. For instance, in April 2019, heavy rainfall had a significant effect on the whole of Iran, 
which caused far-reaching flooding and  landslides11. Furthermore, landslides lead to seismic derangement. In 
addition, seismic derangement may cause landslides, leading to many victims around the world. Slides can cause 
catastrophic flooding, especially when landslide dams are broken, and flooding can cause  slides12. Temporary 
soil flooding at different scales can significantly affect soil degradation. Floods on slopes in ground flow, sheet 
flow, return flow, groundwater ridge, etc., are connected to soil erosion and landslide occurrence. Floodwater 
combined with saturated status may destroy soil structure and soil organisms (https:// www. recare- hub. eu/ soil- 
threa ts/ floods- and- lands lides). Moreover, forest fires can significantly alter vegetation, increase soil erosion, and 
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even lead to  desertification13. Admittedly, forest fires significantly impact physical, chemical, mineralogical, and 
biological soil features, which trigger soil erosion. Severe bushfires (i.e., wildfires) harm soil  properties14. On the 
other hand, gully erosion influences soil structure, quality, and soil  properties15.

Much of Iran is at high risk of earthquakes, floods, forest fires, and gully  erosion16–18. Forest fires, for example, 
are a major cause of ecosystem damage and large economic  losses19, 20. The forests of Kohgiluyeh and Boyer-
Ahmad Province in southwestern Iran are particularly vulnerable to forest fires, providing a motivation for the 
choice of this area for our study. Maps that show areas at high risk from wildfires help managers and planners 
to deal with this  problem21, 22.

Flooding is another serious hazard in Kohgiluyeh and Boyer-Ahmad Province and has been exacerbated in 
recent decades by deforestation, land use changes, poor watershed management, and climate  change23. Floods 
have adversely affected more people than any other natural disaster type in the twenty-first century, including 
127 events of differentiated natural disasters in  201824. One such flood caused widespread damage in Iran in 
March and April 2019. Recurrent floods in Kohgiluyeh and Boyer-Ahmad Province inundated riverside areas, 
leading to soil erosion, damaged or destroyed earth and concrete dams, other watershed structures, and bridges. 
Identifying areas at  risk25 and preparing flood hazard maps are important activities in any proactive response 
to this  hazard26–29.

Gully erosion is an important cause of soil loss and land degradation in arid and semi-arid regions in Iran and 
elsewhere  world30, 31. Maps showing where this problem exists or might develop in the future are effective tools 
for decision makers concerned with sustainable development. In many instances, gully erosion maps have been 
prepared individually based on datasets in GIS  software5, 32, 33. In the present study, gully erosion is considered 
an element of the multi-hazard spectrum hazards in the Kohgiluyeh and Boyer-Ahmad Province.

The high Zagros Mountains throughout the north, east, and southeast of Kohgiluyeh and Boyer-Ahmad Prov-
ince is located, experience frequent earthquakes. Although it is not possible to accurately predict future earth-
quakes in the province, it is possible to determine the likely locations that will suffer damaging ground motions.

Our multi-hazard study in Kohgiluyeh and Boyer-Ahmad Province involved (1) identifying and prioritizing 
the factors affecting the occurrence of each natural hazard in the region; (2) preparing maps of flood, gully ero-
sion, forest fires, and earthquake hazards separately using three machine learning algorithms (boosted regres-
sion tree, support vector machine, and random forest); (3) comparing the results of the three algorithms with 
the ROC curve to select the best regional hazard model; and (4) preparing a multi-hazard map of the province. 
Our research contributes to the development and assessment of machine learning methods for mapping natural 
hazard zones. To the authors’ knowledge, no work in the literature related to the multi-hazard spatial modeling 
of floods, gully erosion, forest fires, and earthquakes exists to date. Moreover, for the first time, this work was 
carried out mentioned hazards mapping in the Kohgiluyeh and Boyer-Ahmed province. In addition, based on 
the available data and sources, the SVM, BRT, and RF algorithms were used to investigate the hazards in the 
study area.

Results
Priority of effective factors using random forest and MDG. Figure 1 shows the results of the prior-
itization of factors for the three hazards using the RF technique. The most important factor is elevation, followed 
by decreasing order of importance of flooding by mean annual rainfall, distance from roads, slope, land use, 
TWI, NDVI, drainage density, plan curvature, distance from rivers, lithology, and aspect (Fig. 1a).

Based on the MDG analysis, temperature is the most important factor for forest fire hazards, followed by 
mean annual rainfall, elevation, distance from roads, distance from villages, NDVI, slope, WEI, distance from 
rivers, TWI, and aspect (Fig. 1b). Mean annual rainfall is the most important factor for gully erosion, followed by 
elevation, clay, silt, lithology, drainage density, distance from roads, NDVI, TWI, sand, land use, slope, distance 
from rivers, plan curvature, profile curvature, and aspect (Fig. 1c).

Natural hazard susceptibility maps. In natural hazard studies, susceptibility is associated with the spa-
tial features of hazards. It is defined as the tendency of a region to experience the effects of a given hazardous 
process (i.e., earthquakes, floods, forest fires, erosion, etc.) without considering the moment of event, fatality, 
and economic  losses34. The RF, BRT, and SVM algorithms were applied to train the data, and susceptibility maps 
were prepared for flood, forest fire, and gully erosion hazards. Flood hazard (FH) maps were created by applying 
the RF (FHRF), SVM (FHSVM), and BRT (FHBRT) algorithms to the training dataset. Similarly, gully erosion 
hazard (GEH) maps were generated from the training dataset using the same three algorithms (maps GEHRF, 
GEHSVM, and GEHBRT), as were forest fire hazard (FFH) maps (FFHRF, FFHSVM, and FFHBRT).

Natural hazard maps prepared using the RF model (the best performance of the three models) are shown in 
Fig. 2. In the case of the FHRF map (Fig. 2a), approximately 50.1%, 22.1%, 15.7%, and 12.1% of the study area 
had low, moderate, high, and very high susceptibility to flooding, respectively. The FFHRF map (Fig. 2b) shows 
that approximately 17.4% and 24.0% of the study area are, respectively, in the high and very high forest fire sus-
ceptibility classes, and 30.3% and 28.3% of the area had moderate and low susceptibility, respectively. Finally, the 
GEHRF map (Fig. 2c) shows that 1.1% and 2.1% of the area has very high and high susceptibility to gully erosion, 
respectively; the moderate and low susceptibility classes cover 4.4% and 92.4% of the province, respectively.

Peak ground acceleration map. Figure 3 shows the PGA map of the study area. The PGA values were 
divided into three classes: low, moderate, and high. The PGA map shows that approximately 40%, 20.0%, and 
39.6% of the area were in the low, moderate, and high classes, respectively.
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Validation and comparison of hazard maps using ROC. We validated the hazard maps using ROC 
(Table 1). In the case of forest fire hazard, the random forest model performed best (AUC = 0.885), followed by 
the support vector machine (AUC = 0.727) and boosted regression tree (AUC = 0.680) models. For gully erosion, 
the AUC values for the random forest, support vector machine, and boosted regression tree maps are 0.994, 
0.959, and 0.938, respectively. The AUC values for the flood hazard maps made using the random forest, sup-
port vector machine, and boosted regression tree algorithms are 0.982, 0.940, and 0.883, respectively (Table 1) 
(Fig. 4).

Multi‑hazard map. The RF model was chosen to produce a multi-hazard map (MHR) of the study area 
(Fig. 4). We combined maps of the four hazards (flood, forest fire, gully erosion, and earthquake) in the ArcGIS 
10.8 environment (https:// www. esri. com) using the following equation:

The multi-hazard map included 15 susceptibility classes (Fig. 5). Approximately 38% of the Kohgiluyeh and 
Boyer-Ahmad Province is safe from all-natural hazards, whereas 0.7% of the region is susceptible to all four natu-
ral hazards. Percentages of the study area with individual or combinations of hazards are shown in Figs. 6 and 7.   

Discussion
Many researchers have studied hazards  individually35–39. Although such studies have been important and useful, 
considering multiple hazards and their interactions, their interdependencies, and possible cascading effects can be 
more informative and useful for reducing disaster losses, as well as for efficient land and ocean  management4, 6, 40.

(1)MHR = FFHRF+ FHRF+ GEHRF+ PGA

Figure 1.  Priority of the effective factors for each hazard.

https://www.esri.com
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The motivation for our study was to provide (1) a comprehensive and integrated analysis of the full spectrum 
of damaging natural hazards in Kohgiluyeh and Boyer-Ahmad Province, which is a risk-prone area in Iran, 
and (2) a multi-hazard map useful to land-use and emergency response managers. Here, we discuss the factors 
that drive each hazard and identify areas within the province that are susceptible to each phenomenon. We 
also discuss the merits of the machine-learning algorithms used in this study. The benefits of machine learning 
models include the use of dichotomous dependent variables as probabilities, the ability to use different types of 
independent variables (i.e., binary, sequential, and continuous), and there is no need for normal  distribution41. 
Machine learning methods can solve uncertainty factors related to the dataset modeling process. Different learn-
ing machine algorithms can also be used to solve uncertainties related to the accuracy of the models. Another 
source of uncertainty is the limitation of the training model, in which ML techniques such as RF do not face 
these issues. This algorithm uses the error rate and an indicator outside the bag indicator. One of the benefits 
accrued from machine learning techniques compared to traditional methods (i.e., bivariate and multivariate 
statistical methods) is that ML algorithms can deal with noise related to the dataset and the uncertainty of the 
dataset. Moreover, limited measurement errors are  accurate42. However, the disadvantage of machine learning 
methods is their vulnerability to overfitting data, which produces unstable regression  coefficients43. Therefore, 
it is necessary to use different techniques to improve the accuracy of prediction results.

Each of these algorithms has advantages, but the results of the AUC-based assessment showed that the RF 
algorithm has stronger predictive power than the BRT and SVM models. Other researchers have shown that (1) 
the RF algorithm performs better than conventional  methods44, (2) is a powerful supervised learning method 

Figure 2.  Hazard susceptibility maps of the study area produced using the RF model.
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for investigating problems in the real  world45, (3) is simple and fast, (4) does not require statistical hypotheses, 
and (5) is a reliable  predictor46, 47. It has been widely used in a range of environmental  studies44, 48–52.

The FFHRF map shows that the southern, western, and eastern parts of the Kohgiluyeh and Boyer-Ahmad 
Province are most susceptible to forest fires, and the northern and central areas have low to moderate wildfire 
susceptibility. The FHRF map shows flood susceptibility to be high to very high in the western and southeastern 
parts of the province and low to moderate s in the north and east. According to the GEHRF map, high to very 
high gully erosion susceptibility is restricted to a small area in the western part of the province. Finally, the PGA 
map shows that the southern and western parts of the province are highly susceptible to damaging earthquakes, 
whereas this hazard is low elsewhere.

In this study, we evaluated the relative importance of factors affecting flood, forest fire, and gully erosion 
using the random forest method. This method reliably determines the relative importance of controlling factors 
in hazard susceptibility  applications53. Using the MDG method, we found that the annual temperature is the 
most important factor in predicting forest fire susceptibility, whereas elevation and mean annual precipitation 
are most important in the case of flood and gully erosion hazards. Aspect proved to be the least important factor 
for all three hazards. There is no specific aspect that favors forest fires; it occurs on all forested slopes in the study 
area. However, forest fires are common near residential areas and roads, where most fires are initiated. Elevation 
is also important because it has a strong effect on rainfall and temperature. Our map of areas susceptible to for-
est fires may be useful to forest managers and emergency responders who must plan and implement necessary 
measures to protect and preserve the remaining forest in high-risk areas.

Researchers used the RF method in a forestry study in China and, like us, concluded that vegetation type, 
slope, and aspect are less important than proximity to towns, temperature, and  precipitation54. Another research 
group studied flood susceptibility along the Pearl River in China using the DMG method and concluded that 
the most important factors for related flooding are maximum three-day precipitation, runoff depth, typhoon 
frequency, elevation, and  TWI55. In contrast, another group found that elevation is the most important flood risk 
factor in their study  area56, given that flooding was greatest along trunk rivers at low elevation.

Mean annual rainfall is one of the most effective factors in the formation and spread of gullies. This metric is 
positively related to the volume and kinetic energy of surface runoff, which are the main factors involved in gully 
 erosion57. Lithology is an important factor in this process. One research group working in Ilam Province, Iran, 
for example, found that the amount of clay in soil has a high positive correlation with gully  erosion58.

In our analysis of earthquake hazards, we learned that magnitude and ground acceleration are the two most 
important factors for estimating seismic risk. This finding is consistent with the results of other studies that have 
performed similar  studies40.

Figure 3.  PGA map.

Table 1.  AUC values of hazard risk maps.

Models Forest fire Flood area Gully erosion

BRT 0.68 0.883 0.938

RF 0.885 0.982 0.994

SVM 0.727 0.94 0.959
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Conclusion
We used machine learning algorithms to map areas susceptible to multiple hazards in a part of Iran with a high 
risk of natural hazards. Identifying these areas is an important step in making sound management decisions to 
reduce damage and injury from natural hazards in the future. The final product of our work is a multi-hazard 
map created by combining four important natural hazards (i.e., flooding, forest fires, earthquakes, and gully 
erosion). Factors affecting each hazard were identified and prioritized, and maps of each hazard were created 
using the RF, BRT, and SVM algorithms. We determined the validity of the results using ROC plots and found 
that the RF model had the highest AUC value and thus accuracy. We then produced a multi-hazard map for 
the study area by combining the maps of the four hazards. This final map shows that approximately 38% of the 
province is safe from all four hazards. Areas where all four hazards are a concern are restricted to the southern 
part of the province. Of the four hazards, forest fires affected the largest percentage of the study area and gully 
erosion was the least. In line with the goals of sustainable development, the results of this research can be used 
by managers, planners, and other stakeholders as a decision-making tool to reduce future damage from natural 
hazards. The critical infrastructure in Kohgiluyeh and Boyer-Ahmad Province should be examined with the aim 
of minimizing future losses from forest fires, floods, earthquakes, and gully erosion.

Figure 4.  Validation of hazard maps using the ROC curve.
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Methodology
Study area. Kohgiluyeh and Boyer-Ahmad Province is a 15,500  km2 area of a high mountainous region. Its 
borders share with Fars, Khuzestan, Isfahan, and Bushehr provinces within the Chaharmahal-Bakhtiari prov-
ince, and the Zagros Mountains in southwest Iran (Fig. 8). It is located between 49° 53′ 00″ and 51° 53′ 00″ E lon-
gitudes and 29° 56′ 00″ and 31° 27′ 00″ N latitudes, and altitude from 109 to 4294 m, and has an average annual 
rainfall of 550.7 mm and the average temperature is between 15 and 26 °C. Plains constitute approximately 20% 
of province. The highest point in the province is Dena Mountain (4294 m above sea level); the lowest point is 
in the southwest, in the city of Gachsaran, (109 m above sea level. The difference in elevation between the more 
elevated northeastern part of the province and the southern and southwestern parts results in two different cli-
matic regimes. The former region is cooler and drier than the  latter59.

Preparation of inventory maps. Based on experience and expert opinion, we consider the four main 
hazards in the study area to be forest fires, flooding, earthquakes, and gully erosion. In this study, we identified 
the locations of these four hazard types using Google Earth images and a field survey supported by a global posi-

Figure 5.  Multi-hazard map.
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tioning system (GPS). In this study, floods were investigated in 2000. Training and test data were prepared from 
2000 to 2020. In addition, data from 2019 and 2020 were extracted using Sentinel satellite imagery. However, in 
the article, we only mentioned the data for 2019 and 2020; therefore, more details were added. Areas affected by 
these events were identified using the Google Earth Engine (GEE) and high-resolution Sentinel-1 and -3 images. 
We identified forest fire locations for the period 2015–2020 based on the GEE images. The codes were written 
in the GEE environment (https:// earth engine. google. com). We randomly split the flood, gully erosion, and for-
est fire locations into two groups: a model training dataset with 70% of the locations, and a validation dataset 
with 30% of the  locations60. The earthquake map was created from the epicenters and magnitudes of historic 
earthquakes provided by S.A.P. Consulting Engineers Co the Kohgiluyeh and Boyer-Ahmad Deputy Governor 
of Planning (www. sabza ndish. com).

Effective factors for multi‑hazard assessment. The first step in mapping and assessing natural hazards 
is to choose the appropriate control variables. Based on data availability and past  experience61–66, we employed 19 
effective factors in this study: elevation, slope, aspect, mean annual rainfall, mean annual temperature, lithology, 
land use, normalized difference vegetation index (NDVI), soil texture (percent clay, silt, and sand), wind expo-
sure index, topographic wetness index (TWI), plan curvature, profile curvature, drainage density, distance from 
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roads, distance from rivers, and distance from villages (Table 2). These factors were rasterized with a 30 × 30 m 
pixel size in the ArcGIS 10.8 platform and are briefly described below.

Elevation. Elevation is widely used as a controlling factor in natural hazard  assessments27, 67. In this study, we 
used elevation factors in the preparation of flood, forest fire, and gully erosion maps. An elevation layer was 
prepared from ASTER satellite images (https:// earth explo rer. usgs. gov/) (Fig. 9a).

Slope angle. The slope angle is an important contributing factor in flooding, forest fires, and gully  erosion68, 69. 
In the case of forest fires, fire spreads more rapidly on steep slopes than on gentle  ones70. In contrast, with all 
other things being equal, the likelihood of flooding increases with a decrease in slope, and flat and gently sloping 
ground in the study area is more prone to gully erosion than steep  slopes58. A slope-angle layer was derived from 
DEM in ArcGIS 10.8. The slopes ranged from 0° to 78° (Fig. 9b).

Slope aspect. Sunlight, humidity, and temperature are affected by slope aspect; thus, aspect can be an important 
factor in the occurrence of floods, forest fires, and gully erosion. Eastern slopes in the study area receive sunlight 
earlier than western aspects, and therefore are more fire-prone20. The slope aspect has also been shown to be 
related to gully erosion through weathering  mechanisms17, 71. We divided the aspect into nine classes: flat, north, 
northeast, northwest, southwest, west, east, south, and southeast (Fig. 9c).

Rainfall. Rainfall has been widely used as a factor in multi-hazard spatial  modelling17, 72. Low rainfall in for-
ested areas makes these areas susceptible to  wildfire72, 73, whereas extreme rainfall triggers  flooding74 and gully 
 erosion58. We prepared a rainfall layer in the ArcGIS 10.8 using data for the period 2001–2020 from nine weather 
stations in Kohgiluyeh and Boyer-Ahmad Province (Fig. 9d). A temperature map was obtained using the IDW 
 interpolation75, 76.

Temperature. All other things being equal, high temperatures, and a lack of rainfall rapidly dry soil, making 
forests in environments prone to  wildfire77. In the study area, temperature and humidity seem to be stronger 
controls for forest fires in higher parts of the province than lower  ones78. We produced an average annual tem-
perature layer based on climate data from nine stations during the period 2001–2020 (Fig. 9e). A rainfall map 
was created through interpolation using the IDW  method79.

Normalized difference vegetation index. The normalized difference vegetation index (NDVI) provides a meas-
ure of vegetation  health80 and is thus an important factor in forest fire, gully erosion, and flood susceptibility 
assessments. We calculated the NDVI from a Sentinel-2 satellite image in Google Earth Engine using the fol-
lowing equation:

(2)NDVI = (NIR − RED)/(NIR + RED)

Figure 8.  Location of the Kohgiluyeh and Boyer-Ahmad Province in Iran.

https://earthexplorer.usgs.gov/
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where NIR and RED refer to the near-infrared and red bands, respectively (Fig. 9f).

Lithology. Rock permeability, which is related to lithology, may affect flood  susceptibility28, 81–83 and gully 
 erosion5. We obtained a geology map from the Geological Survey of Iran and produced a layer of 14 units in the 
ArcGIS 10.8 (Fig. 9g).

Land use. Land use changes, including deforestation and grazing, can initiate or exacerbate gully  erosion30, 84–86, 
and bare lands are more susceptible to floods than naturally vegetated  ones71. Therefore, we considered land use 
as a factor in the preparation of forest fire and flood maps. The land-use layer has 10 classes: agriculture, bare 
land, forest, mixture (agriculture and orchard), orchard, range land, rocky land, urban, water body, and wood-
lands (Fig. 9h). The land use map (with an accuracy of 91% prepared by the support vector machine (SVM) 
method) was obtained using the Landsat-8 (2019) satellite imagery.

Soil texture. A soil texture is considered one of the main factors in gully  erosion87. We used data and guide-
lines provided by the World Soil Information Service (WoSIS, http:// soilg rids. org) to prepare the soil layer in 
the ArcGIS 10.8. The SoilGrids map is a global digital soil mapping system that employs new machine learn-
ing techniques to map the spatial distribution of soil properties. The SoilGrids maps are available with a spa-
tial resolution of 250 m. The SoilGrids maps are generated using more than 230,000 soil profile observations 
from the WoSIS database and over 400 environmental layers of Earth observation and other environmental data 
such as climate, land cover, and land morphology (https:// www. isric. org/ explo re/ soilg rids). The WoSIS database 
includes typical soil features for each soil  group88. We defined soil texture in the study area using three percent-
age classes as proxies: clay, silt, and sand (Fig. 9i,j,k).

Wind exposition index. The wind exposition index (WEI) is a non-dimensional index used to quantify wind 
exposure at the land  surface89. It takes into account the wind direction, angle of the surface earth to the horizon, 
and wind  aspect90. Values larger than 1 indicate wind-exposed cells, and values less than 1 correspond to wind-
shadowed  cells91. WEI was computed from the DEM using the SAGA-GIS software (http:// www. saga- gis. org/ 
en/ index. html) (Fig. 9l).

Topographic wetness index. The topographic wetness index (TWI) is a measure of the likelihood that surface 
water will move  downslope92, 93 and is used in flood, forest fire, and gully erosion assessments. TWI was calcu-
lated from ASTER imagery using the SAGA GIS software (Fig. 9m).

Plan curvature. Plan curvature is the curvature of an isoline constructed from the junction of a horizontal 
plane and the land  surface94, 95. This factor was considered in flood and gully erosion evaluations. A plan curva-
ture layer was derived from the DEM using the spatial analysis extension (curvature tool) in ArcMap (Fig. 9n).

Table 2.  The effective factors for MHA.

Effective factor Flood Forest fire Gully erosion

Elevation * * *

Slope * * *

Aspect * * *

Mean annual rainfall * * *

Mean annual temperature *

Lithology * *

Land use * *

NDVI * * *

Soil texture (clay) *

Soil texture (silt) *

Soil texture (sand) *

Wind exposition index *

TWI * * *

Plane curvature * *

Profile curvature *

Drainage density * *

Distance from roads * * *

Distance from rivers * * *

Distance from villages *

http://soilgrids.org
https://www.isric.org/explore/soilgrids
http://www.saga-gis.org/en/index.html
http://www.saga-gis.org/en/index.html
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Figure 9.  Maps of hazard factors used in this study.
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Figure 9.  (continued)
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Figure 9.  (continued)
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Profile curvature. The profile curvature is a measure of the curvature of the slope surface. It controls surface 
and groundwater movement, and thus is a metric for flow velocity and  erosion94, 96. The profile curvature layer 
was constructed from the DEM in the ArcGIS 10.8 platform using a curvature tool (Fig. 9o). Negative and posi-
tive values indicate the concave and convex surfaces, respectively.

Drainage density. Drainage density (DD) is controlled by precipitation, geology, vegetation, slope, and soil, 
and is a factor in gully erosion and flood assessments. Drainage density scales with runoff and therefore may be 
an indicative factor for gully  erosion97, 98. The drainage density layer was created from the rivers and streams in 
ArcGIS 10.8 using density tools (Fig. 9p).

Distance from roads. Distance from roads is important in flood, forest fire, and gully erosion assessments. In 
forest areas, the risk of fire increases with proximity to  roads21, and gully erosion, especially in bare terrain, might 
be related to this  variable99. The distance from roads was quantified using vector line distances calculated using 
the Euclidean distance method in ArcGIS 10.8 (Fig. 9q).

Distance from rivers. The probability of flooding is related to the distance from a river, especially for rivers with 
low storage  capacity100. In addition, most people in the study area live near rivers; thus, there is a higher likeli-
hood of forest fires in these  areas101. Gully erosion in the study area is also the greatest near  rivers102. The distance 
from the river layer was determined using the Euclidean distance tool in ArcGIS 10.8 (Fig. 9r).

Distance from villages. Distance from villages, such as distance from rivers, may be related to the probability of 
forest fires, as most wildfire events are human-caused  events103, 104. Figure 9s shows the distance from the village 
layer produced in ArcGIS 10.8. This factor was not used in flood and gully erosion assessments.

Multi‑hazard spatial modelling. Boosted regression tree. The boosted regression tree (BRT) algorithm 
is a machine learning method based on the use of classification and regression trees in combination with a boost-
ing  algorithm105. Its purpose is to improve the performance of a single model by fitting and combining a large 
number of models for  prediction106. It can be used to predict quantitative (regression tree) or categorized (clas-
sification tree) outcomes. In this study, the regression tree model is reinforced by assessing logical conditions, 
rather than a linear relationship, to predict or classify landforms. When using the BRT model, there is no need to 
predetermine the function forms or make statistical assumptions about the data distribution. Other advantages 
include the ability to make multiple predictions and determine their possible nonlinear relationships with the 
response  variable107, the high speed of the model in analyzing large volumes of data, and its high capacity to 
analyze and classify layers. The algorithm depends on the setting options related to the reinforced trees and tree 
pruning. In the case of options related to reinforced trees, an important parameter is the reduction rate as a net 
weight for individual and reinforced trees. Optimizing the best reduction rate is also important for preventing 
overfitting of the predictions. Previous studies have shown that models with a reduction rate of 0.1 or less per-
form  best108. The best parameters are selected based on an evaluation of their results using statistical evaluation 
metrics (RMSE and bias). In this study, the regression trees were programmed using R 3.5.3 statistical software 
(https:// cran.r- proje ct. org/ bin/ windo ws/ base) with a BRT extension (see Elith et al.109 for details).

Support vector machine. The support vector machine (SVM) is a supervised learning method used for 
classification and regression. It was proposed in 1995 based on statistical learning theory using structural risk 
 minimization110. It has been widely used in recent years as it performs better than older classification methods 
such as perceptron neural  networks111. The SVM classifier works by linearly classifying data; in segmenting the 
data, it selects the most reliable  boundary110. The closest samples to the decision boundary, which determine 
the decision boundary equation, are termed support  vectors112. The principle of structural risk minimization is 
applied to maximize the distance between two transient hyperplanes formed from support  vectors113. SVM per-
forms better on non-modeled data than the experimental risk-minimization mode, which attempts to minimize 
the training error. Four types of kernel functions (linear, polynomial, sigmoid, and radial basis) can be used to 
prepare multi-hazard maps using the SVM algorithm. We used the radial basis function in this study because of 
its better performance than other  functions114–116. The SVM algorithm was programmed in the R3.5.3 statistical 
software with the sdm  package117.

Random forest. The random forest (RF) algorithm is a widely used hybrid machine learning algorithm that 
includes regression and classification  trees118. The data used by the RF algorithm do not need to be changed, 
converted, or modified, and the algorithm controls the lost values  automatically119. Random trees classify the 
input vector with each tree in the forest; the output is the class tag that receives the majority of votes. Two factors 
(the mean decrease in accuracy and the mean decrease in Gini) are used to determine the priority of the effect 
of each effective  factor120. We implemented the RF model using the R3.5.3 statistical software with the random 
forest  package121.

Probabilistic seismic hazard analysis. Probabilistic seismic hazard analysis (PSHA) is a method used 
to determine the probability that a location will experience severe ground movements during an earthquake 
of a particular magnitude. The numerical-analytical method for PSHA was first proposed in  1968122 and has 
improved since then. Relevant seismic parameters include earthquake magnitude, return period, epicentral and 
source distances, and peak ground  acceleration123. Different scales are used to quantify seismic magnitude, such 

https://cran.r-project.org/bin/windows/base
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as moment, surface wave, volume wave, local, and torque magnitudes. One type of PSHA, the deterministic seis-
mic hazard analysis (DSHA), determines the maximum kinetic parameters of the ground surface in a scenario 
earthquake, which is described by its magnitude and source  distance124, 125. The scenario earthquake is expected 
to produce the greatest ground motion, such as peak ground acceleration (PGA), at the site if it were to  occur126. 
We used this method to assess built structures whose destruction would have catastrophic consequences, such 
as nuclear power plants and large dams. It does not provide information on the probability of a scenario earth-
quake, its exact location, or the duration of severe ground motions. Uncertainties in determining the magnitude 
and source distance of an earthquake are typically combined to calculate the probability of exceedance of a 
specified PGA in a certain period of time. In this study, a peak horizontal acceleration map was created for an 
earthquake with a 10% probability of occurrence in 50 years (the time series 1965–2015) and an average return 
period of 75  years127.

Multi‑hazard mapping. A multi-hazard map was constructed from the maps of flood hazard (FH), forest 
fire hazard (FFH), gully erosion hazard (GEH), and peak ground acceleration (PGA). The BRT, SVM, and RF 
algorithms were first used to create flood, gully erosion, and forest fire maps. Then, the results of the three algo-
rithms were compared to select the algorithm with the best performance. Next, a PGA map was produced using 
PSHA. Each hazard was mapped using four groups—low, moderate, high, and very high—and subsequently 
reclassified into two groups: 0 and 1. Class 1 indicates high to very high hazard susceptibility, whereas class 0 
indicates low and moderate susceptibility. Finally, the two-class maps for three hazards (forest fire, flood, and 
gully erosion) and the PGA map were integrated into a final multi-hazard map for the study area.

Model validation. Validation of multi-hazard models is required to evaluate their accuracy and  value128. In 
this study, we used the receiver operating characteristic (ROC) curve to assess the model’s predictive power. The 
ROC plot has two axes: the x-axis depicts the false-positive rate and the y-the-true-positive rate. The value of the 
area under the curve (AUC) ranges from 0.5 to 1.0129, 130, and the higher the AUC value, the greater the predic-
tion  accuracy128, 131. A ROC curve was created for each map using both the training and validation datasets. As 
mentioned previously, 70% of the hazard locations were used for model training and 30% for model validation.

Prioritizing effective factors. We employed the mean decrease accuracy (MDA) and mean decrease Gini 
(MDG) to determine the priority factors for natural hazard occurrences in the study area. The variance infla-
tion factor (VIF) and tolerance coefficient (TOL) were first computed to check for multicollinearity. Variables 
with values of VIF ≥ 5 and TOL < 0.1 indicate a multicollinearity  problem132. We then determined the relative 
importance of these factors. According to  Nicodemus133, the Gini index is more stable than the in-mean decrease 
for determining the priority of effective factors, especially in situations where there is a relationship between 
environmental factors. The mean decrease Gini (MDG) is defined as the sum of the Gini impurities decreasing 
from a specific variable normalized by  trees120. Therefore, we also used MDG to determine the priority factors 
in this study.

Data availability
The data used in this study are available upon request to the corresponding author for reasonable use in research. 
All figures draw by the authors using R 3.5.3 statistical software (https:// cran.r- proje ct. org/ bin/ windo ws/ base), 
SAGA-GIS software (http:// www. saga- gis. org/ en/ index. html), and ArcGIS 10.8 environment (https:// www. esri. 
com).
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