
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:14686  | https://doi.org/10.1038/s41598-021-94071-1

www.nature.com/scientificreports

3D brain tumor segmentation 
using a two‑stage optimal mass 
transport algorithm
Wen‑Wei Lin1,7, Cheng Juang2,7, Mei‑Heng Yueh3,7, Tsung‑Ming Huang3*, Tiexiang Li4,5*, 
Sheng Wang1 & Shing‑Tung Yau6

Optimal mass transport (OMT) theory, the goal of which is to move any irregular 3D object (i.e., 
the brain) without causing significant distortion, is used to preprocess brain tumor datasets for the 
first time in this paper. The first stage of a two‑stage OMT (TSOMT) procedure transforms the brain 
into a unit solid ball. The second stage transforms the unit ball into a cube, as it is easier to apply 
a 3D convolutional neural network to rectangular coordinates. Small variations in the local mass‑
measure stretch ratio among all the brain tumor datasets confirm the robustness of the transform. 
Additionally, the distortion is kept at a minimum with a reasonable transport cost. The original 
240× 240× 155× 4 dataset is thus reduced to a cube of 128× 128× 128× 4 , which is a 76.6% 
reduction in the total number of voxels, without losing much detail. Three typical U‑Nets are trained 
separately to predict the whole tumor (WT), tumor core (TC), and enhanced tumor (ET) from the cube. 
An impressive training accuracy of 0.9822 in the WT cube is achieved at 400 epochs. An inverse TSOMT 
method is applied to the predicted cube to obtain the brain results. The conversion loss from the 
TSOMT method to the inverse TSOMT method is found to be less than one percent. For training, good 
Dice scores (0.9781 for the WT, 0.9637 for the TC, and 0.9305 for the ET) can be obtained. Significant 
improvements in brain tumor detection and the segmentation accuracy are achieved. For testing, 
postprocessing (rotation) is added to the TSOMT, U‑Net prediction, and inverse TSOMT methods 
for an accuracy improvement of one to two percent. It takes 200 seconds to complete the whole 
segmentation process on each new brain tumor dataset.

The introduction of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)1–3 has generated 
enormous research interest in the image processing and machine learning (ML) community, as has the BRATS 
challenge, which is held regularly (for a comprehensive review,  see4). This dataset, created by a group of distin-
guished neurologists, has quickly become one of the leading medical datasets due to its openness, robustness 
and regular maintenance. Accordingly, the automated segmentation of brain tumors, which would greatly ben-
efit patients, has been sought by many researchers. In the early stage, top-rank performers used random forest 
 classification5–7. Later, a convolutional neural network (CNN), with two layers proposed by Zikic et al.8 and a 
CNN with eight layers proposed by Randhawa et al.9, gained traction. More sophisticated CNN structures are 
being developed. Ronneberger et al.10 first introduced U-Net. Kamnitsas et al.11 presented an ensemble of multiple 
models and architectures, which consists of two fully convolutional networks (FCNs) and a U-Net. Isensee et al.12 
have also shown the resiliency of the U-Net model, which is the most widely used model in the BRATS challenge.

It is expected that a 3D CNN produces a higher accuracy than its 2D counterpart because valuable informa-
tion along the z-axis is taken into  consideration4,13. However, the GPU memory constraint is the main  issue14 
given that the size of each BRATS image is 240× 240× 155× 4 , which represent the x, y, and z coordinates 
of the brain scan and the 4 scan modalities [fluid-attenuated inversion recovery (FLAIR), T1-weighted (T1), 
T1-weighted contrast-enhanced (T1CE), and T2-weighted (T2) magnetic resonance imaging (MRI)], respec-
tively. To address the problem of memory shortage in 3D operations, Casamitjana et al.15 applied a 3D U-Net 
using data reshaped to 140× 140× 140 , which suits the memory limit. However, by reducing its dimensionality, 
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detailed information could be lost. Isensee et al.16 trained their network using a randomly sampled patch size 
of 128× 128× 128 with 16  filters10, which are expected to cover entire regions of size 240× 240× 155 . This 
approach has the benefit of retaining all of the information but needs more voxels than the original images. Thus, 
properly addressing the 3D structure is crucial for the implementation of 3D segmentation.

The optimal mass transport (OMT) theory has widely been applied in various fields, such as image 
 processing17–19, data  compression20 and generative adversarial  networks21. The OMT problem, a pioneering 
work that considers minimizing the transportation cost to move a pile of solid mass from one place to another 
without losing any detail, was first raised by Monge in 1781  (see22 for details). In 1948, in light of the linear pro-
gramming technique,  Kantorovich23 relaxed the transport map to a transport scheme/plan by a joint probability 
distribution and first proved the existence and uniqueness of the OMT problem. Due to their excellent work in 
the optimal allocation of scare resources, Kantorovich and Koopmans shared the Nobel Prize in Economics in 
1975. Then, in 1991,  Brenier24 began studying the characteristics, uniqueness and existence of the OMT map 
and developed an alternative scheme for solving the OMT problem with a quadratic distance as the cost func-
tion for a special class of convex domains. Compared to the Monge–Kantorovich approach, the Monge-Brenier 
optimization method can significantly reduce the number of unknown variables from O(n2) to O(n), where n is 
the number of discretized sample points on the target domain and can solve the optimal transport map via the 
gradient descent method of a special convex function. For the theoretical OMT problem, in the 1990s,  Caffarelli25 
solved the regularity condition of the OMT map. Ganbo and  McCann26 proposed the geometric interpretation 
of the OMT problem, and  Evans27 expressed the OMT problem via partial differential equations (PDEs). A very 
nice review “Optimal Transport: Old and New” summarizing the contributions of predecessors was published by 
 Villani28. For the numerical OMT problem, in 2017, Su et al.29 proposed a volume-preserving mesh parameteriza-
tion between a simply connected 3D tetrahedral mesh M with a boundary of the genus zero surface and a unit 
solid ball B3 . The related algorithm  in29 was designed to first compute the volumetric harmonic map between M 
and B3 and then, based on the newly discovered variational  principle30, to compute the OMT map via Brenier’s 
 approach24. However, the first step  in29 for the computation of a harmonic map from M to B3 is not satisfied 
with an OMT map. Very recently, in 2019, Yueh et al.31 proposed a novel algorithm for the volume-preserving 
parameterization from M to B3 by minimizing the volumetric stretch energy by modifying the Laplacian matrix 
with the current volume-stretching factor at each iteration step. However, there are infinitely many volume-
preserving maps between M and B3 . The resulting map  by31 is, in general, not an OMT map from M to B3.

In this work, the applicability of moving a solid (brain or any human organ) from one place to another is 
investigated. A two-stage OMT (TSOMT) procedure is carried out prior to 3D U-Net training and inference. 
Step one is to transform the brain into a unit solid ball to ensure the convergence of the OMT. Since implement-
ing a 3D CNN on spherical coordinates is complicated, step two is to transform the unit ball to a cube of size 
128× 128× 128 . Rather than the threefold increase in the number of voxels in another 3D U-Net  approach16, 
we decrease the total number of voxels by 76.6% . It is our belief that with fewer voxels, 3D U-Net training 
can easily find a local minimum and thus achieve a better performance. After applying the 3D U-Net to this 
128× 128× 128 cube, the inverse TSOMT returns the dimension to 240× 240× 155 . In doing so, without los-
ing much detail, the complexity of the 3D U-Net training is greatly reduced. Task01_BrainTumor, which 
describes a subset of the data used in the BRATS 2016 and BRATS 2017 challenges, is the Brain Tumor dataset 
included in the Medical Segmentation Decathlon (MSD)  Challenge32,33. In this paper, 484 3D brain images from 
the training set of Task01_BrainTumor are divided into training, validation and testing sets comprising 
400, 29 and 55 samples, respectively. Training Dice scores of 0.9781, 0.9637, and 0.9305 and testing Dice scores 
of 0.9202, 0.8794, and 0.8420 can be achieved at 400 epochs for the whole tumor (WT), tumor core (TC), and 
enhanced tumor (ET) predictions, respectively.

Our contributions. The TSOMT procedure maps irregular 3D brain images to a 3D cube with minimal 
distortion to facilitate the input format of the ML program. The combination of using the TSOMT method and 
3D U-Net in the training step, to the best of our knowledge, greatly surpasses previous methods. The idea here 
is that the transformation preserves the global features of the data, unlike other previous methods. The main 
contributions of this paper are summarized as follows.

• The properties of our proposed TSOMT and inverse TSOMT methods are thoroughly examined, including 
their abilities to control the density, preserve the local mass, and minimize both the transportation cost and 
the conversion loss, when mapping an irregular 3D brain image into a canonical 3D cube. The density can 
be enlarged by contrast-enhanced histogram equalization to make the various tumors more detectable by 
the 3D U-Net algorithm. The small standard deviation (SD) in the local mass ratios of the TSOMT for 484 
samples in the MSD Challenge shows the robustness of the transport methods.

• An MRI brain image in the MSD Challenge is described by a 240× 240× 155× 4 tensor. In contrast, the 
TSOMT method uses only a 128× 128× 128× 4 tensor to optimally express all the effective information of a 
brain image, as a large amount of air in the original raw data is completely excluded by the TSOMT deforma-
tion. The selection of a 128× 128× 128 cube has three advantages: (i) it matches the physical distance among 
the voxels of the brain image scanned by MRI; (ii) the conversion loss of a 3D brain image between TSOMT 
and the 128× 128× 128 cube is only 0.5% , which is satisfactory and appropriate for 3D U-Net training; and 
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(iii) using the U-Net algorithm to target hundreds of training brain images on a workstation equipped with 
MATLAB in four NVIDIA Tesla V100S 32 GB GPUs satisfactorily considers the limited memory capacity.

• The TSOMT technique differs from the method developed by Isensee et al.12,16,34 in that a 3D brain image 
is covered with 16 randomly selected 128× 128× 128 cubes. The overlapping tile  strategy10 uses several 
subvoxels as inputs to achieve the seamless segmentation of arbitrarily large images. If each voxel consumes 
1 byte, then the size of the input data for one brain image using the  method12,16,34 would be 32 MB. On the 
other hand, the TSOMT method transforms each brain image into a 128× 128× 128 cube that consumes 2 
MB, which is more economical in terms of the input size and frees up considerable capacity with which to 
increase the augmented data using different resources to achieve more accurate and effective results.

• Via the various density settings of the brain image and the rotations of the unit solid ball, each 3D brain image 
can be used to construct several different augmented tensors. Numerical experiments demonstrate that the 
Dice scores of the WT, TC, and ET are improved by such augmented data, as shown in Fig. 7. Furthermore, 
since the TSOMT procedure can skillfully represent the global information of a brain image, we also propose 
a postprocessing scheme by applying the mirroring and rotation techniques to increase the Dice scores of 
the WT, TC, and ET. The numerical results demonstrate that this postprocessing scheme can improve the 
associated Dice scores by one to two percent.

• We implement the TSOMT method and the U-Net algorithm on the MSD Challenge dataset and verify the 
bias (underfit) and variance (overfit) of the learning algorithm, as shown in Fig. 6. The optimal number of 
epochs is between 45 and 55. Furthermore, numerical experiments show that after 400 epochs, the train-
ing and testing Dice scores reach 0.9781 and 0.9202, respectively, for the WT. The TSOMT and 3D U-Net 
approaches significantly improve the accuracy of brain tumor detection and segmentation. For each testing 
case, the TSOMT, U-Net inference, inverse TSOMT, and postprocessing steps can be accomplished in fewer 
than 200 seconds.

The remainder of this paper is organized as follows.  “OMT formulation and preprocessing” details the OMT 
formulation, including problem statements, numerical algorithms, TSOMT maps and their related properties. 
The detailed numerical results of the TSOMT are shown in  “Convergence verification and conversion loss of 
the TSOMT map”.  “Training setup” shows the U-Net structure and evaluation criterion. The training and test-
ing results are discussed in “Results and discussion”. Finally, “Conclusions”  summarizes the results and outlines 
further research directions.

OMT formulation and preprocessing
The OMT problem. We now state the classical OMT problem raised by  Monge22. Let (X,µ) and (Y , ν) be two 
measurable spaces with probability measures µ and ν , respectively, having the same total mass 

∫

X dµ =
∫

Y dν . 
A map T : X → Y  is said to be mass-preserving if µ(A) = ν(T(A)) and µ(T−1(B)) = ν(B) for all measurable 
sets A ⊆ X and B ⊆ Y  , respectively. Let Fµ,ν denote the set of all mass-preserving maps from X to Y. For a given 
transport cost function κ : X × Y → R , the OMT problem with respect to κ is to find T∗ ∈ Fµ,ν that minimizes 
the optimization problem

Discrete OMT problem. The original OMT problem (1) raised by Monge does not necessarily contain 
an optimal solution. Kantorovich relaxed the transport map and first proved the existence and uniqueness of 
the optimal transport map. However, the relaxed approach of Kantorovich may result in a non-bijective map. 
In practical applications, the OMT map must be a bijective map. Thus, we should return to the original OMT 
problem to develop an efficient, reliable and robust numerical method. A discrete version of the OMT problem 
is described as follows.

Let (M, ρ) be a 3-manifold with a spherical boundary and a density map ρ on V(M) , where M is a tetrahedral 
mesh composed of an ordered vertex set V(M) , an edge set E(M) , a triangular face set F(M) and a tetrahedron 
set T (M) . Let (B3, δ) be a unit solid ball with a constant density function δ ≡ 1 . We further define the piecewise 
linear density function of ρ on T (M) and F(M) by 

for a given density ρ(v) for v ∈ V(M) . Furthermore, we define the local mass and local area measure at v ∈ V(M) 
by

(1)T∗ = argmin
T∈Fµ,ν

∫

X
κ(x,T(x)) dµ ∈ Fµ,ν .

(2a)ρ(τ) = 1

4

4
∑

i=1

ρ(vi), vi ∈ V(τ ), τ ∈ T (M), ρ(α) = 1

3

3
∑

i=1

ρ(vi), vi ∈ V(α), α ∈ F(M)

(2b)mρ(v) :=
1

4
ρ(v)

∑

v⊂τ

|τ |, τ ∈ T (M), aρ(v) :=
1

3
ρ(v)

∑

v⊂α

|α|, α ∈ F(M),
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 respectively, where |τ | is the volume of τ and |α| is the area of α . Denote Fρ as the set of all mass-preserving 
simplicial maps fρ : M → B

3 with respect to ρ satisfying ρ(τ)|τ | = δ|fρ(τ )| = |fρ(τ )| for each τ ∈ T (M) and 
fρ(τ ) ∈ T (B3) . Note that the linear simplicial bijective map between τ and fρ(τ ) is given by the barycentric 
coordinates on the tetrahedron τ . The discrete OMT problem with respect to the 2-norm � · �2 is to find an 
f ∗ρ ∈ Fρ that solves the optimization problem

where mρ(v) is the local mass at vertex v ∈ V(M) as in (2b) and Tc(fρ) is the transport cost of fρ.
It is easily seen that the set Fρ is convex from the definition

where � ∈ [0, 1] for f1, f2 ∈ Fρ and τ ∈ T (M) . The projected gradient method is a natural consideration for 
solving the discrete OMT problem (3). However, because the size of V(M) is too large and the projection on Fρ 
requires solving some highly nonlinear functions, we are motivated to propose a further thought. We now intro-
duce the computational method for the discrete OMT problem (3). Without loss of generality, each tetrahedral 
mesh M is centralized and normalized so that the center of mass is located at the origin and the volume is 43π.

Numerical OMT algorithm. In this subsection, we first develop an area-measure-preserving method for 
solving the OMT problem from the boundary ∂M to a unit ball. Then, using such a ball area-preserving OMT 
map as an initial boundary map, we develop a homotopy method to compute the desired mass-measure-pre-
serving OMT map.

(i) Discrete OMT problem on ∂M : To minimize the size of the variables in (3), we first consider solving the 
OMT problem on ∂M . In detail, the area-measure-preserving piecewise linear map f |∂M ≡ g : ∂M → S

2 (a 
unit ball) with g(vi) := gi ≡ (g1i , g

2
i , g

3
i )

⊤ ∈ S
2 , vi ∈ V(∂M) , i = 1, . . . , nB := #V(∂M) , for the OMT problem 

on ∂M is iteratively used to minimize the area energy functional

where gℓ = [gℓ1, . . . , gℓnB ]
⊤ , ℓ = 1, 2, 3 , aρ(vi) is defined in (2b), � is a regularization parameter, and LA(g) is the 

area-weighted Laplacian matrix, similar to that of the stretch energy minimization  algorithm35, such that

where σg−1(α) = ρ(α)|α|
|g(α)|  , which is dependent on ρ , is the area-measure stretch factor of g on triangular face 

α ∈ F(∂M) with ρ(α) defined in (2a) and θi,j(g) and θj,i(g) are two angles opposite to edge g([vi , vj]).
The first term in (4) is designed to smooth the iterative vector g to avoid the occurrence of folding so that 

the resulting map g is as bijective as possible. The coefficients of LA(g) in (5) are modified by imposing the area-
measure stretch factor σg−1(α) for α ∈ F(∂M) in the denominator. It is expected that the area ratio σg−1(α) 
between ρ(α)|α| and |g(α)| is close to one for all α ∈ F(∂M) when the iteration (4) converges. The second term 
in (4) with the regularization parameter � is required to minimize the sum of the distances between vi and g(vi) 
for all vi ∈ V(∂M).

Algorithm 1 computes the discrete OMT on ∂M . The steps 1–10 of Algorithm 1 provide an initial spherical 
area-measure-preserving map g , similar to the stretch energy minimization  algorithm31. To minimize the energy 
functional (4) and achieve the spherical image constraint, we apply the stereographic projection

to map the spherical image of g onto the extended complex plane C . The vertices vi ∈ V(∂M) are also projected 
by ui := �S2(vi/�vi�2) , i = 1, . . . , nB . Then, the energy functional (4) is optimized on C by alternatingly solving 
h on the unit disk in association with the southern hemisphere and the inversion of the northern hemisphere 
in steps 13–18 of Algorithm 1.

(3)f ∗ρ = argmin
fρ∈Fρ

∑

v∈V(M)

�v − fρ(v)�22 mρ(v) ≡ argmin
fρ∈Fρ

Tc(fρ),

|(�f1 + (1− �)f2)(τ )| := �|f1(τ )| + (1− �)|f2(τ )| = ρ(τ)|τ |,

(4)EA(g) =
3

∑

ℓ=1

∥

∥

∥
LA(g) g

ℓ
∥

∥

∥

2

2
+ �

∑

vi∈V(∂M)

∥

∥

∥

∥

gi −
vi

�vi�2

∥

∥

∥

∥

2

2

aρ(vi),

(5)[LA(g)]i,j =















− 1
2

�

cot (θi,j(g))
σg−1([vi ,vj ,vk])

+ cot (θj,i(g))
σg−1([vj ,vi ,vℓ])

�

if [vi , vj] ∈ E(∂M),
�

ℓ�=i −[LA(g)]i,ℓ if j = i,

0 otherwise

(6)hi := �S2(gi) :=
g1i

1− g3i
+

√
−1

g2i
1− g3i

, i = 1, . . . , nB,
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(ii) Homotopy method for the OMT problem on M : We now construct a homotopy gt : ∂M → R
3 for the 

boundary map by

To find the interior map that minimizes the cost (3), we start from the identity map and consecutively update 
the interior with the boundary map given by gt . Let

be the uniform partition of the interval [0, 1] into p subintervals. For k = 1, . . . , p , we compute the interior map 
by solving the linear system

where f (0) ≡ id and LV (f ) is the mass-weighted Laplacian matrix, similar to the volumetric stretch energy 
minimization  algorithm31, such that 

in which, as in the  literature31,35–37,

 is the modified cotangent weight, where θk,ℓi,j (f ) is the dihedral angle between f ([vi , vk , vℓ]) and f ([vj , vℓ, vk]) in 
tetrahedron f ([vi , vj , vk , vℓ]) . Then, the map f (p) : M → B

3 is the desired OMT map f ∗ρ .
The detailed steps are summarized in Algorithm 2.

gt(v) = (1− t)v + tg(v), for v ∈ V(∂M), t ∈ [0, 1].

(7)[0, 1]p = {0 = t0 < t1 < · · · < tp = 1}

[LV (f (k−1))]I,If (k)I
= −[LV (f (k−1))]I,B[gtk (v)]v∈V(∂M),

(8a)[LV (f )]i,j =







−wi,j(f ), if [vi , vj] ∈ E(M)
�

ℓ�=i wi,ℓ(f ), if i = j,

0, otherwise

(8b)
wi,j(f ) =

1

9

∑

τ ∈ T (M)

[vi , vj] ∪ [vk , vℓ] ⊂ τ

[vi , vj] ∩ [vk , vℓ] = ∅

|f ([vi , vk , vℓ])||f ([vj , vℓ, vk])| cos θk,ℓi,j (f )

ρ(τ)|τ |
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3D brain images with a discrete structure. All 3D brain images in the MSD Challenge have 
240× 240× 155 voxels, and the irregular 3D brains, on average, account for approximately 16% (between 12% 
and 20%) of all voxels. However, because of the limitation of the computer’s capacity, the tensor input of the 
U-Net  algorithm38 is restricted by 128× 128× 128 voxels, which is undoubtedly a bottleneck for applying the 
U-Net algorithm to train the 3D brain images for brain tumor segmentation. The most intuitive first thought is to 
partition the original brain image into several small cubes with 128× 128× 128 voxels or randomly select some 
small cubes to cover the brain image. In the former, some cubes contain images from the outside of the brain that 
do not contribute too much to the segmentation training, while in the latter, some cubes have an overlapping 
area that contains local and partially repeated information, which reduces the segmentation training accuracy. 
These shortcomings motivated us to introduce the OMT method.

A 3D MRI brain image can be represented as grayscale values in [0, 1] for each grid point (the center of a 
voxel) of a cuboid I  with rectangular grids 240× 240× 155 . If we systematically partition I  into Delaunay 
tetrahedral meshes with vertices as grid points of I  , then a 3D image can further be represented as a piecewise 
linear map ϕ : I → [0, 1] defined by the barycentric coordinates on tetrahedrons. A real 3D brain image can be 
constructed by a tetrahedral mesh M ⊆ I  composed of an ordered vertex set V(M) , an edge set E(M) , a trian-
gular face set F(M) and a tetrahedron set T (M) . Each vertex v ∈ M ⊂ I  can be equipped with a density value

As above, the piecewise linear density function ρ(τ) on T (M) and the local mass mρ(v) at v ∈ V(M) are 
given in (2a) and (2b), respectively.

Two‑stage OMT map. Let (M, ρ) be a 3D brain image with density function ρ and (N , δ ≡ 1) be a solid 
cube with constant density δ ≡ 1 . The canonical 3D cube N  is typically suitable for the tensor input of the U-Net 
algorithm. However, it is difficult to find an OMT map from (M, ρ) to (N , δ) directly. The main reason is that 
cube N  is not in a spherically symmetric domain, so the stereographic projection cannot be used. Therefore, the 
iteration for minimizing the area energy of (4) exhibits an oscillating behavior and cannot converge. In addition, 
it is not easy to directly find mass-preserving OMT maps f between any two 3-manifolds (M,µ) and (N , ν) 
because the mass stretch factor ( µ(τ)|τ |)/(ν(τ )|f (τ )|) , for τ ∈ T (M) , has difficulty converging to one. Hence, 
we propose a TSOMT map f ∗ρ,δ ≡ f ∗

−1

δ ◦ f ∗ρ  (see Fig. 1a) to transform M into N  , where f ∗ρ  is obtained by (3) 
and f ∗δ  solves the OMT problem

satisfying |τ ′| = |f ∗δ (τ ′)| , for all τ ′ ∈ T ′(N ) . Here, T ′(N ) denotes the Delaunay tetrahedral meshes for cube N  . 
We now show that f ∗ρ,δ preserves the local mass stretch factor (ρ(τ)|τ |)/|f ∗ρ,δ(τ )| to be one. In light of Fig. 1b, 
we have

(9)ρ(v) := exp(ϕ(v)).

f ∗δ = argmin
fδ∈Fδ

∑

v∈V(N )

�v − fδ(v)�22 mδ(v)

ρ(τ)|τ | = |f ∗ρ (τ )| =
∑

τ ′∈T ′(N )

|f ∗ρ (τ ) ∩ f ∗δ (τ
′)| =

∑

τ ′∈T ′(N )

|f ∗δ ◦ f ∗−1

δ

(

f ∗ρ (τ ) ∩ f ∗δ (τ
′)
)

|

=
∑

τ ′∈T ′(N )

|f ∗δ
(

f ∗ρ,δ(τ ) ∩ τ ′
)

| (Since f ∗ρ,δ = f ∗
−1

δ ◦ f ∗ρ )

=
∑

τ ′∈T ′(N )

|f ∗ρ,δ(τ ) ∩ τ ′| (Since |f ∗δ (τ ′)| = |τ ′|)

= |f ∗ρ,δ(τ )|,



7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:14686  | https://doi.org/10.1038/s41598-021-94071-1

www.nature.com/scientificreports/

for τ ∈ T (M) , which implies that f ∗ρ,δ is a mass-preserving map with δ = 1.
The main purpose of the OMT problem is to find a mass-preserving map between a 3-manifold with a spheri-

cal boundary and a unit solid ball while keeping the deformation between the two manifolds as small as possible. 
Although we want to seek an OMT map from a 3-manifold to a cube, because the numerical convergence tech-
nique does not support this issue, we must first find the OMT map from the 3-manifold to the unit ball. Fortu-
nately, an OMT map from a 3-manifold to a cube can be cleverly obtained by composing the OMT map from the 
3-manifold to the unit ball with the inverse OMT map f ∗−1

δ  from the unit ball to the cube, as shown in Fig. 1a.

Advantages of the TSOMT map. The TSOMT map f ∗ρ,δ : M → N  is the key issue for tumor segmen-
tation in 3D brain images by using U-Net38. It has the following three advantages. (i) The TSOMT technique 
unifiedly converts each 3D brain image while keeping the minimal deformation and preserving the local mass 
into a canonical 3D cube uniformly remeshed by n× n× n . This cube is typically suitable for the tensor input 
of the U-Net algorithm (see the following subsection for the conversion loss). Furthermore, the mesh grid of 
the cube can be easily refined or coarsened depending on the accuracy requirement. (ii) The map f ∗ρ,δ between 
the 3D cube N  and the brain M , as in Fig. 1, is a one-to-one map. It can skillfully represent the global informa-
tion of a brain image and provide a more complete density distribution to the supervised learning algorithm, 
which can train the prediction function to be more accurate. In contrast, the other methods that randomly select 
several small cubes to cover the brain  image34 or sliding window combined with the intersection over union 
technique can express only the local information and reduce the accuracy improvement due to multiple overlap-
ping regions. (iii) The tumor volume with lesions in the brain, in general, accounts for less than one-tenth of the 
total brain volume. In the supervised learning training data, there is an imbalance between the labeled tumor 
area and unlabeled healthy area. This phenomenon has a great impact on the intensity of supervised learning. 
Fortunately, the local measure ρ(τ)|τ | = |f ∗ρ,δ(τ )| in the TSOMT map is preserved for τ ∈ T (M) . This means 
that the density ρ(τ) in the tumor is relatively large, and then the local volume in the cube is also relatively large 
and contains more mesh points; as a result, the tumor and healthy regions in the cube are more balanced, and 
the disease region can be more accurately determined.

Since the OMT problem is highly nonlinear, a strict mathematical proof is still lacking, but a numerical verifi-
cation indicates that the computed OMT map is almost one-to-one, and tetrahedral flipping rarely occurs. It can 
be reasonably asserted that the TSOMT map between the brain image and the cube preserves the local mass and 
keeps the global information of the density distribution. The resulting cube can easily be uniformly remeshed 
by n× n× n as an input for the U-Net. Based on these advantages, we believe that the TSOMT map provides a 
more effective tensor input for the U-Net algorithm, which will inevitably obtain more accurate training results 
than the other existing methods.

Figure 1.  (a) A diagram illustrating the construction of the TSOMT map f ∗ρ,δ between (M, ρ) and (N , δ ≡ 1) , 
where M , N  , and B3 are a 3D brain image, a 3D solid cube, and a 3D unit solid ball, respectively. (b) The 
bijective and linear simplicial map f ∗ρ : τ ∈ T (M) → f ∗ρ (τ ) ∈ T (B3) , f ∗δ : τ ′ ∈ T ′(N ) → f ∗δ (τ

′) ∈ T ′(B3) , 
and f ∗ρ,δ : τ ∈ T (M) → f ∗ρ,δ(τ ) ∈ T (N ).



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:14686  | https://doi.org/10.1038/s41598-021-94071-1

www.nature.com/scientificreports/

Convergence verification and conversion loss of the TSOMT map
Verification criterion of convergence. To better understand the convergence behavior of the OMT algo-
rithm, we introduce a global distortion measurement for the accuracy of a mass-preserving map f by the total 
mass-measure distortion defined as

The smaller DM(f ) is, the better the mass preservation of f. In addition, to express the local distortion of the 
map f computed by the OMT algorithm, we define the local mass-measure stretch ratio RM of f at a vertex v as

The closer RM(f , v) is to one, the better the mass preservation of f at v.
Furthermore, we verify the bijectivity of the computed OMT map by checking the number of folded tetra-

hedrons. A map f is bijective if the number of folded tetrahedrons in T (f (M)) is zero. In general, the convex 
combination maps on 3-manifolds cannot guarantee  bijectivity39. The ideal way to illustrate the bijectivity is to 
numerically check the bijectivity rate of the map defined as

The method for checking folded tetrahedrons can be found in the  literature31.

Four views of the data structures of the training and validation sets. As in a typical medical data-
base, in the MSD Challenge dataset, each brain has four modalities from multiscan views: (i) FLAIR for the WT; 
(ii) T1 and (iii) T1CE for the ET; and (iv) T2 for the TC.

Let {Ii}4i=1 be four cuboids with grids 240× 240× 155 denoting the four-view discrete structures of a 3D brain 
M composed of a single cuboid L with grids 240× 240× 155 labeled by ℓ(v) ∈ {0, 1, 2, 3} on each voxel v in L . 
The original grayscale value of each grid point (the center of a voxel) of {Ii}4i=1 is a nonnegative integer, usually 
ranging between 0 and 4000. The standard grayscale value of each vertex (the center of voxel) of Ii can easily be 
normalized by (grayscale value - mean)/variance and a suitable shift into the interval [0, 1]. Let ϕi : Ii → [0, 1] 
be the associated piecewise linear map by the barycentric coordinate and {Mi}4i=1 be the brain images of the ith 
view corresponding to FLAIR, T1, T1CE and T2, respectively.

To clearly distinguish between tumor and nontumor regions in the brain, it is recommended that the standard 
grayscale of Ii is enhanced by the histogram equalization  algorithm40. Since the grayscale of I1 for FLAIR has 
a clearer gap between tumors and nontumors, to save computational costs, we enhance the standard grayscale 
of I1  by40 and obtain the contrast-enhancing grayscale ϕ̃1 : I1 → [0, 1] . Then, we only construct the OMT map 
with ϕ̃1 and share this OMT with four views: FLAIR, T1, T1CE, T2. As in (9) we define ρ̃1(v) := exp(ϕ̃1(v))) for 
each vertex v ∈ M1 and construct the TSOMT map

with N  being a cube, as in Fig. 1. Let {Ni}4i=1 and L̂ be cubes remeshed by the uniform grid points n× n× n . We 
consider the following map in Fig. 2 and define the grayscale values and labels on N1 ×N2 ×N3 ×N4 × L̂ by

where w is the center of a voxel in {Ni}4i=1 or L̂ . Then, N1 ×N2 ×N3 ×N4 × L̂ typically forms effective training 
input data for the U-Net algorithm based on a set comprising an n× n× n× 4 tensor and an n× n× n label.

Numerical convergence of the TSOMT map. We test 484 3D brain images from the MSD Challenge 
dataset and compute the OMT maps f ∗ρ  and f ∗δ  with n = 128 and ρ = ρ̃1 by the numerical OMT algorithm. For 
a typical 3D brain image, say no. 021, in Fig. 3a, we show the corresponding transport costs Tc(fρ) of (3) in the 
OMT map f ∗ρ  in blue and the total mass-measure distortions DM(fρ) of (10) in red vs. the number of partitions 
p in (7). We see that as p increases, the transport cost increases, while the total mass-measure distortion DM(fρ) 
decreases. The reasons are that (i) when p increases and becomes sufficiently large, the boundary map of homot-
opy becomes very fine, which makes the ratio maxτ∈T (M) ρ(τ )|τ |/|fρ(τ )| closer to one and makes DM(fρ) 
undoubtedly smaller; (ii) On the other hand, when p decreases, the total mass-measure distortion constraint is 
more relaxed, which makes the corresponding transport cost smaller. The average of intersections of the blue line 
and the red line is roughly 8. In Fig. 3b, we plot the histogram of the local mass-measure stretch ratio RM(fρ , v) 
in (11) for p = 4, 8 and 12. We observe that the deviations in RM(fρ , v) show a downward trend for p from 4 to 
12. For more detail, in Table 1, we list the transport cost Tc(f

∗
ρ ) , the total distortion DM(f ∗ρ ) , the mean, the SD, 

and the number of foldings from 2.2× 105 vertices of M for p = 4, 8 and 12. We see that the transport cost and 

(10)DM(f ) = 1

4
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∣

∣

∣

∣

∣
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−
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∣
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∣
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)
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(13)f̃ ∗1 ≡ f ∗ρ̃1,δ : (M, ρ̃1) → (N , δ ≡ 1)

(14)
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∗−1
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−1
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∈ [0, 1]4 × {0, 1, 2, 3}
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the total distortion for p = 8 are between those for p = 4 and 12. Therefore, in practice, we reasonably choose 
p = 8 for the OMT algorithm.

To show that the map f ∗ρ,δ computed by the TSOMT algorithm with p = 8 always has satisfactory local dis-
tortions, as we expected, in Fig. 4, we show the mean and mean ± SD of the local mass-measure stretching ratio 
RM(f ∗ρ,δ , v) for each brain image. Here, RM(f ∗ρ,δ , v) is defined in (11) with f = f ∗ρ,δ . We see that the mean of 
RM(f ∗ρ,δ , v) is always extremely close to one, and the SD of RM(fρ,δ , v) is bounded by 0.112, which is satisfactory.

Furthermore, we verify the bijectivity of the computed TSOMT map by checking the bijectivity rate of the 
map in (12). It is worth noting that among all 484 maps computed by the TSOMT algorithm, the number of 
folded tetrahedrons f ∗ρ,δ(τ ) is at most 19, while the number of tetrahedrons of each mesh is at least more than 1 
million. As a result, the bijectivity rate of every TSOMT map is larger than 99.99% , which is quite satisfactory. 
Thanks to the large-scale bounded distortion  mappings41, the folded tetrahedrons can be modified and unfolded 
into 100% bijective mass-preserving maps by slightly sacrificing the total mass distortion.

Conversion loss between cubes and original brains. As in the previous section, the TSOMT map 
transforms irregular 3D brain images into cubes while preserving the local mass and minimizing the deforma-
tion, which makes the U-Net algorithm train an effective prediction function for brain tumor segmentation. 
Since the tensor cube is needed as the input for the U-Net, it is necessary to compare the conversion loss between 

Figure 2.  The TSOMT maps between 4-view brains and cubes with n = 128.

Figure 3.  (a) The transport costs Tc(fρ) and the total mass-measure distortions DM(fρ) vs. the number of 
partitions p of the homotopy method. (b) Histogram of the local mass-measure stretch ratio RM(fρ , v) when 
p = 4, 8 and 12 for no. 021.

Table 1.  No. 021: transport cost Tc(f
∗
ρ ) of (3), total mass-measure distortion DM(f ∗ρ ) of (10), mean, SD and 

number of folded tetrahedrons for p = 4, 8 and 12, respectively.

No. 021 p = 4 p = 8 p = 12

Transport cost Tc(f
∗
ρ ) 0.0976 0.1085 0.1157

Total distortion DM(f ∗ρ ) 0.0748 0.0430 0.0330

Mean 1.0001 0.9999 1.0002

Standard deviation (SD) 0.1348 0.0842 0.0680

Number of folded tetrahedrons 12 8 6
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the original brain images and cubes of various sizes. We first remesh the original brain with roughly 2× 105 
vertices, which is an appropriate magnitude for the stability of the accuracy.

Once the cuboid L̂ is labeled by ℓ̂(w) ∈ {0, 1, 2, 3} at each voxel center w in L̂ , we construct the associated 
conversion label set on a brain image M ⊆ L by using the inverse function f̃ ∗−1

1 ≡ f ∗
−1

ρ̃1,δ
 in (13) as follows:

• For a voxel v ∈ M ⊆ L , if there is a voxel center w ∈ L̂ such that f̃ ∗−1

1 (w) ∈ v, then v is labeled by ℓ̂(w);
• Otherwise, v is labeled by ℓ̂(ŵ) , where ŵ is a voxel center in L̂ and f̃ ∗−1

1 (ŵ) is the nearest point to the center 
of v.

Let A and B denote the label sets of the ground truth and the conversion tumors on M ⊆ L for the WT 
(labeled {1, 2, 3} ), TC (labeled {2, 3} ), and ET (labeled {3} ), respectively. We define the conversion loss by

where |A| denotes the cardinal number of A.
In Table 2, we display the averages of the conversion loss between brains and cubes as in (15) for the WT, 

TC, and ET of all 484 brain images in the MSD Challenge dataset with typical grid sizes of 963 and 1283 by the 
TSOMT map f ∗

ρ̃1,δ
.

We observe that the deformation of TSOMT-ρ̃1 with a cube size of 128× 128× 128 does not result in a 
considerable accuracy loss, and the maximum conversion loss for the ET is less than 0.77% . On the other hand, 
although a cube size of 96× 96× 96 would conserve considerable computational resources, the maximum con-
version loss for the ET is 3.65% , which is not conducive to constructing a good prediction function. Therefore, 
for training an effective prediction function by U-Net, we consciously take the input of the appropriate tensor 
size of 128× 128× 128 for the 3D U-Net algorithm.

Furthermore, in Table 3, we show the average percentages of the WT, TC, and ET in the original brain and 
in the cube by the TSOMT-ρ̃1 map with a grid size of 128× 128× 128 . For instance, the WT accounts for 7.16% 
of the raw data of the original brain. However, under the enhanced histogram  equalization40 of the grayscale 
and TSOMT-ρ̃1 maps, the WT is enhanced almost twofold in the cube, reaching 13.33% . Applying contrast 
enhancement to the grayscale  image40 indeed helps to better detect various tumors by the 3D U-Net algorithm.

Training setup
U‑Net structure. In this paper, we adopt the U-net algorithm, because medical images have blurred bound-
aries and complex gradients, more high-resolution information is required. High resolution is used for precise 
segmentation. The U-net  algorithm10,42 combines the low-resolution information (providing a basis for object 
category recognition) and the high-resolution information (providing a basis for precise segmentation and posi-
tioning), which is perfectly suitable for medical image segmentation.

(15)1− 2|A ∩ B|
|A| + |B| ,

Figure 4.  The mean (red) and mean ± SD (blue) of the local mass-measure stretch ratio of the TSOMT maps 
with p = 8 for each of the 484 brain images in the MSD Challenge dataset, as well as the averages of the means 
and ± SDs over the 484 images.

Table 2.  Conversion loss between brains and cubes with grid sizes of 963 and 1283 , respectively.

TSOMT-ρ̃1 WT (%) TC (%) ET (%)

Conversion loss for 963 1.87 2.06 3.65

Conversion loss for 1283 0.51 0.53 0.77
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To test the effectiveness of the OMT, a typical 3-layer U-Net  architecture10,42 is used. This network consists 
of three encoding stages with (128, 64, 32) filters and three decoding stages in reverse order with (32, 64, 128) 
filters. The main idea is to supplement the decoding stages through a bridge structure with its corresponding 
encoding stage, which increases the resolution of the output based on this extra information. It has been widely 
accepted that this bridge structure (encode-bridge-decode) is far better for segmentation applications than a 
simple encode-decode without bridge. In each encoding stage, there is a 3D CNN followed by batch normaliza-
tion (BN) and a rectified linear unit (ReLU) activation function, which often does not require dropout for regu-
larization. The same structure is also applied to the decoding and bridge stages. The last convolutional layer was 
followed by a fully connected layer, and the final layer of the CNN employed a softmax classifier with 2 output 
nodes for the 2 desired classes. Table 4 shows the total learnable parameters in each layer in the entire network.

A deep learning neural network learns to map a set of inputs to a set of outputs from training data using an 
optimization process that requires a loss function to calculate the model error. From Table 3, the tumor percent-
age is small even after OMT and enhances histogram equalization. A well-known deep learning loss function 
for highly unbalanced segmentations is adopted to ensure  convergence43,44:

where Y is the predicted probability, T is the ground truth, K is the number of classes, M is the number of ele-
ments along the first two dimensions of Y, and wk = (

∑M
m=1 Tkm)

−2.
The hyperparameters in the U-Nets are chosen as follows: Encoder Depth: 3; Initial Learning Rate: 

α0 = 1.0× 10−4 ; Learning Rate Drop Factor: F = 0.95 ; Learning Rate Drop Period: P = 10 ; L2-Regularization: 
1.0× 10−4 ; Minimum Batch Size: 8; Epoch: 400.

Data augmentation. Detecting malignant tumors in the brain and precise segmentation are difficult tasks 
in neurology because it is not easy to find enough well-labeled training datasets. In practice, these training data 
must be exactly diagnosed by a doctor, properly labeled, and deidentified. Therefore, a well-labeled training 
set for U-Net for detecting brain lesions is relatively small. Nevertheless, in ML, augmenting the amount of 
data is an effective way to improve the efficiency of U-Net training. U-Net usually requires multiview images 
of the same type but different angles for training. For example, the image of a tumor inside the brain is still a 
tumor after arbitrary rotation or mirroring. According to our experience, the Dice score will increase via simple 
data augmentations such as rotating, mirroring, shearing and cropping. As in (13), if we additionally construct 
f̃ ∗2 : (M, ρ2) → (N , δ ≡ 1) with ρ2 ≡ exp( 14

∑4
i=1 ϕi)) , where ϕ1, . . . ,ϕ4 are the piecewise linear maps corre-

sponding to FLAIR, T1, T1CE and T2, then f̃ ∗2  forms a mass-preserving TSOMT map from M to N  . Then, by 
{f̃ ∗i }2i=1 , we perform some data augmentation {N1,j ×N2,j ×N3,j ×N4,j × L̂j}2j=1 , as shown in Fig. 2. This data 
augmentation can be regarded as a perturbation of the size or shape of the brain tumor. It can effectively form an 
expanded dataset for our training process.

Loss = 1− 2
∑K

k=1 wk
∑M

m=1 YkmTkm
∑K

k=1 wk
∑M

m=1 Y
2
km + T2

km

,

αEp = α0 × (F)Ep/P, Ep = number of epochs.

Table 3.  The average percentages of the various types of tumors in the raw data with a size of 240× 240× 155 
and cubes with a size of 128× 128× 128 computed by the TSOMT-ρ̃1 algorithm.

WT (%) TC (%) ET (%)

Tumor in the raw data (240× 240× 155) 7.16 2.65 1.41

Tumor in the cube (128× 128× 128) 13.33 4.88 2.66

Table 4.  The number of learnable parameters in the each layer of a U-Net model.

Layer Dimension Learnable parameters

Encoder-1 128 59,040

Encoder-2 64 332,352

Encoder-3 32 1,328,256

Bridge-1 16 1,770,240

Bridge-2 16 3,540,480

Decoder-1 32 9,177,088

Decoder-2 64 2,294,784

Decoder-3 128 573,952

FC 128 130
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Implementation. The 484 3D brain images from the MSD Challenge dataset are divided into a training 
set, validation set and testing set, where the training set includes 400 samples (indexed from 001-400) and the 
remaining 29 and 55 samples (indexed from 401-484) comprise the validation and testing sets, respectively.

In practice, we first create a sharp contrast-enhanced grayscale image ϕ̃1 : I1 → [0, 1] by using the histogram 
equalization  algorithm40, as before, and then compute the TSOMT map f̃ ∗1  as in (13), and we share this OMT 
among the four views, namely, FLAIR, T1, T1CE and T2, to construct four cubes {Ni,1}4i=1 and one label set L̂1 , 
as in (14). Similarly, by using the TSOMT map f̃ ∗2  , we can construct {Ni,2}4i=1 and L̂2 . After all the preprocessing 
is complete, 400 brain samples are expanded into 800 cube samples. Next, we use the U-Net algorithm to train 
three nets for the WT {1, 2, 3} , TC {2, 3} and ET {3}:

• Net 1 for the WT: {0}, {1, 2, 3}.
• Net 2 for the TC: {0, 1}, {2, 3}.
• Net 3 for the ET: {0, 1, 2}, {3}.

After Net 1, Net 2, and Net 3 are trained, we use the following definition to predict the tumor labels of the 
brains in the training set and testing set.

Our calculations are implemented in MATLAB R2020a. The training is carried out in a Tesla V100S PCIe  
32 GB×4 workstation and is stopped at 400  epochs45. Each epoch takes approximately 12 minutes. The computa-
tional time of the OMT is 20 seconds per iteration on a personal computer equipped with an NVIDIA GeForce 
RTX 2080 GPU. Thus, the inference including TSOMT preprocessing, U-Net prediction, and inverse TSOMT 
processing takes 200 seconds to complete on the same PC.

Flowchart of the segmentation maps. To further visualize the flowchart for 2D cross-section images, 
Fig. 5 illustrates the whole inference process. Four brain images (FLAIR, T1, T1CE, and T2) were first trans-
formed to each cube by the TSOMT separately. The original brain size of 240× 240× 155× 4 is reduced to 
128× 128× 128× 4 cube images with 4 modalities. The cube images are processed by Net 1, Net 2, and Net 3 to 
obtain three segmentation images with a size of 128× 128× 128 . The inverse TSOMT procedure then converts 
the segmentation images to 3× (240× 240× 155) . These three images can then be merged with simple logic 
to obtain the final predicted brain results ( 240× 240× 155 ). By matching the ground truth with the prediction 
voxel by voxel, the accuracy is then calculated as a ratio of false predictions to the entire tumor.

Evaluation criteria. In this paper, we use the Dice score, sensitivity (recall), specificity, precision and 95th 
percentile of the Hausdorff distance (HD95) as indicators to evaluate the segmentation performance of our pro-
posed algorithm. Consider the confusion matrix as

Ground truth (yes) Ground truth (no)

Prediction (yes) TP FP

Prediction (no) FN TN

where TP is the number of true positives, TN is the number of true negatives, FN is the number of false nega-
tives, and FP is the number of false positives. The indicators are defined as follows:

Figure 5.  Flowchart of the segmentation maps: (i) input the brain image, (ii) utilize the TSOMT method to 
transform the brains into cubes, (iii) predict the WT (yellow), TC (red), and ET (blue) through 3D U-Nets 
Net 1, Net 2, and Net 3, respectively, (iv) reverse the cube prediction back to a brain prediction via the inverse 
TSOMT method, and (v) merge the WT, TC, and ET.
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For a fixed brain tumor, as in (15), let A and B denote the positive ground truths and predictions, respectively, 
for the WT, TC, and ET. Then, the HD is defined as

HD95 is similar to the HD, and it calculates the 95th percentile of the distance between the boundary points 
in A and B. In the following, we consider applying the OMT technique on the MSD Challenge dataset to obtain 
a good training set and make highly accurate predictions.

Results and discussion
Dice score and loss plot. A deep learning neural network learns to map a set of inputs to a set of outputs 
from training and validation data using an optimization process that requires loss functions for training and 
validation sets to calculate the model error. For convenience, we implement the TSOMT procedure with a size of 
96× 96× 96 and the U-net algorithm with a minibatch size of 8 on the MSD Challenge dataset with 400, 29 and 
55 samples for training, validation and testing, respectively. Figure 6 plots the loss values of the training set (red 
solid line) and the validation set (red dotted line), as well as the Dice scores of the training set (blue solid line) 
and the testing set (blue dotted line) for the WT, TC and ET every 10 epochs. The two red curves corresponding 
to the loss functions in each subfigure of Fig. 6 form a variance (overfit) when the number of epochs nears 400 
and a bias (underfit) when the number of epochs is near 10; the optimal number of epochs for the WT, TC and 
ET is between 45 and 55. The two blue curves of the Dice scores in each subfigure of Fig. 6 intersect at epoch 
50 for the WT and TC and at epoch 100 for the ET with Dice scores of 0.9072, 0.8608 and 0.8305, respectively, 
which coincides with the optimal number of epochs for the bias and variance.

The plots of the blue solid lines for training in Fig. 6 can usefully reflect the training of the model. We see that 
the Dice scores for the WT, TC, and ET do not increase significantly after 400 epochs and approach 0.9716, 0.9318 
and 0.8879, respectively. The trends of both the Dice scores and the loss values show a typical training history. 
These results are also consistent with the findings reported in Table 2, where the conversion loss increases in the 
order of ET < TC < WT, and in Table 3, where the tumor percentages decrease in the order of WT > TC > ET. A 
small tumor percentage implies fewer balanced data. Thus, the Dice score is smaller.

However, the Dice scores for the WT, TC, and ET in the testing set remain constant throughout the whole 
optimization process, where the training set often does not reflect the characteristics of the testing set. This 
drawback can be improved if more brain tumor cases are included in the training set. By reducing the size of 
each brain tumor case via the TSOMT method, our approach can take more training cases if needed.

Here, the 484 brain images of the MSD Challenge dataset are divided into a training set and a testing set with 
400 and 84 samples, respectively. Table 5 lists the numerical results by Net 1, Net 2 and Net 3 at epoch 400 for 
the WT, TC, and ET. The conversion losses between the 128× 128× 128 cubes and brains for the WT, TC, and 
ET are quite reasonable (within 0.4% ∼ 1.3% ). With U-Net training, the conversion losses are compatible with 
those in Table 2, where U-Net training is not included. Additionally, the Dice scores for the brains and cubes 
show a decreasing trend of WT > TC > ET because of the small tumor percentage.

Other measures of the voxelwise overlap in the segmented regions such as the sensitivity, specificity, and 
HD95 evaluate the distances between segmentation boundaries and are all calculated as shown in Table 6. For 
all those matrices, it is expected that the training results should be better than the testing results. However, HD95 
for the ET is the opposite (10.5229 for the training set vs. 6.011 for the testing set). There were 12 cases without 
ET labels in the 400-sample training set and zero cases in the 84-sample testing set. Those 12 cases dramatically 
increase the HD. The HD values without those 12 cases are enclosed in parentheses.

Postprocessing. It is known that simple postprocessing can considerably enhance the segmentation perfor-
mance by providing additional  information4. Since the OMT and 3D U-Net have produced significant training 

HD = max{max
a∈∂A

min
b∈∂B

�a− b�2, max
b∈∂B

min
a∈∂A

�a− b�2}.

Figure 6.  The Dice scores for training and testing (blue lines) and the loss functions for training and validation 
(red lines) vs. the number of epochs for the WT, TC, and ET.
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improvements, our main focus is to use postprocessing for testing. To provide additional information, mirroring 
and rotation techniques are added during the testing process. Since the TSOMT map can skillfully represent 
the global information of a brain image and provide a complete density distribution to the U-Net algorithm, we 
apply the mirroring and rotation techniques during testing to increase the Dice scores of the WT, TC, and ET. Let 
C1 × C2 × C3 × C4 denote the cube corresponding to the TSOMT map of the testing data N1 ×N2 ×N3 ×N4 . 
Here, we add four schemes { Rk}4k=1 to the testing cube C1 × C2 × C3 × C4 , where R1 represents a 90 degree coun-
terclockwise rotation, R2 indicates mirroring from left to right, R3 denotes mirroring upside down, R4 represents 
mirroring left to right, followed by a 90 degree counterclockwise rotation, provided by the MATLAB functions 
rot90, fliplr and flipud. For each scheme Rk , we perform the following two steps: (i) rotation or mirroring 
C1 × C2 × C3 × C4 by Rk to obtain a new cube C̃1 × C̃2 × C̃3 × C̃4 and (ii) predicting the probability pk of voxel 
C̃1 × C̃2 × C̃3 × C̃4 being a tumor. Let p0 be the predicted probability of voxel C1 × C2 × C3 × C4 being a tumor. 
Then, we use the following rule to determine the final judgment of this voxel: If (

∑4
k=0 pk) > (1−

∑4
k=0 pk) , 

then this voxel is a tumor; otherwise, it is healthy.
Table 7 shows the brain Dice scores of the WT, TC, and ET for the schemes { Rk}4k=1 at epoch 400 and the 

percentage improvement. The numerical results demonstrate that the proposed schemes { Rk}4k=1 can improve 
the associated Dice score ranging from one to two percent. The whole testing procedure is as follows: TSOMT, 
U-Net inference, inverse TSOMT, and mirroring and rotation.

Effect of augmented rotations. As indicated in the third item of the main contributions, the TSOMT 
method can substantially increase the augmented data to achieve more accurate and effective results. We apply 
the U-Net algorithm with 250 epochs to the MSD Challenge dataset (484 samples) preprocessed by the TSOMT 
method. To increase the augmented data, we construct densities ρi , i = 2, 3, 4 and randomly rotate the 400 unit 
solid balls with density ρi in the first-stage OMT for i = 2, 3, 4 . Figure 7 plots the Dice scores of the training set 
vs. the testing set from 50 to 250 epochs by the blue, red, green and black lines for the training data without aug-
mented rotations and the training data with one, two and three augmented rotations, respectively. We see that 
the training data with more augmented rotations have a certain effect on improving the Dice score of the testing 
data. This result coincides with the advantage that we introduce the TSOMT procedure to represent an effective 
3D brain image by a 128× 128× 128 cube.

3D prediction. To evaluate the performance of the proposed segmentation algorithm, we compare the seg-
mentation output with the ground-truth labels, which are prepared by field experts. The qualitative 3D segmen-
tation results vs. the ground-truth labels are plotted in Figure 8 for case 410, where the brain Dice scores of the 
WT, TC, and ET are found to be 0.9738, 0.9188, and 0.8585, respectively. In addition to one case, for the training 
set (nos. 001-400), the best, average and worst cases for the WT are 0.9948, 0.9852 and 0.9619, respectively. This 
finding implies that the segmentation results of the lesion areas achieved by the proposed model are very close to 

Table 5.  The Dice scores of the WT, TC, and ET in the cubes and brains in the training and testing sets with 
400 epochs.

Epochs Dice score (cubes) Dice score (brains)

400 WT TC ET WT TC ET

Training 0.9822 0.9686 0.9447 0.9781 0.9637 0.9305

Testing 0.9105 0.8557 0.8369 0.9065 0.8502 0.8302

Table 6.  Sensitivity, specificity and HD95 for the WT, TC, and ET for the training and testing sets with 400 
epochs.

Epochs Sensitivity Specificity HD95

400 WT TC ET WT TC ET WT TC ET

Training 0.9861 0.9743 0.9420 0.9998 0.9999 0.9999 1.3673 1.6673 10.5229 (1.231)

Testing 0.9229 0.8771 0.8099 0.9989 0.9995 0.9996 9.5475 9.7921 6.0110

Table 7.  The Dice scores of the WT, TC, and ET in brains with postprocessing and the corresponding 
improvement percentages.

Epochs Dice score (brain) Improvement

400 WT TC ET WT TC ET

Testing 0.9202 0.8794 0.8420 1.37% 2.92% 1.18%
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the ground-truth labels. Our method (TSOMT+U-Net+inverse TSOMT) significantly outperforms other state-
of-the-art approaches. For the testing set (nos. 401-484), the best, average and worst cases for the WT are 0.9738, 
0.9193 and 0.7312, respectively. Again, our method (TSOMT+U-Net+inverse TSOMT+postprocessing) shows 
good results. All 484 predicted NII files are included online at https:// reurl. cc/ 9ZZ12v.

Worst testing cases. The worst testing cases are further investigated. Among them, three cases (408, 430, 
and 452) had WT Dice scores below 80%, three cases (417, 453, and 459) had TC Dice scores below 70%, and 
three cases (427, 459, and 462) had ET Dice scores below 60%. Figure 9 plots cross-sections of the ground truth 
and predictions for the cases with the most incorrectly predicted voxels (452, 426, and 462). The incorrect pre-
dictions are further grouped into false negatives and false positives in the figure. The false negative:false positive 
voxel ratios for the WT, TC, and ET in all testing cases are found to be 1.128, 1.529, and 1.904, respectively. Our 
approach shows false negatives rather than false positives, and the trend of WT < TC < ET conceptually agrees 
with previous observations. Furthermore, the TSOMT and inverse TSOMT methods do not alter the deficiency 
qualitatively because the conversion losses from cubes to brains for these three cases are all smaller than 1.2%. 
The conversion loss is too small to induce any new failure mode. In addition, the brain Dice scores of (452, 416, 
462) for the WT, TC, and ET were found to be (0.7312, 0.9549, 0.9239), (0.9260, 0.6371, 0.7435), and (0.8348, 
0.7280, 0.4130), respectively. False predictions of the WT, TC, and ET are seemingly independent from each 
other. This finding justifies the use of three U-Nets.

A typical incorrect WT prediction is shown for case no. 452. Based on this typical type of brain tumor, we 
observe that the false negative and false positive regions for the best testing case that are incorrectly distinguished 
almost always occur at the junction boundaries of different levels of tumors and nontumors. This deficiency 
can hopefully be reinforced by boundary image  processing46, boundary  segmentation47, and edge  detection48,49 
methods. On the other hand, for the worst testing case (no. 452) with a more severely spreading tumor, there is 
a relatively large region on the outermost periphery of the tumor that is very vague and difficult to distinguish, 
regardless of whether it is positive or negative. We see that the tumor type of this case significantly reduces the 
prediction accuracy. Inaccurately predicted tumor locations also occur on the interfaces of different labels of 
tumors or nontumors, but they seem to expand outward more. This is indeed a challenging problem of how to 
improve image segmentation techniques.

TC and ET false predictions are more like an embedded type than a boundary type in the WT. Case no. 416 
(TC) and case no. 462 (ET) are plotted. In these two cross-sections, false positives are negligible. The TC and ET 
cases are inherently less accurate because of the smaller regions (see Table 7 for the testing case results). Addition-
ally, the prediction has many scattered necrotic regions in the TC and ET. As a result, the false negative exhibits 

Figure 7.  The Dice scores of the WT, TC, and ET in the training and testing sets vs. the number of 
augmentations.

Figure 8.  The ground truths and predictions for the WT (yellow), TC (red) and ET (blue) of case no. 410 with 
the best WT case (Dice score = 0.9738).

https://reurl.cc/9ZZ12v
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a Swiss cheese-like structure and greatly reduces the prediction accuracy. This deficiency, different from that of 
the WT, can hopefully be reinforced by contour filtering and processing  techniques50 during postprocessing.

Testing on the BRATS 2020 dataset. In the above sections, we train a U-Net model for 400 3D brain 
images from the MSD Challenge dataset with augmented rotations by using the TSOMT method, the U-Net 
algorithm, and the postprocessing correction technique and successfully achieve satisfactory Dice scores for the 
84 MSD testing samples, as shown in Table 7.

We now use the well-trained U-Net model to infer brain tumors for the testing brain images from the BRATS 
2020  dataset1–3. We first check the 369 brain images of the training data in BRATS 2020 and find that 210 samples 
are duplicates of samples in the MSD dataset. We then take the remaining 159 samples as the testing data and 
infer brain tumors. The Dice scores of the WT, TC, and ET are 0.9002, 0.7387 and 0.7723, respectively, which 
appear satisfactory. All 159 predicted NII files are included online at https:// reurl. cc/ 2rrrQE.

Furthermore, an online evaluation platform for BRATS 2020 was recently opened and provides 125 unlabeled 
brain images for testing. The feedback Dice scores of the WT, TC and ET predicted by our U-Net model are 
0.8829, 0.7289 and 0.7297, respectively (see the online record of the team “GIMILab” at https:// www. cbica. upenn. 
edu/ BraTS 20/ lboar dVali dation. html). The resulting scores are not too high but are still acceptable. The main 
reason could be that the current testing data have various formats or flaws that have not been standardized. We 
hypothesize that this testing dataset needs to be classified, which constitutes our research topic in the next phase. 
We believe that the TSOMT technique developed in this paper has numerous advantages and good efficiency.

Conclusions
This work mainly introduces the TSOMT technique to the research area of 3D medical image segmentation. We 
first propose an efficient and reliable numerical algorithm for the computation of the OMT map. Then, we use 
it to develop the TSOMT for transforming an irregular 3D brain image into a cube while maintaining minimal 
deformation. The TSOMT map is one-to-one and mass-preserving and minimizes the transport costs.

The concept of representing an irregular brain image with a unit cube with minimal deformation was first 
proposed in the research field, which is particularly beneficial to the U-Net algorithm’s input format for creat-
ing training and testing sets. Expressing brain images as cubes greatly reduces the training input set size from 
240× 240× 155 to 128× 128× 128 and reduces the computational time required for training. In addition, this 
preprocessing mean by the TSOMT map does not cause a considerable loss of accuracy. In contrast, the conver-
sion loss under 1283 grid points on the cube that we set is usually between only 0.51% and 0.77% . The transport 
cost, distortion, and conversion loss are all carefully examined. The small SD in the local mass ratios of TSOMT 
for 484 cases shows the robustness of the transform.

Another advantage of the OMT technique is that it can first perform histogram equalizations on the density 
of the original brain tumors. Generally, the tumor site with higher density accounts for less volume in the brain 
image. Nevertheless, we can utilize the merit of the mass-preserving property of the TSOMT to increase the 

Figure 9.  The worst WT (yellow) and TC (red) and ET (blue) testing cases: Cross-sections of no. 452 at 
95 along the z-axis, no. 416 at 123 along the z-axis, and no. 462 at 56 along the z-axis for the ground truths, 
prediction, false negative (purple) and false positive (green).

https://reurl.cc/2rrrQE
https://www.cbica.upenn.edu/BraTS20/lboardValidation.html
https://www.cbica.upenn.edu/BraTS20/lboardValidation.html
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proportion of brain tumors in the cube. This technology is very conducive to the effectiveness of U-Net learning 
for tumor segmentation.

The training accuracy at 400 epochs reached 0.9822 for the WT on the cube using a 3D U-Net. The inverse 
TSOMT method returned the dataset to the original size of 240× 240× 155 and lowered the accuracy to 0.9781 
for the WT on the brain during the conversion loss. This TSOMT, U-Net inference and inverse TSOMT approach 
significantly improves the brain tumor detection and segmentation accuracy. The training data with more aug-
mented rotations have a certain effect on improving the Dice score of the testing data. For the testing cases, a 
simple mirroring and rotation postprocessing technique with an accuracy improvement of one to two percent 
is added to the whole flow. For each new case, the overall flow can be completed in fewer than 200 seconds.

The high accuracy in our numerical experiments can once again reflect the superiority of the TSOMT. The 
associated cube holds almost all the global information of the brain image and is suitable for the U-Net input. 
Intuitively, the TSOMT combined with U-Net can master the essential learning rules and has a good chance of 
realizing a high-precision system for brain tumor segmentation. Therefore, the TSOMT map can be said to be 
superior to the other preprocessing methods. Thus, expanding the dataset with different tumor types in combi-
nation with the virtue of the TSOMT conversion can indeed have expected potential in the field of 3D medical 
image segmentation.
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