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Targeted metabolomics identifies 
high performing diagnostic 
and prognostic biomarkers 
for COVID‑19
Yamilé López‑Hernández1,2*, Joel Monárrez‑Espino3*, Ana‑Sofía Herrera‑van Oostdam4, 
Julio Enrique Castañeda Delgado1,5, Lun Zhang6, Jiamin Zheng6, Juan José Oropeza Valdez5, 
Rupasri Mandal6, Fátima de Lourdes Ochoa González5,7, Juan Carlos Borrego Moreno8, 
Flor M. Trejo‑Medinilla2,7, Jesús Adrián López9, José Antonio Enciso Moreno5 & 
David S. Wishart6

Research exploring the development and outcome of COVID‑19 infections has led to the need to find 
better diagnostic and prognostic biomarkers. This cross‑sectional study used targeted metabolomics 
to identify potential COVID‑19 biomarkers that predicted the course of the illness by assessing 110 
endogenous plasma metabolites from individuals admitted to a local hospital for diagnosis/treatment. 
Patients were classified into four groups (≈ 40 each) according to standard polymerase chain reaction 
(PCR) COVID‑19 testing and disease course: PCR−/controls (i.e., non‑COVID controls), PCR+/not‑
hospitalized, PCR+/hospitalized, and PCR+/intubated. Blood samples were collected within 2 days 
of admission/PCR testing. Metabolite concentration data, demographic data and clinical data were 
used to propose biomarkers and develop optimal regression models for the diagnosis and prognosis of 
COVID‑19. The area under the receiver operating characteristic curve (AUC; 95% CI) was used to assess 
each models’ predictive value. A panel that included the kynurenine: tryptophan ratio, lysoPC a C26:0, 
and pyruvic acid discriminated non‑COVID controls from PCR+/not‑hospitalized (AUC = 0.947; 95% CI 
0.931–0.962). A second panel consisting of C10:2, butyric acid, and pyruvic acid distinguished PCR+/
not‑hospitalized from PCR+/hospitalized and PCR+/intubated (AUC = 0.975; 95% CI 0.968–0.983). Only 
lysoPC a C28:0 differentiated PCR+/hospitalized from PCR+/intubated patients (AUC = 0.770; 95% CI 
0.736–0.803). If additional studies with targeted metabolomics confirm the diagnostic value of these 
plasma biomarkers, such panels could eventually be of clinical use in medical practice.

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), first identified in China in December 2019, 
is responsible for the coronavirus disease outbreak (COVID-19)1. One year after the pandemic was declared, the 
infection has caused nearly 2.5 million deaths  worldwide2. In spite of significant efforts undertaken by govern-
ment and health authorities to contain the spread, the virus continues to wreak havoc around the world.

Since COVID-19 can lead to multi-organ dysfunction, disease severity is not only the result of pathogen 
 burden3, but also the consequence of the host’s immune response to the infection. It is well known that viruses 
hijack the host cell machinery for self-replication, as they compete for nutrients and other metabolites to satisfy 
their bioenergetic and biosynthetic requirements. This metabolic hijacking can lead to an alteration of the host’s 
 metabolome4. In fact, a number of metabolic pathways have already been found to be consistently altered (gly-
colysis, fatty acid synthesis, glutaminolysis, pyrimidine metabolism, and tryptophan/kynurenine metabolism) in 
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many viral infections (cytomegalovirus, hepatitis C, herpes simplex, chikungunya, and dengue). These alterations 
in metabolic pathways leading to subsequent changes in metabolite  concentrations5.

In the early phase of the pandemic, COVID-19 diagnosis faced many technical and logistic difficulties due to 
the poor sensitivity and specificity of some of the diagnostic techniques  used6. However, since then more reliable 
point-of-care diagnostic, therapeutic, and prognostic tools have been developed and implemented. Unfortunately, 
there are essentially no tests that can be reliably stage or predict/prognose the outcome or the severity of the dis-
ease. Given the wide range of outcomes (asymptomic disease to death, rapid recovery to long-haul morbidities) 
it is important that better algorithms for disease staging, and better prognostic tests be developed. Ideally, what 
is needed is a test that can rapidly and accurately: (a) distinguish COVID-19 positive from COVID-19 negative 
patients (despite similar symptoms); (b) prognose or predict those who will develop mild COVID-19 symptoms 
vs. those who will develop severe COVID-19 symptoms; and (c) distinguish those with severe-COVID who will 
recover and those who will die. It is in this context that we believe metabolomics could play a valuable role in 
identifying potential disease staging or prognostic biomarkers that could be applied in clinical practice to assist 
medical decisions throughout the patients’ care journey.

Studies with COVID-19 patients using untargeted or targeted metabolomics have consistently shown 
increased levels of glucose, free fatty acids, sphingomyelins and triglycerides, as well as changes in serum tryp-
tophan  metabolism7–12. As a result, various potential diagnostic and prognostic biomarkers have been proposed. 
For instance, Barberis et al.12 proposed the use of seven lipids and eight non-lipid metabolites in plasma to dis-
criminate COVID-19 patients from healthy individuals, with a receiver operating characteristic (ROC) area under 
the curve (AUC) ˃ 0.90 for such model. Similarly, Song et al.13 also proposed a panel of ten plasma metabolites 
to distinguish COVID-19 patients from healthy controls with an AUC ˃ 0.90. On the other hand, Fraser et al.14 
reported that plasma kynurenine and the arginine: kynurenine ratio gave a 98% classification accuracy (p = 0.005) 
to distinguish COVID-19 positive from COVID-19 negative patients, while creatinine and the creatinine: argi-
nine ratio gave a 100% accuracy when predicting COVID-19 mortality (p = 0.01). More recently, Danlos et al.15 
found at least 77 metabolites including amino acids, lipids, polyamines and sugars, as well as their derivatives, 
that were altered in critical COVID-19 patient’s plasma as compared to mild COVID-19  patients15. As general 
findings among the published works up to now conducted in different populations, it seems that the SARS-CoV-2 
virus led to stimulated systemic inflammatory and reduced liver synthesis capacity in COVID-19  subjects16. 
Plasma metabolomics reflect the disturbed amino acid metabolism and increased levels of acylcarnitine related 
metabolites, as consequence of the impaired fatty acid oxidation, also demonstrated by Wu et al.17 and Li et al.18. 
However, given the small size of these studies and the lack of follow-up validation studies, much more still needs 
to be done to produce useful and validated biomarkers that could adequately serve the medical community.

The study described here used targeted metabolomics to identify potential biomarkers to: (a) distinguish 
COVID-19 negative from COVID-19 positive patients with mild disease; (b) prognose or predict those who 
will develop mild COVID-19 symptoms vs. those who will develop severe COVID-19 symptoms; (c) prognose 
those severe COVID-19 patients who will be intubated; and (d) find a metabolite panel can distinguish those 
with severe COVID-19 who will recover and those who will die. We proposed different biomarker panels based 
on metabolites-only and metabolites plus demographic/clinical data with high predictive values. This was done 
by assessing 110 endogenous metabolites in plasma collected from individuals admitted to a local hospital for 
initial diagnosis/treatment of a presumptive COVID-19 infection. Patients were classified into four groups (≈ 40 
each) according to standard polymerase chain reaction (PCR) COVID-19 testing and disease course/outcomes: 
G1 (PCR−/controls), G2 (PCR+/not hospitalized), G3 (PCR+/ hospitalized), and G4 (PCR+/intubated). This 
classification was used as a surrogate of disease severity. Blood samples were collected simultaneously with the 
nasopharyngeal sampling, within 2 days of time of admission and prior to any knowledge of the COVID-19 
diagnosis or disease outcome. Metabolites were measured using a locally developed LC–MS/MS metabolomics 
assay called The Metabolomics Innovation Centre (TMIC) Prime (TMIC PRIME®) Assay. This assay was adapted 
to work with plasma using a similar quantitative assay developed for  urine19. TMIC PRIME® provides quantita-
tive results for up to 143 endogenous metabolites, including biogenic amines, amino acids, organic acids and 
lipid-like compounds.

Results
Patients. Table 1 describes the study population stratified according to our COVID-19 severity classifica-
tion. There was a higher proportion of males in groups 2 and 3 (57%), but especially in group 4 (62%), compared 
with group 1 (45%). The median age was also notably higher in groups 2–4 (53–58 years) compared with that 
of group 1 (41 years). General and respiratory symptoms of COVID-19 infection tended to be more prevalent 
as the group number increased. Diabetes, obesity and hypertension were also more prevalent among patients 
from groups 3 and 4, with group 4 patients having an incidence of these three conditions of 27.5%, 32.5% and 
50%, respectively. Laboratory data also tended to reflect the severity of the disease according to the group cat-
egorization, with higher levels of neutrophilia, lymphopenia, and hyperglycemia among patients in the higher 
group numbers. The median time from symptoms onset to sampling was higher in group 4 (5 days) than in 
group 3 (3 days). Also, the median time to discharge was higher in group 4 (14 days). From the total number of 
COVID-19 patients (122 patients), 32.8 % required mechanical ventilation. From this group, 63.8 % of patients 
died. Based on the confirmed data available in medical files at the moment of the present manuscript, 46% of the 
hospitalized patients did not survive. Supplementary Table 1 describes some relevant clinical data from survivors 
and non-survivors from the groups 3 and 4.

Models to distinguish COVID‑19 negative from COVID‑19 positive patients with mild dis‑
ease. The metabolomics comparison between G1 and G2 is shown in Fig 1. Multivariate PLS-DA showed two 
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defined clusters for groups 1 and 2 (accuracy = 0.88,  R2 = 0.86,  Q2 = 0.5, permutation test: p < 0.0001) (Fig. 1a); 
lysoPC a C26:0, kynurenine: tryptophan ratio, lysoPC a C28:0, and propionic acid had the highest scores driving 
the cluster separation (Fig. 1b). The ROC curve for demographic/clinical data model (discovery set) with 95% 
confidence interval (CI) is shown in Fig. 1c. The AUC, sensitivity and specificity values with 95% CI are shown 
in Table 2. A logistic regression model was then built with the following equation: log(P/(1 − P)) = − 0.098 − 1.22 
age + 0.722 lymphocytes (%), where the numeric value of each named metabolite in the equation is the concen-
tration after log transformation and auto-scaling.

Table 1.  Baseline characteristics of non-COVID-19 and COVID-19 patients at admission. Continuous 
variables were compared using Mann–Whitney U tests or Kruskal–Wallis tests and categorical variables (sex, 
smoking, death, symptoms, and comorbidities) were compared using the chi-square test for trend, with p 
values of less than 0.05 considered statistically significant. The analyses were conducted using GraphPad Prism 
version 8.0.1 for Windows (GraphPad Software, La Jolla California USA). a G1 vs. G2; G1 vs. G3; G1 vs. G4. 
b G1 vs. G4. c G1 vs. G4; G2 vs. G3; G2 vs. G4. d G1 vs. G3; G1 vs. G4; G2 vs. G3; G2 vs. G4. e G1 vs. G3; G1 
vs. G4; G2 vs. G4. 1 G1: PCR−/controls, G2: PCR+/not hospitalized, G3: PCR+/hospitalized, and G4: PCR+/
intubated. 2 The number (n) is referred to the confirmed data based on clinical and epidemiological records and 
supported by death certificate.

Variables G1 (N = 39) G2 (N = 40) G3 (N = 42) G4 (N = 40) p value

Male sex, n (%) 18 (45.0) 23 (57.5) 24 (57.1) 25 (62.5) 0.4

Age, median years (Q1–Q3) 41 (37–53) 58 (51–63) 53 (47–61) 58 (49–62) < 0.0001a

Smoking, n (%) 4 (10.0) 3 (7.5) 6 (14.3) NA 0.1

Symptoms to sampling, median days (Q1–Q3) 2 (1–5) 3 (1–3) 3 (1–5) 5 (2–7) 0.01b

Sampling to discharge, median days (Q1–Q3) NA NA 4 (1–10) 14 (7–21) 0.002

Sampling to death, median days (Q1–Q3) NA NA 17 (14–25) 10 (6–18) 0.1

Death2, n (%) NA NA 11/36 (30.5) 21/33 (63.6) < 0.0001

Symptomatology, n (%)

Fever 0 (0) 22 (55.0) 25 (59.5) 25 (62.5) < 0.0001

Cough 0 (0) 28 (70.0) 34 (80.9) 36 (90.0) < 0.0001

Headache 29 (72.5) 30 (75.0) 24 (57.1) 25 (62.5) 0.2

Dyspnoea 5 (12.5) 12 (30.0) 38 (90.4) 31 (77.5) < 0.0001

Irritability 3 (7.5) 2 (5.0) 3 (7.1) 2 (5.0) 0.9

Diarrhea 2 (5.0) 4 (10.0) 7 (16.6) 7 (17.5) 0.2

Chest tightness 2 (5.0) 6 (15.0) 16 (38.0) 11 (27.5) 0.001

Chills 5 (12.5) 14 (35.0) 17 (40.4) 16 (40.0) 0.02

Pharyngalgia 17 (42.5) 14 (35.0) 14 (33.3) 18 (45.0) 0.6

Myalgia 15 (37.5) 21 (52.5) 23 (54.7) 23 (57.5) 0.2

Arthralgias 11 (27.5) 22 (55.0) 22 (52.3) 21 (52.5) 0.04

Rhinorrhea 6 (15) 8 (20.0) 7 (16.6) 6 (15.0) 0.9

Polypnea 1 (2.5) 0 (0) 7 (16.6) 7 (17.5) 0.006

Abdominal pain 4 (10) 3 (7.5) 2 (4.7) 8 (20.0) 0.1

Anosmya 0 (0) 10 (25.0) 10 (23.8) 3 (7.5) 0.001

Dysgeusia 0 (0) 10 (25.0) 9 (21.4) 5 (12.5) 0.007

Treatment (self-reported)

Antipyretics, n (%) 4 (10.2) 12 (30) 11 (26.2) 13 (32.5) 0.04

Others, n (%) 0 (0) 0 (0) 0 (0) 0 (0) –

Comorbidities (self-reported), n (%)

Diabetes 3 (7.5) 4 (10.0) 18 (42.8) 11 (27.5) 0.0002

Obesity (> 30 kg/m2) 3 (7.5) 8 (20.0) 10 (23.8) 13 (32.5) 0.05

Hypertension 9 (22.5) 10 (25.0) 15 (35.7) 20 (50.0) 0.03

Lab data, median (Q1–Q3)

Erythrocytes (million/mL) 5.1 (4.8–5.5) 5.3 (4.9–5.6) 5.1 (4.7–5.5) 5.3 (4.6–5.6) 0.81

Hemoglobin (g/dL) 15.4 (14.4–16.3) 15.3 (14.0–16.1) 15.0 (12.9–16.6) 15.6 (13.4–16.4) 0.81

Platelets (thousands/mL) 277 (238–330) 237 (191–317) 237 (187–283) 252 (187–299) 0.7

Leukocytes (×  103) 7.1 (6.0–8.2) 6.5 (5.0–8.4) 9.1 (6.5–10.8) 9.3 (6.3–12.2) 0.0005c

Neutrophils (%) 60 (54–65) 67 (55–79) 82 (74–88) 85 (77–91) < 0.0001d

Lymphocytes (%) 30 (25–36) 23 (13–34) 12 (7–18) 9 (5–12) < 0.0001d

Neutrophil–lymphocyte ratio (NLR) 2.0 (1.5–2.5) 2.5 (1.5–4.2) 6.6 (3.9–10.7) 7.8 (5.0–14.6) < 0.0001d

Monocytes (%) 6 (5–8) 6 (4–9) 3 (2–6) 3 (2–5) < 0.0001e
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The ROC curve for metabolite-only model (discovery set) with 95% confidence interval (CI) is shown in 
Fig. 1d. The AUC, sensitivity and specificity values with 95% CI are shown in Table 2. A logistic regression 
model was then built with the following equation: logit(P) = log(P/(1 − P)) = − 0.444 − 2.599 kynurenine/tryp-
tophan − 1.483 lysoPC a C26:0 − 1.142 pyruvic acid, where the numeric value of each named metabolite in the 
equation is the concentration after log transformation and auto-scaling.

When sex and neutrophil count (%) were added to the model (Fig. 1e), the AUC was slightly superior 
to the metabolite-only model (Table 2). The equation for the logistic regression model is: logit(P) = log(P/
(1 − P)) = − 0.874 − 3.659 kynurenine/tryptophan − 2.168 lysoPC a C26:0 − 1.703 pyruvic acid + 1.05 sex + 1.179 
neutrophils (%). Age and lymphocyte counts did not significantly contribute when combined to metabolite 
measurements in the logistic regression model.

Additional details for demographic/clinical data, metabolite-only and metabolite + demographic/clinical data 
models are shown in Supplementary Table 2.

Models to prognose or predict those who will develop mild COVID‑19 symptoms vs. those who 
will develop severe COVID‑19 symptoms. In our study, G3 and G4 were hospitalized patients, classified 
as patients with severe disease based on arterial oxygen tension  (PaO2)/fractional inspired oxygen  (FiO2) ratio 
< 100 at the moment of admission. Figure 2 shows the results of comparisons between patients who developed 
a mild disease and were not hospitalized (G2) and patients that developed severe disease and were hospitalized 
(G3 + G4). Multivariate PLS-DA showed a clear separation between both groups (Fig. 2a); C10:2, pyruvic acid, 
C5 and butyric acid had the highest scores diving the cluster separation (Fig. 2b). The ROC curve with a 95% CI 
for demographic/clinical data model is shown in Fig. 2c. The AUC, sensitivity and specificity values with 95% 
CI are shown in Table 2. A logistic regression model was then built with the following equation: logit(P) = log(P/
(1 − P)) = 1.089 − 2.36 lymphocytes (%) + 2.226 neutrophils (%) − 0.952 diabetes, where the numeric value of each 
named metabolite in the equation is the concentration after log transformation and auto-scaling.

Figure 1.  Multivariate analysis from plasma metabolome profile of G1 versus G2 patients. (a) Score scatter 
plot based on the PLS-DA models to explain the diagnosis (green for G1 and yellow for G2; (b) rank of the 
different metabolites (the top 15) identified by the PLS-DA according to the VIP coefficient on the x-axis. The 
most discriminating metabolites are shown in descending order of their coefficient scores. The color boxes 
indicate whether metabolite concentration is increased (red) or decreased (blue) in G1 vs G2; (c) ROC curve 
of the demographic/clinical data model; (d) ROC curve of the metabolite-only model; (e) ROC curve of the 
metabolite + demographic/clinical data model. The figures were drawn via MetaboAnalyst software v 4.0 
(https:// www. metab oanal yst. ca/).

https://www.metaboanalyst.ca/
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The ROC curve with a 95% CI for metabolites only-model is shown in Fig. 2d. The AUC, sensitivity and speci-
ficity values with 95% CI are shown in Table 2. A logistic regression model was then built with the following equa-
tion: logit(P) = log(P/(1 − P)) = 2.066 + 5.209 C10:2 + 1.948 butyric acid − 2.232 pyruvic acid, where the numeric 
value of each named metabolite in the equation is the concentration after log transformation and auto-scaling.

When lymphocytes plus neutrophils counts (%) were added to the model (Fig. 2e), the AUC and specificity 
improved with respect to that of metabolite-only model (Table 2). The equation of the logistic regression model 
with metabolites and clinical data is: logit(P) = log(P/(1 − P)) = 2.34 + 6.549 C10:2 + 2.516 butyric acid − 2.479 
pyruvic acid + 2.166 neutrophils (%) − 2.945 lymphocytes (%).

Additional details for demographic/clinical data, metabolite-only and metabolite + demographic/clinical data 
are shown in Supplementary Table 3.

Models to prognose those severe COVID‑19 patients who will be intubated. Forty patients were 
intubated in our study based on  PaO2/FiO2 and their clinical conditions at the time of admission. However, 

Table 2.  The AUC, Sensitivity and Specificity with 95% confidence intervals (CI) of each predictive panel of 
plasma metabolites (metabolites-only and metabolites plus demographic/clinical data models) for COVID-
19. G1: PCR−, controls, G2: PCR+, not hospitalized; G3: PCR+, hospitalized, G4: PCR+, intubated, G3 + G4: 
severe patients. *Variables were not significant to be included in the model.

Predictive models AUC, 95% CI Sensitivity, 95% CI Specificity, 95% CI

G1 vs G2

Demographic/clinical data

 Age + lymphocyte (%)
0.825 (0.794–0.856)a 0.830 (0.791–0.870)a 0.736 (0.691–0.782)a

0.797 (0.694–0.900)b 0.816 (0.816–0.939)b 0.725 (0.587–0.863)b

Metabolites-only

 Kynurenine/tryptophan + lysoPC a C26:0 + pyruvic acid
0.947 (0.931–0.962)a 0.865 (0.829–0.902)a 0.897 (0.866–0.929)a

0.922 (0.863–0.981)b 0.868 (0.868–0.976)b 0.900 (0.807–0.993)b

Metabolites + demographic/clinical data

 Kynurenine/tryptophan + lysoPC a C26:0 + pyruvic acid + sex + neu-
trophil (%)

0.971 (0.960–0.981)a 0.930 (0.903–0.957)a 0.894 (0.863–0.926)a

0.924 (0.861–0.986)b 0.895 (0.895–0.992)b 0.875 (0.773–0.977)b

G2 vs G3 + G4

Demographic/clinical data

 Lymphocytes (%) + neutrophils (%) + diabetes
0.855 (0.833–0.877)a 0.748 (0.717–0.779)a 0.808 (0.768–0.849)a

0.826 (0.749–0.904)b 0.756 (0.756–0.849)b 0.800 (0.676–0.924)b

Metabolites only

 C10:2 + butyric acid + pyruvic acid
0.975 (0.968–0.983)a 0.962 (0.948–0.976)a 0.872 (0.838–0.907)a

0.967 (0.938–0.996)b 0.951 (0.951–0.998)b 0.875 (0.773–0.977)b

Metabolites + demographic/clinical data

 C10:2 + butyric acid + pyruvic acid + lymphocytes (%) + neutrophils 
(%)

0.989 (0.985–0.993)a 0.881 (0.857–0.904)a 0.967 (0.948–0.985)a

0.975 (0.953–0.997)b 0.878 (0.878–0.949)b 0.925 (0.843–1.000)b

G3 vs G4

Demographic/clinical data

 NLR
0.653 (0.614–0.692)a 0.644 (0.595–0.694)a 0.598 (0.548–0.647)a

0.624 (0.501–0.747)b 0.650 (0.650–0.798)b 0.619 (0.472–0.766)b

Metabolites only

 LysoPC a 28:0
0.770 (0.736–0.803)a 0.800 (0.759–0.841)a 0.638 (0.589–0.686)a

0.764 (0.660–0.868)b 0.825 (0.825–0.943)b 0.643 (0.498–0.788)b

Metabolites + demographic/clinical data

 LysoPC a 28:0 + hypertension + NLR
0.829 (0.800–0.858)a 0.775 (0.732–0.818)a 0.722 (0.677–0.767)a

0.801 (0.704–0.897)b 0.775 (0.775–0.904)b 0.762 (0.633–0.891)b

Severe (G3 + G4) vs risk of death (G3 + G4)

Demographic/clinical data*

 – – – –

Metabolites only

 LysoPC a 16:0
0.689 (0.649–0.728)a 0.656 (0.612–0.699)a 0.635 (0.580–0.691)a

0.667 (0.544–0.791)b 0.660 (0.660–0.791)b 0.656 (0.492–0.821)b

Metabolites + demographic/clinical data

 LysoPC a 16:0 + age
0.716 (0.676–0.756)a 0.740 (0.699–0.781)a 0.656 (0.601–0.711)a

0.691 (0.564–0.818)b 0.740 (0.740–0.862)b 0.656 (0.492–0.821)b
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our data (Table 1) showed close clinical, demographic and metabolic (Fig. 3a) similarities between both study 
groups, which indicates that the decision criteria for intubation needs to be improved by adding additional 
metabolic markers. When comparing both groups (G3 and G4), lysoPC a 28:1, lysoPC a 28:0 and lysoPC a 26:0 
had the highest scores driving cluster separation (Fig. 3b). The ROC curve with 95% CI for demographic/clinical 
data is shown in Fig. 3c. The AUC, sensitivity and specificity values with 95% CI are shown in Table 2. A logis-
tic regression model was then built with the following equation: logit(P) = log(P/(1 − P)) = − 0.063 + 0.539 NLR, 
where the numeric value of each named metabolite in the equation is the concentration after log transformation 
and auto-scaling.

The ROC curve with 95% CI is shown in Fig. 3d. The AUC, sensitivity and specificity values with 95% CI 
are shown in Table 2. A logistic regression model was then built with the following equation: logit(P) = log(P/
(1 − P)) = − 0.095 + 1.201 lysoPC a C28:0, where the numeric value of each named metabolite in the equation is 
the concentration after log transformation and auto-scaling.

When hypertension and NLR were added to the model (Fig. 3e), the AUC and specificity improved relative 
to that of metabolite-only model (Table 2). The equation of the logistic regression model is: logit(P) = log(P/
(1 − P)) = − 0.23 + 1.558 lysoPC a C28:0 + 0.831 NLR − 0.768 hypertension.

Additional details for demographic/clinical data, metabolite-only and metabolite + demographic/clinical data 
are shown in Supplementary Table 4.

From the 82 patients who developed a severe disease (G3 + G4), 39% died (11 from G3 and 21 from G4). The 
models based on metabolites-only and metabolites + demographic/clinical data did not differ in this case, show-
ing a low predictive value (Table 2). Figure 4 shows the results of comparisons between patients who developed 
a severe disease and non-survivors. Multivariate PLS-DA did not show a clear separation between both groups 
(Fig. 4a); lysoPC a 28:0, lysoPC a 28:1, lysoPC a 26:0 had the highest scores diving the separation (Fig. 4b). The 

Figure 2.  Multivariate analysis from plasma metabolome profile of G2 versus G3 and G4 patients. (a) Score 
scatter plot based on the PLS-DA models to explain the diagnosis (yellow for G2 and red for G3 + G4; (b) rank 
of the different metabolites (the top 15) identified by the PLS-DA according to the VIP coefficient on the x-axis. 
The most discriminating metabolites are shown in descending order of their coefficient scores. The color boxes 
indicate whether metabolite concentration is increased (red) or decreased (blue) in G2 vs G3 + G4; (c) ROC 
curve of the demographic/clinical data model; (d) ROC curve of the metabolite-only model; (e) ROC curve of 
the metabolite + demographic/clinical data model. The figures were drawn via MetaboAnalyst software v 4.0 
(https:// www. metab oanal yst. ca/).

https://www.metaboanalyst.ca/
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ROC curve for both models with a 95% CI are shown in Fig. 4c,d. It was not possible to build a predictive model 
of classification based on demographic and clinical data only.

A logistic regression model was then built with the following equation: logit(P) = log(P/(1 − P)) = 0.491 + 0.726 
lysoPC a C16:0, where the numeric value of each named metabolite in the equation is the concentration after log 
transformation and auto-scaling. When age was added to the model (Fig. 4d), the equation of the logistic regres-
sion model is: logit(P) = log(P/(1 − P)) = 0.508 + 0.7 lysoPC a C16:0 − 0.451 age. Additional details for metabolite-
only and metabolite + demographic/clinical data are shown in Supplementary Table 5.

Discussion
This study was done to assess the plasma metabolome of COVID-19 patients using targeted, fully quantitative 
metabolomics methods to produce diagnostic and predictive biomarker panels at different levels of disease 
severity. Specifically, we wished to develop panels that could: (a) accurately distinguish mild COVID-19 positive 
from COVID-19 negative patients; (b) prognose or predict those who will develop mild COVID-19 symptoms 
vs. those who will develop severe COVID-19 symptoms; (c) prognose those severe COVID-19 patients who 
will need to be intubated and (d) predict those COVID-19 patients with severe disease who will die. Accurate 
concentrations of 110 metabolites were measured from samples collected immediately after hospital admission 
and prior to any knowledge of each patient’s COVID-19 status or disease outcome. We also built models adding 
relevant demographic and clinical data available from the medical records, to improve the predictive value of 
the metabolite-only models.

Through our analysis we were able to propose a COVID-19 diagnostic panel (panel 1) consisting of three 
metabolites including the kynurenine/tryptophan ratio, lysoPC a C26:0, and pyruvic acid to discriminate 
PCR−/controls from PCR+/not hospitalized with a high AUC (0.947 (0.931–0.962)). In addition, another panel 
(panel 2) consisting of three metabolites, including C10:2, butyric acid, and pyruvic acid could be used to predict 
which patients would be PCR+/not-hospitalized versus those who would be PCR+/hospitalized and developed 
a severe disease, with a very high AUC (0.975 (0.968–0.983)). Only lysoPC a C28:0 was used to differentiate 

Figure 3.  Multivariate analysis from plasma metabolome profile of G3 versus G4 patients. (a) Score scatter 
plot based on the PLS-DA models to explain the diagnosis (orange for G3 and red for G4; (b) rank of the 
different metabolites (the top 15) identified by the PLS-DA according to the VIP coefficient on the x-axis. The 
most discriminating metabolites are shown in descending order of their coefficient scores. The color boxes 
indicate whether metabolite concentration is increased (red) or decreased (blue) in G3 vs G4; (c) ROC curve 
of the demographic/clinical data model; (d) ROC curve of the metabolite-only model; (e) ROC curve of the 
metabolite + demographic/clinical data model. The figures were drawn via MetaboAnalyst software v 4.0 
(https:// www. metab oanal yst. ca/).

https://www.metaboanalyst.ca/


8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:14732  | https://doi.org/10.1038/s41598-021-94171-y

www.nature.com/scientificreports/

between PCR+/hospitalized from PCR+/intubated patients, but with notably lower AUC (0.770 (0.736–0.803)). 
Adequate metabolic biomarkers to predict which of the hospitalized patients will require mechanical ventilation 
at a proper time may reduce the risk of mortality.

Efforts to find a useful biomarker panel (panel 4) to predict mortality among those with severe COVID-19 
were only modestly successful. In a previous study, Fraser et al.14 identified creatinine as the top metabolite 
for predicting COVID-19-associated mortality on both ICU days 1 and 3, and both creatinine and creatinine/
arginine ratio accurately predicted COVID-19-associated death with 100% accuracy (p = 0.01)14. However, in 
our study the samples were collected early after hospital admission and due to the cross-sectional design of our 
study, we did not collect blood samples in a longitudinal manner, that could allow a better outcome prognosis. At 
the moment of blood sampling, the clinical parameters from the survivors and patients who died, were similar, 
except for age and lymphocytes count (Supplementary Table 1). This is in line with a recently published longitu-
dinal study, where Sun et al.20 found that clinical data resolution was insufficient to clarify critical patients with 

Figure 4.  Multivariate analysis from plasma metabolome profile of severe patients versus non-survivors. (a) 
Score scatter plot based on the PLS-DA models to explain the diagnosis (red for severe patients and black for 
non-survivors, (b) rank of the different metabolites (the top 15) identified by the PLS-DA according to the 
VIP coefficient on the x-axis. The color boxes indicate whether metabolite concentration is increased (red) or 
decreased (blue) in non-survivors vs severe patients (c) ROC curve of the metabolite-only model; (d) ROC 
curve of the metabolite + demographic/clinical data model. The figures were drawn via metaboanalyst software v 
4.0 (https:// www. metab oanal yst. ca/).

https://www.metaboanalyst.ca/


9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:14732  | https://doi.org/10.1038/s41598-021-94171-y

www.nature.com/scientificreports/

different outcomes (survivors and non-survivors). In another study, inspection of the global metabolomic profiles 
of patients that were hospitalized in standard conditions (not in the ICU) did not revealed any major shift that 
would distinguish the favorable versus unfavorable evolution of COVID-19 neither at baseline nor at day  715.

As showed in Table 2, for each built model, predictive values were lower for demographic/clinical data and 
higher for metabolites + demographic/clinical data. When demographic and clinical data were added to the four 
panels (sex and neutrophils counts for the panel 1; lymphocytes and neutrophils counts for the panel 2 and hyper-
tension and diabetes for the panel 3, age for panel 4), the predictive values increased but more so for panels 2 and 
3, indicating the influence of factors such as age, sex and comorbidities in contributing to COVID-19 outcomes.

While earlier COVID-19 studies have proposed panels of up to ten metabolites to identify infected patients 
from healthy  individuals13,21, and still other studies have proposed individual diagnostic  metabolites12 or metabo-
lite  ratios14, the metabolite panels offered here have some advantages. In particular we have identified metabolite-
only and metabolite + clinical feature panels that can: (1) reliably distinguish between mildly COVID-19 positive 
patients and COVID-19 negative patients; and (2) differentiate among three different levels of COVID-19 severity. 
Furthermore, the panels we have developed include only a few highly predictive metabolites (for the metabolite-
only panels) or only a modest number of clinical features (for the metabolite + demographic/clinical data panels). 
This latter feature means that some of these assays could potentially be adapted into point-of-care settings. For 
instance, butyric acid, pyruvic acid, kynurenine and tryptophan can be measured with enzyme-linked immu-
nosorbent assays (ELISA) or even simple colorimetric assays. Likewise, MS assays for a small number (3–4) of 
metabolites can often be done in a matter of minutes at very low cost. Therefore, we believe that if future studies 
with targeted metabolomics validate and reproduce the diagnostic value of these biomarkers, such panels could 
eventually be of use in clinical practice.

As noted earlier, our metabolite panel that includes kynurenine/tryptophan ratio, lysoPC a C26:0, and pyru-
vic acid can discriminate very well (AUC = 0.95) between non-COVID-19 controls (G1) and non-hospitalized 
COVID-19 patients (G2). The kynurenine pathway is the main route for tryptophan catabolism in the body. It is 
also a de novo NAD + biosynthetic pathway that is particularly sensitive to the redox environment, and it leads 
to the production of metabolites with redox capacity. Kynurenine metabolites have been implicated in the physi-
opathology of many diseases and processes that share common mechanisms. These include the dysregulation of 
calcium homeostasis, mitochondrial dysfunction, oxidative stress, inflammation and cell  death22. Indoleamine 
2,3-dioxygenase (IDO) activity causes a decrease in tryptophan levels and an accumulation of uncharged trypto-
phan transfer RNA (Trp-tRNA). Higher levels of Trp-tRNA result in the activation of a protein known as general 
control non-derepressible 2 (GCN2), a stress-response kinase, which phosphorylates the eukaryotic initiation 
factor-2 (eIF-2), leading to decreased T-effector cell proliferation. IDO also leads to an increase in kynurenine 
levels in plasma. Kynurenine binds to the aryl hydrocarbon receptor, causing the differentiation of T-regulatory 
cells (Tregs) that suppress immune responses and increase IL-6  levels23. Significant alterations in the kynurenine 
pathway have also been reported for COVID-19  patients11,24. Thus, this study reinforces the findings that amino 
acid pathways (especially tryptophan) are significantly dysregulated in COVID-19  infection10.

High levels of very long-chain saturated and monounsaturated LysoPCs were also found among COVID-19 
patients in this study. In contrast, lysoPC a 16:0 and lysoPC a 18:0 are higher in non-infected controls and patients 
with mild disease. These lipids were also found higher in survivors from a severe disease than in non-survivors. 
Decreased plasma LPC levels are associated with unfavorable disease outcomes; for example, plasma LPC levels 
are decreased in sepsis and correlate inversely with sepsis mortality and in-hospital mortality in  pneumonia25,26. 
It has been demonstrated that the acyl chain length and saturation may impact biological activity and function 
of different  LPCs27 and this may explain the different patterns found by us in our study. Some authors have 
suggested that the modulation of host glycerophospholipid metabolism is to support virus  replication28–30, but 
most importantly, LPCs have been recognized as important homeostatic mediators involved in inflammation 
and activation of immune  cells31. LPCs have been found to act as a strong chemoattractant for monocytes, T 
cells, as well as natural killer (NK) cells, attracting them to sites of  inflammation31.

Likewise, a metabolite panel that includes C10:2, butyric acid, and pyruvic acid performed even better 
(AUC = 0.99) differentiating between non-hospitalized from hospitalized severe COVID-19 patients. As has 
been noted in many other studies, inflammatory conditions increase CPT-1 activity and cellular stress (i.e. oxi-
dative and hypoxia), while fatty acid oxidation is reduced. In this study, we found that the CPT-1 rate increased 
among controls compared with intubated COVID-19 patients (Supplementary Fig. 1), suggesting that there is 
no restriction in the first translocation step of acylcarnitine synthesis. It was also found that the β-oxidation rates 
for C5 and C10:2 were significantly reduced from group 2 to group 4 (i.e. from mild to critical presentation). Yet, 
when ratios were calculated for COVID-19 or uninfected controls, with or without metabolic dysregulation (i.e. 
presence of diabetes mellitus-II, hypertension or obesity), no differences in CPT-1 and β-oxidation ratios were 
found, suggesting that the differences observed among COVID-19 patients are the result of SARS-CoV-2 infec-
tion. Thus, the altered metabolites appear to represent a reprogramming in energy pathways during the illness.

Microbial metabolism dysregulation appears to be implicated in COVID-19 pathogenesis  too32. In spite of 
the beneficial action attributed to small chain fatty acids (SCFAs)33, there is also evidence of the potential role 
of propionic and butyric acids in the etiology of irritable bowel syndrome (IBS). In particular, increased serum 
levels of these metabolites have been found in patients with this condition and it is notable that diarrhea is one 
of the symptoms that is common to both COVID and  IBS34. In addition, high levels of butyric acid have been 
thought to promote viral replication and interfere with the interferon  response35. Therefore, the dysregulation of 
gut microbiota, expressed by various gastrointestinal symptoms and an altered profile of microbial metabolites, 
underscores the potential relevance of dietary interventions to prevent the progression of COVID-19 severity. 
It is possible that modifying fiber and g fatty components to the diet could modify plasma levels of SCFAs in 
COVID-19 patients.
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In this study, pyruvic acid was found differentially expressed across most groups (increased: Group 2 vs. 
Group 1; decreased: Group 3 vs. Group 2). Pyruvate is a critical metabolite in glycolysis, and it is likely that 
viral infection or the body’s response to viral infection causes a shift from oxidative phosphorylation to aerobic 
glycolysis to accelerate the synthesis of nucleotides, amino acids, and fatty acids needed to support the body’s 
immune response (to SARS-CoV2). Evidence suggests that cells adapt their metabolism upon viral infection to 
become glycolytic. In particular, infections appear to trigger mitochondrial reactive oxygen species production, 
which leads to a stabilization of hypoxia-inducible factor-1α (HIF-1α), inducing  glycolysis36 and the subsequent 
increase of pyruvic acid during the cell’s response to viral replication. Actually, high levels of pyruvic acid, pre-
viously attributed to a dysregulation of the hepatic central carbon metabolism, have been noted in COVID-19 
patients  previously37. On the other hand, the lack of oxygen seen in patients with severe COVID-19 symptoms 
will tend to activate the tricarboxylic acid cycle (TCA). As a result, pyruvate will be converted to lactate due to 
aerobic glycolysis, which is also known as the Warburg  effect38. Thus, a reduction in TCA metabolism would 
lead to an anti-oxidant imbalance and inflammatory  damage10, as seen by the increased levels of polyamines and 
methionine sulfoxide found among hospitalized patients in this study.

We believe that the panels proposed by us in the present work have excellent predictive values compared 
with values reported for serological tests [(AUC (IgM): 0.81; AUC (IgG): 0.93; AUC (IgM + IgG): 0.98)]39; and 
the RT-PCR test (AUC: 0.83)40. Studies aimed at evaluating the accuracy of laboratory parameters (neutrophil 
count, lactate dehydrogenase, aspartate aminotransferase, alanine aminotransferase and urea) in predicting 
COVID-19 cases with positive RT-PCR for COVID-19 have demonstrated an AUC of just 0.841. With the com-
bined panels that we propose, we may distinguish/predict mild infections from non-infected individuals, which 
ones will be severe or even intubated and which ones will be mild, as well as which ones will live and which ones 
will die, which is only possible by assessing metabolomics and/or clinical-chemistry analysis. Based on the lipid 
and energy metabolism alterations described in the present work, we are also providing insights about possible 
molecular targets to inhibit virus replication and proliferation, such as some currently under study (fatty acid 
synthase inhibitors, PI3 kinase inhibitors, AMPK activators, etc.).

Limitations of the study
As with any study associated with COVID-19 and other newly emerging diseases, there are a number of limita-
tions that ought to be mentioned. One limitation is the categorization we chose to use as a proxy for disease 
severity could have led to misclassification bias, particularly for patients in group 3 (PCR+/hospitalized) and 
group 4 (PCR+/intubated), and to a lesser extent from those in group 2 (PCR+/not hospitalized) compared to 
group 3 (PCR+/hospitalized). This arose due to the lack of hospital beds available, especially ICU beds, forcing 
physicians at our hospital to keep critically ill patients needing intubation in the regular hospitalization area 
instead of the ICU, or to provide ambulatory care to patients that required hospitalization with an oxygen mask. 
Moreover, due to the lack of rigorous tools to classify disease severity, protocols for classifying patients upon 
their admission to the ICU need to be improved with more accurate measurements, such as those that we and 
others propose. In fact, this bias could have been the reason for the incomplete identification of significant 
metabolites distinguishing between groups 3 and 4. Another limitation with this study lies in the partial selec-
tion of metabolites based on VIP and LASSO scores that could have resulted in less accurate predictive models. 
We deliberately limited the number of metabolites selected for regression analyses to develop metabolite panels 
that were more amenable for clinical application and more rapid testing. A third limitation concerns the cross-
sectional exploratory nature of the study design. This design prevented a longitudinal metabolite assessment 
and so further prospective observational designs, such a cohort with repetitive measures would be needed to 
follow-up on the measured metabolite concentrations throughout the progression of the infection and to better 
distinguish those with severe COVID-19 who will recover and those who will die. Finally, it is important to note 
that nutrition habits and or/medications taken prior to the blood sample collection could have affected some 
metabolite concentrations. However, this issue appears to have had a limited impact, as only 25% of the surveyed 
patients reported having taken symptomatic treatment (antipyretics and analgesics) prior to blood sampling.

Methods
Patients enrollment and sample collection. A sample of 161 symptomatic individuals aged 35–70 years 
were included for metabolite analyses. These patients were taken from a set of 1058 patients who were RT-qPCR-
tested for SARS-CoV-2 between March 15 and November 1, 2020 at the Zacatecas General Hospital’s Respira-
tory Triage Unit of by the Mexican Institute of Social Security (IMSS). This is a public facility with ≈ 200 hospital 
beds located in Zacatecas, the capital city of the state of Zacatecas in central Mexico. Screened individuals were 
categorized into four mutually exclusive groups: Group 1: PCR−, controls (n = 39); Group 2: PCR+, not hospital-
ized (n = 40); Group 3: PCR+, hospitalized with or without oxygen mask (n = 42); and Group 4: PCR+, intubated 
(n = 40). Blood specimens for plasma analyses were collected within two days after admission on average. Base-
line information such as age, gender, comorbidities, clinical and laboratory data, and outcome (survival or non-
survival) was obtained from the electronic medical records of each patient and stored by a password-protected 
database and provided in Table 1. The study was performed in accordance with the Declaration of Helsinki. It 
was also revised and approved by the Ethics Committee of the Comité Nacional de Investigación Científica del 
Instituto Mexicano de Seguridad Social, with the registration number R-2020-785-068. Informed consent was 
obtained from all participants. All patients included in this study were informed in writing regarding the collec-
tion of their samples for research aims and given the right to refuse such uses.

Metabolomics profile of plasma samples. Targeted quantitative metabolomics was used to identify 
and determine the concentration of 143 different endogenous metabolites. Amino acids, biogenic amines and 
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derivatives, and organic acids were analyzed using a reverse-phase liquid chromatography-mass spectrometry 
(LC–MS)/MS custom assay. Glycerophospholipids, acylcarnitines, sphingomyelins, and glucose were measured 
by direct injection (DI). Mass spectrometric analyses were performed on an ABSciex 4000 Qtrap tandem MS 
instrument (Applied Biosystems/MDS Analytical Technologies, Foster City, CA, USA) equipped with an Agilent 
1260 series UHPLC system (Agilent Technologies, Palo Alto, CA). The custom assay contained a 96-deep-well 
plate with a filter plate attached with sealing tape; reagents and solvents were used to prepare the plate assay. The 
first 14 wells were used for one blank, three zero samples, seven standards, and three quality control samples. 
Details of the assay have been published  previously19.

Sample preparation. For organic acid analyses, 150 µL of ice-cold methanol and 10 µL of isotope-labeled 
internal standard mixture were added to 50 µL of plasma sample for overnight protein precipitation at − 20 °C, 
followed by centrifugation at 13,000×g for 20 min. A total of 50 µL of supernatant was loaded into the center 
of a 96-deep-well plate, followed by the addition of a 3-nitrophenylhydrazine reagent. After incubation for 2 h, 
butylated hydroxytoluene stabilizer (2 mg/mL) and water were added before the LC–MS injection.

For amino acids and biogenic amines and derivatives, glycerophospholipids, acylcarnitines, and sphingomy-
elins, samples were thawed on ice and subsequently vortexed and centrifuged at 13,000×g; 10 µL of each sample 
was then loaded onto the center of the filter on the upper 96-well plate and dried in a stream of nitrogen. Subse-
quently, phenyl-isothiocyanate was added for derivatization. After incubation, the filter spots were dried again 
using an evaporator. Metabolite extraction was then achieved by adding 300 µL of extraction solvent. Extracts 
were obtained by centrifugation into the lower 96-deep-well plate, followed by a dilution step with MS running 
solvent (0.2% formic acid in water, 0.2% formic acid in acetonitrile).

LC–MS/MS method. An Agilent reversed-phase Zorbax Eclipse XDB C18 column (3.0  mm × 100  mm, 
3.5 μm particle size, 80 Å pore size) with a Phenomenex (Torrance, CA, USA) SecurityGuard C18 pre-column 
(4.0 mm × 3.0 mm) was used. LC parameters used were as follows: mobile phase A was 0.2% (v/v) formic acid in 
water, and mobile phase B was 0.2% (v/v) formic acid in acetonitrile. The gradient profile was: t = 0 min, 0% B; 
t = 0.5 min, 0% B; t = 5.5 min, 95% B; t=6.5 min, 95% B; t = 7.0 min, 0% B; and t = 9.5 min, 0% B. The column oven 
was set at 50 °C. The flow rate was 500 μL/min, and the sample injection volume was 10 μL.

For the analysis of organic acids, the mobile phases used were (A) 0.01% (v/v) formic acid in water, and (B) 
0.01% (v/v) formic acid in methanol. The gradient profile was as follows: t = 0 min, 30% B; t = 2.0 min, 50% B; 
t = 12.5 min, 95% B; t = 12.51 min, 100% B; t = 13.5 min, 100% B; t = 13.6 min, 30% B and finally maintained at 
30% B for 4.4 min. The column oven was set to 40 °C. The flow rate was 300 μL/min, and the sample injection 
volume was 10 μL.

DI‑MS/MS method. The LC autosampler was connected directly to the MS ion source by red PEEK tub-
ing. The mobile phase was prepared by mixing 60 μL of formic acid, 10 mL of water, and 290 mL of methanol. 
The flow rate was programmed as follows: t = 0 min, 30 μL/min; t = 1.6 min, 30 μL/min; t = 2.4 min; 200 μL/min; 
t = 2.8 min, 200 μL/min; and t = 3.0 min, 30 μL/min. The sample injection volume was 20 μL.

Quantification. To quantify organic acids, amino acids, and biogenic amines and derivatives, an individual 
seven-point calibration curve was generated for each analyte. Ratios for each analyte’s signal intensity to its 
corresponding isotope-labelled internal standard were plotted against the specific known concentrations using 
quadratic regression with a 1/x2 weighting.

Lipids, acylcarnitines, and glucose were analyzed semi-quantitatively. A single point calibration of a repre-
sentative analyte was built using the same group of compounds that share the same core structure assuming a 
linear regression through zero.

All metabolite analyses were done using Analyst 1.6.2 and MultiQuant 3.0.3.

Statistical analysis. Frequencies and proportions stratified by study group were used to describe nominal 
variables. Since continuous data was not normally distributed, medians with quartiles 1 (Q1) and 3 (Q3) were 
used as central and dispersion measures stratifying by surveyed group.

Metabolites with > 50% of missing values were removed from further analysis (n = 33). Half of the minimum 
concentration value was imputed in those with < 50% of missing values. Metabolites were log-transformed and 
auto-scaled. Principal component analysis (PCA) and two-dimension partial least squares discriminant analy-
sis (2-D PLS-DA) scores plots were used to compare plasma metabolite data across and between study groups; 
2000-fold permutation tests were used to minimize the possibility that the observed separation of the PLS-DA 
was due to chance. Coefficient scores and least absolute shrinkage and selection operator (LASSO) algorithm 
were used to identify the most discriminating metabolites for group comparisons. Metabolite data analyses was 
done using  MetaboAnalyst42.

The metabolites with the highest score coefficient and LASSO scores were used to create these metabolite 
panels for COVID-19 status or outcomes using multivariate logistic regression (demographic/clinical data and 
metabolites-only models). Additionally, models were adjusted for relevant potential confounders such as sex, 
age, relevant comorbidities (i.e. DM-II, HTN, and obesity), and clinical laboratory data, but only statistically 
significant variables (p < 0.05) remained in the final models (metabolites + demographic/clinical data models). 
Logistic regression analysis was performed with the generalized log-transformed and auto scaled data. The 
stepwise variable selection was also utilized for optimizing all the model components. Furthermore, a k-fold 
cross-validation (CV) technique was used to ensure that the logistic regression models were robust. In k-fold 
CV, the entire sample data is randomly divided into k equal sized subsets. Of the k subsets, only one subset is 
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used as the validation data for testing the model, and the remaining (k − 1) subsets are used as training set to 
generate the model. This results in predictive biomarker predictive models that are both robust and optimal. 
To determine the performance of each generated model, the area under the receiver operating characteristics 
curve (AUROC or AUC) was calculated with sensitivity and specificity. Balanced sub-sampling-based Monte 
Carlo cross validation (MCCV) was used to generate the ROC curves. The 95 % CI for the AUC curves were also 
calculated. All these analyses were performed using the MetaboAnalyst software.

Ethics declarations. The study was performed in accordance with the Declaration of Helsinki. It was also 
revised and approved by the Ethics Committee of the Comité Nacional de Investigación Científica del Instituto 
Mexicano de Seguridad Social, with the registration number R-2020-785-068. Informed consent was obtained 
from all participants. All patients included in this study were informed in writing regarding the collection of 
their samples for research aims and given the right to refuse such uses.

Data availability
All the clinical and metabolomic data produced in this work are available from the Mendeley Data Repository: 
https:// doi. org/ 10. 17632/ 7fnt3 nfhdv.1.
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