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No effect of deleted in malignant 
brain tumors 1 deficiency 
on chemotherapy induced murine 
intestinal mucositis
Anders B. Nexoe1,2,8, Andreas A. Pedersen1,8, Sebastian von Huth1,3, Grith L. Sorensen1, 
Uffe Holmskov1, Ping‑Ping Jiang4, Sönke Detlefsen5, Steffen Husby6 & Mathias Rathe6,7*

Mucositis is a serious adverse effect of chemotherapeutic treatment. During intestinal mucositis, the 
mucosal barrier is compromised, increasing the risk of severe infections. Mucositis necessitates dose 
reduction or pauses in treatment, which affect the outcome of the treatment. Deleted in malignant 
brain tumors 1 (DMBT1) is a secreted scavenger protein with effects on innate immunity and epithelial 
regeneration. We have previously shown that jejunal DMBT1 expression is increased in piglets during 
chemotherapeutic treatment. We hypothesized that DMBT1 ameliorates doxorubicin‑induced 
mucositis. Individually‑caged Dmbt1+/+ (WT) and Dmbt1−/− (KO) female mouse littermates received 
intraperitoneal injections of either doxorubicin or saline. They were euthanized after three (D3) or 
seven days (D7). Weight loss was monitored every day, and serum citrulline levels were measured 
at termination. Intestinal tissue was analyzed for the expression of DMBT1 and proinflammatory 
cytokines (IL‑1β, IL‑6, and TNF). Specimens from the small intestines and colon were scored for 
inflammation and epithelial and mucosal architecture changes. We detected no effect of DMBT1 on 
weight loss, serum citrulline levels, expression of proinflammatory cytokines, or histologic damage. 
We detected a significant increase in crypt depth in WT mice compared to that in KO mice on D3. In 
conclusion, DMBT1 does not affect doxorubicin‑induced mucositis in mice.

Chemotherapy-induced mucositis is a common adverse event during cancer  treatment1,2. Mucositis compromises 
nutrient absorption and the immunological barrier function of the gastrointestinal tract, which leads to apoptosis 
of the crypts and hypoplastic villus atrophy in the small  intestine3. Mucositis increases the risk of infections, 
and mucositis may lead to dose reduction or cessation of treatment, which can reduce  survival4–6. There is no 
efficient preventive or curative treatment for mucositis, and current strategies are mainly aimed at relieving the 
 symptoms7–9. Identification of important targetable biomarkers related to the pathogenesis of chemotherapy-
induced mucositis would be of great importance. Such biomarkers could potentially serve as a basis for improved 
clinical management of cancer patients in the  future10,11.

Deleted in malignant brain tumors 1 (DMBT1), also known as salivary agglutinin (SAG), salivary scavenger 
and agglutinin (SALSA), glycoprotein 340 and hensin, is a secreted scavenger protein with functions in mucosal 
innate immunity and epithelial differentiation and  regeneration12,13. DMBT1 binds to dextran sodium sulfate 
(DSS) and carrageenan but does not reduce cytotoxicity in vitro14, while variations in the DMBT1-encoding 
gene are related to Crohn’s  disease15,16. DMBT1 has antimicrobial and antiviral properties and binds to the innate 
immunoproteins surfactant A and surfactant  D17–20. Loss of DMBT1 is associated with an increased risk of colo-
rectal, thyroid, breast, and skin  cancer21–24. DMBT1 promotes activation of the lectin pathway when bound to 
the cell surface and inhibits the lectin pathway when it is in  solution25. We have previously shown that DMBT1 
expression is upregulated during chemotherapy-induced mucositis in  piglets26.
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We hypothesized that DMBT1 might confer protective effects during chemotherapy-induced mucositis. We 
tested this hypothesis in a murine model of doxorubicin-induced mucositis by comparing WT mice expressing 
DMBT1 (Dmbt1+/+) with DMBT1-deficient KO mice (Dmbt1−/−).

Results
Doxorubicin induces weight loss and decreases citrulline levels but does not affect intestinal 
length. Treatment with doxorubicin induced significant weight loss from day 0 to day 2 (WT NaCl vs WT 
Doxo p = 0.0013; KO NaCl vs KO Doxo p = 0.0146), which was followed by a period of stagnation/minor restitu-
tion that showed the same course in mice with different genotypes (Fig. 1A). Doxorubicin treatment induced a 
significant decrease in citrulline levels on D3 but not on D7 compared to saline injection (Fig. 1B. WT NaCl vs 
WT Doxo D3 p = 0.0282; KO NaCl vs KO Doxo D3 p = 0.0419). Since citrulline is a marker of functional entero-
cyte mass and absorption and gastrointestinal mucositis, these data indicate that the mice were still suffering 
from the effects of doxorubicin on D3 but were in the restitution phase on  D727,28. We detected no significant 
effect of doxorubicin on the length of the small intestines and colon (Fig. 1C, D).

Induction of DMBT1 expression in the jejunum and colon following doxorubicin treat‑
ment. There was no significant difference in jejunal DMBT1 expression between WT and KO mice before 
doxorubicin treatment. However, following doxorubicin treatment, we observed an increase in the induction 
of DMBT1 expression in WT mice compared to that in KO (Fig. 2A. WT Doxo D3 vs KO Doxo D3 p = 0.0003; 
WT Doxo D7 vs KO Doxo D7 p = 0.0058). In the colon, there was a significant difference in DMBT1 expression 
between WT and KO mice, which increased on D3 and D7 following doxorubicin treatment (Fig. 2B. WT NaCl 
vs KO NaCl p = 0.0257; WT Doxo D3 vs KO Doxo D3 p = 0.0005; WT Doxo D7 vs KO Doxo D7 p < 0.0001). The 
quantitative real-time polymerase chain reaction (qRT-PCR) cycle threshold (Ct) had a mean value of 27.9 for 
the jejunum and 20.2 for the colon in saline-treated WT mice.
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Figure 1.  Weight loss, serum citrulline levels and intestinal length. (A) weight loss following doxorubicin 
treatment. (B) serum citrulline levels at termination. (C) length of the small intestine at termination. (D) length 
of colon at termination. All data are shown as the means ± SEM. * p value < 0.05.
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This induction was also reflected on the protein level where the epithelial cells showed stronger staining for 
DMBT1 on D3 following treatment with doxorubicin in both colon and jejunum (Fig. 3). We also detected some 
DMBT1-staining of the Paneth cells in the jejunal crypts of KO mice (Fig. 3F).

Induction of interleukin (IL)‑1β, IL‑6 and tumor necrosis factor (TNF) expression following 
doxorubicin treatment. The proinflammatory cytokines IL-1β, IL-6, and TNF were measured by qRT-
PCR analysis. We detected a significant increase in jejunal IL-6 expression in doxorubicin-treated WT and KO 
mice at D7 compared to that in saline-treated littermates (Fig. 4B. WT NaCl vs WT Doxo D7 p = 0.0042; KO 
NaCl vs KO Doxo D7 p = 0.0424), but there were no genotype-specific differences (Fig. 4).

Doxorubicin‑induced histologic damage in the jejunum but not in the colon. Histologic dam-
age was evaluated by examining hematoxylin and eosin (H&E)-stained colonic and small intestinal tissue. 
We detected no significant difference in the histologic damage score in the colonic tissue of mice subjected to 
saline and doxorubicin treatment (Fig. 5A). We detected no differences in histologic damage in the duodenum 
(Fig. 5B). In the jejunum, we detected a significant difference between the results of saline and doxorubicin 
treatment, as both WT and KO doxorubicin-treated mice showed increased histologic damage scores on D3 
compared to mice treated with saline. There was no genotypic difference (Fig. 5C. WT NaCl vs WT Doxo D3 
p = 0.0001; KO NaCl vs KO Doxo D3 p = 0.001). In the ileum there was only a significant difference between 
saline and doxorubicin in the WT group (Fig. 5D. WT NaCl vs WT Doxo D3 p = 0.0017). On D7, there were no 
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Figure 2.  DMBT1 expression in the murine jejunum and colon following doxorubicin injection. (A) Jejunal 
DMBT1 expression. (B) Colonic DMBT1 expression. All data are shown as the means ± SEM. * p < 0.05; ** 
p < 0.01; *** P < 0.001; **** p < 0.0001.
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significant differences between the mice subjected to doxorubicin and saline treatments. Figure 6 show photo 
microscopy of H&E stained colonic and jejunal tissue.

DMBT1 increased the duodenal crypt depth on D3. Villus height and crypt depth were measured in 
H&E-stained tissue from the duodenum, jejunum, and ileum (Fig. 7). There was no difference in duodenal villus 
height between any of the groups (Fig. 7A), but we observed a significant increase in the duodenal crypt depth in 
doxorubicin-treated WT mice compared to that in doxorubicin-treated KO mice on D3 (Fig. 7B. WT Doxo D3 
vs KO Doxo D3 p = 0.0377). In addition, we observed a significant increase in the crypt depth (Fig. 7B. KO NaCl 
vs KO Doxo D7 p = 0.0378) and an increase in the jejunal crypt depth in doxorubicin-treated KO mice compared 
with that in saline-treated KO mice on D7 (Fig. 7D. WT NaCl vs WT Doxo D7 p = 0.0009; KO NaCl vs KO Doxo 
D7 p = 0.0422). There were no differences in the villus height in the duodenum (Fig. 7A), jejunum (Fig. 7C), or 
ileum (Fig. 7E), or in crypt depth in the ileum (Fig. 7F).

Discussion
In the present in vivo study, we investigated the potential ameliorating effects of DMBT1 on chemotherapy-
induced intestinal mucositis. Since a previous study detected increased intestinal DMBT1 expression in chem-
otherapy-treated  piglets26, and DMBT1 was shown to function in the immune system and in epithelial regen-
eration, we hypothesized that it would ameliorate chemotherapy-induced mucositis. However, we detected no 
significant effects of DMBT1 on weight loss, serum citrulline levels, intestinal length, expression of proinflam-
matory cytokines, or villus height.

Gastrointestinal mucositis may manifest as abdominal pains as well as diarrhea or constipation, nausea, and 
 vomiting2,29. Such clinical manifestations may vary between different cytotoxic regimens.

In the current study, Doxorubicin treatment resulted a significant decrease in citrulline levels on D3, weight 
loss and a significant difference between the results of saline and doxorubicin treatment, as both WT and KO 
doxorubicin-treated mice showed increased histologic damage scores on D3 compared to mice treated with 
saline. All hallmarks of GI toxicity. The decreased citrulline observed at day 3 as compared to saline treated 

Figure 3.  DMBT1-stained tissue. (A) colon from WT NaCl. (B) colon from KO NaCl. (C) colon from WT 
Doxo D3. (D) colon from WT Doxo D7. (E) jejunum from WT NaCl. (F) jejunum from KO NaCl. (G) jejunum 
from WT Doxo D3. (H) jejunum from WT Doxo D7. Bars indicate 100 μm.
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animals substantiates a relevant toxic effect on the GI  mucosa30–34. Based on these findings we conclude that 
doxorubicin-treated mice are relevant for studying chemotherapy-induced gut toxicity.

We observed a significant effect of DMBT1 on duodenal crypt depth on D3, where WT mice showed an 
increase in the crypt depth compared to KO mice following treatment with doxorubicin. However, since this was 
the only genotypic difference observed in this study and DMBT1 did not affect weight loss or serum citrulline 
levels, the clinical significance is limited.

Although we detected a significant increase in IL-6 expression on D7 in doxorubicin-treated animals, we 
detected no difference in the expression of IL-1β and TNF between mice given doxorubicin or saline treatment 
on D3 and D7. This could suggest that inflammation was already in resolution on D3. This is in line with the 
histologic evaluation of H&E-stained tissue, which showed the significant effect of doxorubicin in the small 
intestines on D3 but not on D7, and this highlights that gastrointestinal toxicity is a highly dynamic  process26,35.

We detected no difference in jejunal DMBT1 expression between saline WT and KO animals, suggesting the 
limited expression of DMBT1 in the WT animals. However, following chemotherapeutic treatment, there was 
a significant difference in the induction of DMBT1 expression in WT and KO mice on both D3 and D7 and a 
trend towards an increase in the expression of DMBT1 in WT mice. This is in line with previous observations 
showing that the expression of DMBT1 was upregulated in piglets during treatment with either busulfan plus 
cyclophosphamide or  doxorubicin26. We also detected an increased staining of DMBT1 in intestinal epithelial 
cells following treatment with doxorubicin in both colon and jejunum. We also detected some minor staining of 
jejunal crypts in KO mice, which could suggest that the KO mice were able to express DMBT1 in a minor degree. 
However, the expression of DMBT1 in jejunal tissue in the KO mice was very low and there was no increase 
of DMBT1 expression following treatment with doxorubicin. We therefore believe that the DMBT1-staining is 
more likely to be due to unspecific staining or at least of minor relevance.

A recent study investigating the distribution and localization of DMBT1 in healthy human tissue found that 
the DMBT1 cycle threshold (Ct) values in the jejunum and colon were 17 and 22,  respectively36. In comparison, 

WT N
aC

l

KO N
aC

l

WT D
oxo

 D
3

KO D
oxo

 D
3

WT D
oxo

 D
7

KO D
oxo

 D
7

0

5

10

15

20

IL-1β expression 
Jejunum

Ex
pr

es
si

on
 re

la
tiv

e 
 to

 W
T 

N
aC

l

WT N
aC

l

KO N
aC

l

WT D
oxo

 D
3

KO D
oxo

 D
3

WT D
oxo

 D
7

KO D
oxo

 D
7

0

1

2

3

4

5

Ex
pr

es
si

on
 re

la
tiv

e 
 to

 W
T 

N
aC

l

IL-1β expression 
Colon

WT N
aC

l

KO N
aC

l

WT D
oxo

 D
3

KO D
oxo

 D
3

WT D
oxo

 D
7

KO D
oxo

 D
7

0

5

10

15

IL-6 expression 
Jejunum

Ex
pr

es
si

on
 re

la
tiv

e 
 to

 W
T 

N
aC

l

*
**

WT N
aC

l

KO N
aC

l

WT D
oxo

 D
3

KO D
oxo

 D
3

WT D
oxo

 D
7

KO D
oxo

 D
7

0

2

4

6

IL-6 expression 
Colon

Ex
pr

es
si

on
 re

la
tiv

e 
 to

 W
T 

N
aC

l

WT N
aC

l

KO N
aC

l

WT D
oxo

 D
3

KO D
oxo

 D
3

WT D
oxo

 D
7

KO D
oxo

 D
7

0

5

10

15

20

TNF expression 
Jejunum

Ex
pr

es
si

on
 re

la
tiv

e 
 to

 W
T 

N
aC

l
WT N

aC
l

KO N
aC

l

WT D
oxo

 D
3

KO D
oxo

 D
3

WT D
oxo

 D
7

KO D
oxo

 D
7

0

2

4

6

TNF expression 
Colon

Ex
pr

es
si

on
 re

la
tiv

e 
 to

 W
T 

N
aC

l

CBA

FED

Figure 4.  Expression of proinflammatory cytokines determined by qRT-PCR. (A–C) Jejunal expression of 
IL-1β, IL-6 and TNF. (D–F) Colonic expression of IL-1β, IL-6 and TNF. All data are shown as the means ± SEM. 
* p < 0.05; ** p < 0.01.
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the Ct values for saline-treated mice were 28 and 20 for the jejunum and colon, respectively. The higher expres-
sion of DMBT1 in the human intestine compared with that in the murine intestine could indicate that DMBT1 
is more likely to exert anti-inflammatory effects in humans. The increase in DMBT1 expression in the murine 
colon compared to that in the jejunum could indicate that DMBT1 mainly exerts its functions in the murine 
colon, whereas doxorubicin mainly induces inflammatory changes in the small intestines. A previous study found 
that DMBT1 WT mice were partially protected against DSS-induced  colitis14, which also suggests that DMBT1 
is more likely to exert its functions in the murine colon.

Previous studies examining the role of DMBT1 in mice found that deletion of hensin/DMBT1 was lethal on 
embryonic day 4.537 and that the conditional deletion of hensin/DMBT1 in intercalated cells resulted in distal 
renal tubular  acidosis38, whereas the Dmbt1tm1KUMC knockout strain did not show any effect on DSS-induced 
 colitis39. For this study, we used DMBT1 knockout mice generated by Renner et al.16 that did not have any spon-
taneous phenotype and that previously had been shown to exhibit increased susceptibility to DSS-induced colitis. 
It is a limitation of this study that we only examined one mouse strain. However, since hensin/DMBT1 deletion 
is lethal in the embryonic stage and the Dmbt1tm1KUMC strain showed no increased susceptibility to DSS-induced 
colitis, we believe that the strain produced by Renner et al. was the most appropriate for this study.

Conclusion
We detected no significant effects of DMBT1 on chemotherapy-induced weight loss, inflammatory markers, 
functional enterocyte mass, or histologic inflammation three and seven days after doxorubicin treatment in mice. 
WT mice had significantly deeper crypts on D3 than DMBT1 KO mice. Doxorubicin induced a nonsignificant 
increase in jejunal and colonic DMBT1 expression.
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7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:14687  | https://doi.org/10.1038/s41598-021-94076-w

www.nature.com/scientificreports/

Methods
The mice were terminated prematurely according to humane endpoints if the weight loss exceeded 20% or if 
they showed a significant degree of pain. A total of five mice were prematurely terminated and excluded from 
the subsequent analysis due to reaching humane endpoints. These were three doxorubicin treated WT mice 
were terminated prior to endpoint due to weight loss > 20% (one at day 4 and two at day 5 and), one doxorubicin 
treated KO mouse was found dead at day 7, and one saline treated KO mouse was excluded due to injection error 
resulting in a necrotic kidney.

Animals and genotyping procedure. DMBT1 C57BL/6 knockout (KO) mice generated by Renner et al.16 
were kindly provided by Prof Jan Mollenhauer and bred in-house from heterozygous Dmbt1+/− parental mice, 
and the offspring were cohoused in litters of mixed genotypes until one week before the start of the experiment.

Figure 6.  H&E-stained tissue. (A) colon from WT NaCl. (B) colon from WT Doxo D3. (C) colon from WT 
Doxo D7. (D) colon from KO NaCl. (E) colon from KO Doxo D3. (F) colon from KO Doxo D7. (G) jejunum 
from WT NaCl. (H) jejunum from WT Doxo D3. (I) jejunum from WT Doxo D7. (J) jejunum from KO NaCl. 
(K) jejunum from KO Doxo D3. (L) jejunum from KO Doxo D7. Bars indicate 100 μm.
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Genotyping was performed on tail-tip biopsies both before and after the start of the experiment. DNA from 
tail biopsies was isolated using the DNeasy Blood & Tissue Kit (Qiagen, Hilden, Germany) according to the 
supplier’s instructions.

Seven days before the experiments, the mice were transferred from group housing into individual filter-top 
cages, allowing for acclimation to the new environment. Cages contained woodchip bedding, nesting material, 
tunnel housing, and a wooden chew. Food and water were supplied ad libitum. The mice were housed at 21–24 °C 
in 55% humidity and a 12-h light/dark cycle.

Ten- to 12-week-old female wild-type (WT) and KO littermates were included in the experiment.

Mucositis induction and collection of samples. A total of 62 mice were randomized into eight treat-
ment groups. Mucositis was induced with 20 mg/kg doxorubicin (Doxorubicin Accord, Accord Healthcare Lim-
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ited, North Harrow, Middlesex, England) that was diluted 1:1 in isotonic saline and administered by two bilateral 
intraperitoneal injections. The control mice were injected with an equivalent volume of isotonic saline.

The following mice were included in the subsequent analysis: 20 mice (10 WT and 10 KO) received doxo-
rubicin and were terminated three days after the injection (D3); 10 mice (5 WT and 5 KO) received saline and 
were terminated on D3; 22 mice (12 WT and 10 KO) received doxorubicin and were terminated seven days after 
the injection (D7); and 10 mice (5 WT and 5 KO) received saline and were terminated on D7. In all subsequent 
figures, the results for the saline groups from D3 and D7 were pooled into WT and KO groups.

Terminations were carried out by cardiac puncture under ketamine/xylazine anesthesia (100 mg/kg/10 mg/
kg (MSD Animal Health, Copenhagen, Denmark/Recipharm Monts, France)) followed by cervical dislocation. 
Blood was stored at room temperature for at least two hours and centrifuged (2000 × g, 10 min, 4 °C), and the 
serum was separated and frozen at − 80 °C. After blood sampling, the heart was perfused with 10 mL of cold, 
sterile phosphate-buffered saline (PBS) (Sigma-Aldrich Chemie, Steinheim, Germany). The small intestine from 
the pyloric sphincter to the ileocecal transition was removed, measured, and cut into three equal-sized pieces 
representing the duodenal, jejunal, and ileal parts of the small intestine. The colon was also removed and meas-
ured. The distal ends of all segments were used for histological examination. The remaining segments were cut 
longitudinally, washed three times in 45 mL sterile PBS, snap-frozen in liquid nitrogen, and stored at -80 °C 
prior to further processing.

Citrulline measurement. Serum levels of citrulline were measured and quantified with a UPLC-TQD MS 
(Waters, Milford, MA, USA) as described  previously41 by a blinded researcher.

Quantitative real‑time PCR (qRT‑PCR) of DMBT1, IL‑1β, IL‑6, and TNF. RNA was isolated from 
small intestinal and colonic tissue using Isol-RNA Lysis Reagent (5 Prime GmbH, Hamburg, Germany) accord-
ing to the manufacturer’s instructions. RNA was analyzed using a NanoDrop (Thermo Scientific, Wilmington, 
DE, USA) to determine the concentration and purity. All RNA samples had an A260/A280 ratio > 1.8, suggesting 
adequate purity.

Complementary DNA (cDNA) was synthesized by an M-MLV Reverse Transcriptase kit (Sigma-Aldrich, 
Taufkirchen, Germany) according to the manufacturer’s instructions. RT-PCR analysis was performed using 
TaqMan Universal Master mix II with no UNG (Applied Biosystems, Foster City, CA, USA) and TaqMan 
Gene Expression Assays for DMBT1 (Mm00455996), IL-1β (Mm00434228), IL-6 (Mm00446190), and TNF 
(Mm00443258) (Applied Biosystems, Foster City, CA, USA).

A pilot study was conducted to establish the appropriate endogenous control, and glyceraldehyde 3-phosphate 
dehydrogenase (Gapdh, Mm99999915) was selected due to its high and consistent expression in different groups.

Reactions were performed in duplicate by a blinded researcher using a StepOnePlus real-time PCR system 
(Applied Biosystems, Foster City, CA, USA). mRNA expression was determined relative to that of Gapdh using 
the  2−ΔΔCt method and expressed as the fold change. qRT-PCR data were normalized to the data obtained from 
the WT Saline D3 or D7 group using the GeNorm  method42.

Histological preparation and evaluation. The samples for histological analysis were fixed for 24 h in 
4% formaldehyde in aqueous solution (VWR chemicals, Leuven, Belgium), transferred to PBS with 0.05%  NaN3 
and stored at 4 °C until paraffin embedding and sectioning. The evaluation of tissue architecture and inflamma-
tory activity was performed on H&E-stained tissue. The tissue was also stained for CD45 (Rat Anti-Mouse 30F11 
antibody, BD Pharmingen, Albertslund, Denmark) and Ki67 (SP6, Rabbit Monoclonal Antibody, Cell Marque, 
Rocklin, California, USA), which aided in the evaluation of histologic damage, and for DMBT1 (GP340, rabbit 
polyclonal antibody, created in-house17. The histological evaluation was performed using three cross-sections 
obtained at 3 mm intervals from each intestinal segment. The H&E-stained slides were scanned and analyzed 
using NDP.view2 (NanoZoomer Digital Pathology, Hamamatsu Photonics, Japan).

The degree of intestinal inflammation, tissue damage, villous atrophy, and crypt hyperplasia were assessed 
using scoring methods for the small intestine modified from Kaczmarek et al.43 and de Koning et al.44. Small 
intestinal tissue was scored from 0 to 4 based on inflammatory cell infiltration and intestinal architecture, with 
a higher score representing increased severity. Villus height was measured from the villus-crypt junction to the 
villus tip in villi from a single layer of epithelial cells cut through the nuclei around the villus. Crypt depth was 
measured from the base of the crypt to the villus-crypt junction in crypts with open lumens and a continuous 
cell column on each side. Villus height and crypt depth were measured by a blinded researcher.

Colonic tissue was evaluated according to the method described in Kim et al.45. Scores ranged from 0 to 5 
based on inflammatory cell infiltration, epithelial changes, and mucosal architecture. A higher score represented 
more severe damage. Scoring was based on H&E-stained tissue and either CD45-stained slides (which aided in 
the evaluation of inflammation) or Ki67-stained slides (which aided in the evaluation of epithelial hyperplasia). 
All histological evaluations were performed under supervision of by a blinded gastrointestinal pathologist.

Statistical analysis. The Kruskal–Wallis test with Dunn’s correction was used to analyze weight loss, the 
levels of citrulline, expression of DMBT1, expression of proinflammatory cytokines, and histologic damage 
score. One-way ANOVA with Sidak’s test was used to analyze the intestinal length, villus height and crypt depth. 
Normality was determined using the Shapiro Wilks-W test and visually inspected using Q–Q-plots. The alpha 
level for all tests was 0.05. A p-value < 0.05 was considered significant. All data are presented as the mean ± stand-
ard error of the mean (SEM). All tests were performed with GraphPad Prism (version 8.3.1; GraphPad Software, 
La Jolla, CA).
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lines and regulations approved by the Danish National Committee on Animal Experimentation. The manuscript 
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