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A general theory of polymer 
ejection tested in a quasi 
two‑dimensional space
Pai‑Yi Hsiao1,2* & Wei‑Yei Chen1

A general ejection theory of polymer is developed in a two‑ and three‑dimensional space. A polymer is 
confined initially in a cavity and ejects spontaneously to the outer space through a nanopore channel 
without the help of any external stimulus. A reflective wall boundary is set at the pore entrance to 
prevent the falling of the head monomer of chain into the cavity. Three stages are distinguished in 
a process: (1) an entering stage, in which the head monomer enters the pore to search for a way to 
traverse the pore channel, (2) a main ejection stage, in which the chain body is transported from the 
cavity to the outer space, (3) a leaving stage, in which the tail monomer passes through and leaves 
the pore channel. Depending on the number of the monomers remaining in the cavity, the main 
ejection stage can be divided into the confined and the non‑confined stages. The non‑confined stage 
can be further split into the thermal escape and the entropic pulling stages. The Onsager’s variational 
principle is applied to derive the kinetics equation of ejection. The escape time is calculated from 
the corresponding Kramers’ escape problem. Extensive molecular dynamics simulations are then 
performed in a quasi two‑dimensional space to verify the theory. The variation of the ejection speed 
is carefully examined. The decreasing behavior of the number of monomers in the cavity is studied 
in details. The scaling properties of the spending time at each processing stage are investigated 
systematically by varying the chain length, the cavity diameter, and the initial volume fraction of 
chain. The results of simulation support firmly the predictions of the theory, cross‑checked in the 
studies of various topics. In combining with the previous investigations in the three‑dimensional 
space, the generalized theory is very robust, able to explain the two seemly different phenomena, 
polymer ejection and polymer translocation, together under the same theoretical framework in the 
two space dimensions.

One of the main objectives in bionanotechnology is to develop efficient techniques for control or manipula-
tion of biomacromolecules for diverse  applications1–3. Recent advances have demonstrated the capabilities to 
imprison or encapsulate single DNA or RNA chains in a small trap or cavity for preserving or  transportation4–7. 
The molecular chains are released at the moment of necessary to a destination space for sensing or therapeutic 
 purposes8,9 In Nature, bacteriophage is a virus mastering the  skill10,11. It infects bacteria by ejecting the genetic 
materials encapsulated in the viral capsid through a small channel into the host cell for replication. The ejecting 
process occurs spontaneously where no external driving force intervenes in pressing or pulling the chain out 
of the cavity. It is a result of the favor of thermodynamics because the chemical potential inside the capsid is 
higher than the  outside12,13.

The ejecting problem takes place at nanometer scales where the thermal fluctuations have great influences. 
The stochastic nature of the surroundings blurs the deterministic trajectory of ejection issued from the confine-
ment. It renders the classical method, by solving the problem under the framework of continuum mechanics, 
insufficient in describing the properties of such a  process12–20. External factors such as  temperature21, acidity of 
 environment22, ions and  salinity23, osmotic  pressure20,24, etc., can disturb the progress of  ejection25. Other effects 
like protein binding in the cytoplasm of host  cell18,21 and condensation of the ejected  chain26 can help the ejection. 
The factors and effects complicate the process and make the system difficult to be predicted.

A fundamental approach to study the ejection problem at a primitive level starts with the calculation of the 
change of the free  energy27–32. The ejection of chain results in a decrease of the free energy, which drives the chain 
out of the cavity. Polymer physics have provided a sophisticated way to estimate chain free energy under diverse 
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situations via scaling  analysis33–35. By adopting the free energy of polymer in a semidilute solution,  Muthukumar36 
predicted that the ejection should be τej ∼ N1+(1/3ν)φ

−1/3ν
0  with ν being the Flory exponent, where the initial 

volume fraction of chain in the cavity is φ0 and the chain length is N. Cacciuto and  Luijten37 reported later in the 
Monte Carlo simulations that τej should be N1+νφ

−1/(3ν−1)
0  . Sakaue and  Yoshinaga38 made a careful study and 

pointed out an important fact that the volume fraction of the number of the monomers in the cavity decreases 
and thus, the driving chemical potential difference is not constant but decreases with time. They balanced the 
rate of the free energy change with the rate of the energy dissipation taking place in the solution near the pore 
within a correlation length ξ ; an ejection time τej ∼ N (2+ν)/(3ν)φ

−(2+ν)/(3ν)
0  was predicted. They also envisaged 

that the ejection process was ended by a diffusion-like escape with the spending time τD ∼ D2/DN0 where D 
is the cavity diameter and DN0 the diffusion coefficient to diffuse the last segments of chain out of the cavity.

Recently, we have modified and extended the  theory39,40. The new theory balanced the rate of the free energy 
change with the rate of the energy dissipation at the pore with a fraction coefficient varying during the process. 
Instead of treating the final escape in a diffusive way, we dealt with it as a formal translocation, with the free 
energy being the sum of the free energies from the two chain segments instantaneously expanding on the two 
sides of the pore. The ejection time τej ∼ N (2+ν)/(3ν)φ

−2/(3ν)
0  was obtained in our theory. The results have been 

demonstrated correct by extensive molecular dynamics simulations. A double verification has been done under 
the D-fixed condition, which revealed a N1/3-dependence for τej , following our prediction. Ref.38, in contrast, 
expected a null dependence on N. Because the translocation theory is involved in the derivation, our theory suc-
cessfully connects the two seemly different problems together, polymer ejection and polymer  translocation35,41–43. 
The theory is applicable in the entire (N, D, φ0 ) parameter space. Moreover, we pinpointed the existence of a 
nucleation-like stage occurred prior to the main ejection, which takes care of the traversing of the heading 
monomers across the pore channel. A theory has been developed by regarding it as a Kramers’ escape problem 
and explained it in analogy to the nucleation  phenomena40.

Despite of the above achievements, there are still several issues to be clarified or resolved. For example, how 
does the free energy landscape look like in term of the ejection coordinate under different ejection conditions? 
A good knowledge of the free energy landscape enables a well understanding of the physical pictures behind an 
ejection phenomenon. In the theory, we have divided the main ejection into the confined and the non-confined 
stages, and assumed that it is the entropic pulling which drives the chain out of the cavity in the latter stage. 
However, it is not always the case. A situation can happen if the chain length is not long compared to the cavity 
diameter—the segment length in the cavity can be still longer than the one from the outside at the moment when 
the process enters to the non-confined stage, and therefore, the driving force is not entropic at that moment. 
How shall we fix the problem? Is this particular situation detectable in simulations and what is its significance? 
In a real world, the encapsulating cavity may not be spherical. Researchers may enclose a biopolymer in a quasi-
two-dimensional cage and release it later though a pore or a canal for applications. It addresses an important 
question, how to generalize the current theory for a two-dimensional space. The generalization can be served 
as a test of the robustness of the theory.

In this paper, a general theory for polymer ejection in a d-dimensional space is given in "General ejection 
theory in a d-dimensional space" section. An extensive molecular dynamics simulation is then performed in 
a quasi two-dimensional space to verify the generalization of the theory where the modeling and settings are 
described in "Simulation model and settings" section. The results are reported in "Results" section. The studied 
topics include the variation of the ejection speed during a process ("Ejection speed" section), the decrease of 
the number of the monomers in a confining cavity ("Decrease of number of monomers in the cavity" section), 
and the scaling behaviors of the decomposed time as a function of N, D, and φ0 in each stage ("Processing time 
analysis" section). The discussions and conclusions are given in "Discussions and conclusions" section.

General ejection theory in a d‑dimensional space
Consider the problem of a polymer ejecting in a d-dimensional space. The polymer is initially confined in a 
circular cavity and ejects through a pore channel into a semi-space. The cavity is a disk if d = 2 and a sphere 
if d = 3 . The chain comprises N monomers, each has a diameter σ . The monomers are linearly connected by 
chemical bonds of length σ too. The circular cavity has a diameter D and the pore length is ℓp . The pore diameter 
dp is assumed small, which allows only one monomer to pass by the cross-section at a time. Under this setting, 
the initial volume fraction of monomers in the cavity is φ0 = N(σ/D)d . The head monomer is positioned at the 
entrance of the pore for starting. We assume that some mechanism exists to prevent falling of the head monomer 
into the interior of the cavity. Therefore, the ejection theory presented here does not include the searching of the 
pore entrance for the head monomer from the interior.

Extending the results of the previous  study39,40, we generalize the scaling theory. An ejection process of poly-
mer can be divided into three stages, namely the entering stage, the main ejection stage, and the leaving stage. 
The process can be described by two dependent state variables: m, denoting the number of monomers remaining 
in the cavity, and s, denoting the one having arrived in the semi-space. Because the pore channel allows accom-
modation of mp monomers, where mp = ℓp/σ , we have N = m+mp + s . The negative s state ( −mp ≤ s ≤ 0 ) 
occurs at the beginning, the “entering stage”, when the heading monomers strive to traverse the pore channel 
against the chemical potential difference �µcp created by the osmotic pressure between the cavity and the pore. 
An activation energy Ea is established, which is equal to �µcp multiplying mp . The rate of transition, also called 
the rate of escape, is described by an Arrhenius-type equation η−1 exp (−Ea/kBT) where η is the friction 
 coefficient44,45. A detail calculation given in Appendix A in the Supplementary Information (SI) predicts 
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τent ∼ η exp
(

mp�µcp

kBT

)

 for mp�µcp ≫ kBT . If �µcp ≪ 0 , we have τent ∼ (
ησ 2

|�µcp| )mp . In between ( |�µcp| is close 

0), τent has an expression of the diffusion time 
ηℓ2p
2kBT

.
The main ejection stage is started as the first monomer enters the semi-space, and ended as the last mono-

mer leaves the cavity. In the language of the state variables, it happens when 0 < s < N −mp or equivalently 
N −mp > m > 0 . The stage can be further subdivided into two stages according to the m value. At the confined 
stage, the chain feels the confining effect of the cavity and is “compressed” out of it through the pore. As m 
decreases and becomes eventually smaller than a critical number N∗ , the remaining chain size is smaller than 
the cavity size. At that moment, there is no confining effect on the chain and the system is in the non-confined 
stage. The critical number N∗ has been shown to scale as (D/σ)1/ν with ν = 3/5 in the three-dimensional  space40. 
We will verify it later if the scaling is truly held by switching the Flory exponent to its two-dimensional value 
ν = 3/(d + 2) = 3/4.

The kinetics equation for the state variable m can be deduced from Onsager’s variational  principle40,46,47 and 
reads as

where F is the free energy of the system. By using the blob theory, F can be shown to be ∼ kBT(m/N∗)z1+1 at 
the confined  stage34,48. Here z1 = 1/(dν − 1) is a key exponent appeared regularly in the des Cloizeaux theory 
for polymer  solutions49 and we have expressed it in the general form for a d-dimensional space. The kinetics 
equation for m is thus

where �t = ησ 2/kBT is the characteristic time. It has been argued that η exhibits a Nx1 dependence with x1 = 1/3 
in the three-dimensional  space39,40. A general formula for x1 should be 1/d, which leads to �t ∼ N1/d�t0 . Here 
�t0 = η0σ

2/kBT and η0 is the friction coefficient for a monomer. Intensive simulations will be performed later 
to verify it for the two-dimensional case.

At the non-confined stage, the free energy can be approximately described by

where γ1 is the entropic exponent and q is the effective coordination number. It is derived from 
F ∼ −kBT ln(ZmZs) with Zm ∼ (m+ 1)γ1−1qm and Zs ∼ (s + 1)γ1−1qs being the partition functions for a pol-
ymer of m and s monomers, respectively, tethered on a  surface35,50,51. The value of γ1 is about 0.687 for d = 3
52 and 0.955 for d = 253. To avoid the divergence of F at m = 0 and s = 0 , we have remedied the expression by 
adding one to the base of the exponent γ1 − 1 in the partition function to assure Z0 = 1 . The kinetics equation 
is thus obtained:

This equation is valid only when m < s , or equivalently, m < (N −mp)/2 . It depicts the situation that the chain 
is pulled outward by the dominated entropic force from the outside. If m is much smaller than s, the second term 
on the right-hand side of the equation can be ignored and the kinetics exhibit a scaling variation like

It has been argued that the friction coefficient η scales as η0my2P with y2P = 2ν − 1 because the rested m mono-
mers in the cavity contribute to the energy dissipation at the non-confined  stage40. As a result, the ejection speed 
shows m−z2P variation with z2P = 1+ y2P = 2ν.

Please notice that there exists an intermediate cavity size D with the corresponding N∗ larger than 
(N −mp)/2 but smaller than N −mp . In this situation, the system enters to the non-confined stage with the 
exterior chain length being still shorter than the interior one. As a consequence, a free energy barrier has 
to be surmounted first. The escape theory is applied again and the required escape time can be shown to be 
τ2E ∼ η0σ

2

kBT

[

N2+x1 I1(s̃∗)+ N2+y2E I2E(s̃∗)
]

 (cf. Appendix A in SI). After surmounting the free energy barrier, we 
have s > m and the kinetics can be validly described by Eq. (5). The required time to pull the rest chain out of 
the cavity is τ2P ∼ �t0N

1+z2P∗ .
The final stage is the leaving stage which occurs when s > N −mp and shows the free energy change 

�F(s) = (s − N +mp)�µps . Here the chemical potential difference between the pore and the semi-space, �µps , 
is negative. The chain is confronted to a thermodynamic driving |�µps|/σ and the leaving time is 
τleav ≃ mp

(

kBT
|�µps|

)

�t0 , which is generally short and negligible.
According to the physical pictures described above, the free energy landscape of an ejection process in the 

space of the state variables s and m is sketched in Fig. 1. It can be classified into four situations, indicated by the 
roman numerals I to IV in the figure. Curve I presents the free energy change in an ejection process beginning 

(1)
dm

dt
= −

1

ησ 2

dF

dm

(2)
dm

dt
∼ −

z1 + 1

�t

(

mz1

Nz1+1
∗

)

(3)F ∼ kBT
[

(1− γ1) ln(m+ 1)+ (1− γ1) ln(s + 1)− (N −mp) ln q
]

(4)
dm

dt
∼

−1

�t

[

1− γ1

m+ 1
−

1− γ1

s + 1

]

.

(5)
dm

dt
∼

−1

�t
m−1 ∼

−1

�t0
m−z2P .
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with an initial volume fraction φ0 higher than the local volume fraction φp of a monomer when it is presented in 
the pore. In this situation, the free energy decreases monotonically, from the entering stage, through the main 
ejection stage, to the leaving stage. The main ejection stage is subdivided into the confined and the non-confined 
stages, shown in red and blue colors, respectively. Curve II, similar to Curve I, depicts a large φ0 situation but 
the value of φ0 is smaller than φp . As a consequence, the free energy increases in the entering stage, which is 
a Kramers escape problem. The free energy then decreases monotonically in the following stages. The point 
demarcating the confined and the non-confined stages locates at s = s∗ ≡ N −mp − N∗ which is right to the 
middle (N −mp)/2 . To meet the situation, the chain length must fulfill the condition (N −mp) > 2N∗ . If the 
demarcating happens before reaching the middle of the process, the free energy does not monotonically decrease. 
There is a uphill to be mounted between s = s∗ and s = (N −mp)/2 . This is the situation III occurring when 
N∗ < (N −mp) < 2N∗ , where a second escape is required in the non-confined stage. If N −mp is smaller than 
N∗ , the free energy looks similar to Curve IV. In this situation, the two escapes joint together, since the beginning 
at s = −mp to the middle of the process at s = (N −mp)/2 . Once escaping the energy summit, the chain arrives 
the downhill side of the free energy for the rest of the process.

Based upon the above analysis, the non-confined stage can be distinguished into the thermal escape and the 
entropic pulling substages. The required time τej for the main ejection stage is thus a sum of the three components: 
τ1 the time spent for the confined stage, τ2E the time needed for the thermal escape substage, and τ2P the one for 
the entropic pulling substage. The predicted time scales for τ1 , τ2E , and τ2P are given in Table 1.

Simulation model and settings
In this work, we investigate the ejection process of a polymer in a quasi two-dimensional space and verify the 
scaling theory. We confine the polymer in a disklike cavity and study its ejection, through a small pore situated 
on the side of the cavity, into an outer slit space. The disklike cavity and the slit space are prepared by adding two 
parallel confining walls on top of the “spherical cavity–pore channel–semispace” system, as shown in Fig. 2a, 
which restricts the motion of polymer in a quasi two-dimensional space. The polymer is modeled by a bead-
spring chain and loaded into the cavity by a pumping process. The loaded chain is then equilibrated with the 
head monomer being fixed at the pore entrance, which blocks the exit of the chain. The ejection is started by 
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Figure 1.  Free energy F as a function of the state variables s (the bottom axis) and m (the top axis). We choose 
N = 500 and mp = 10 to draw the sketch. In the entering and the leaving stages, the free energy curves are 
colored in dark-green and gray, respectively. In the main ejection stage, the curve is split into two sections: one 
in red color representing the confined stage and the other in blue color representing the non-confined stage. 
There exist four kinds of variations, denoted by I, II, III, and IV near the curves.

Table 1.  Predicted time scales τ1 , τ2E , and τ2P in the main ejection stage. Three situations are distinguished 
for the chain length: N −mp < N∗ , N∗ ≤ N −mp ≤ 2N∗ , and N −mp > 2N∗ where N∗ ∼ (D/σ)1/ν is the 
critical chain length. The ejection time τej is a sum of the three time scales.

Chain length

Confined stage Non-confined stage

τ1/�t0
τ2E/�t0 τ2P/�t0

N −mp < N∗ 0 N2+x1 I1(0)+ N2+y2E I2E(0) 1
1+z2P

(

N
2

)1+z2P

N∗ ≤ N −mp ≤ 2N∗
Nx1

z1−1N
2
∗

[

1−
(

N∗
N

)z1−1
]

N2+x1 I1(s̃∗)+ N2+y2E I2E(s̃∗) 1
1+z2P

(

N
2

)1+z2P

N −mp > 2N∗
Nx1

z1−1N
2
∗

[

1−
(

N∗
N

)z1−1
]

0 1
1+z2P

N1+z2P∗
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freeing the head monomer and the chain ejects spontaneously out of the cavity through the pore. The snapshots 
of the system are given in Fig. 2b for the three processing phases: (i) loading, (ii) equilibration, and (iii) ejection.

The chain beads interact with each others via a Lennard-Jones (LJ) 12-6 potential Uex(r) = 4ε
[

(

σ
r

)12 −
(

σ
r

)6
]

 , 

shifted and truncated at the minimum point rc = 6
√
2σ , where r is the distance between a pair of beads, and ε 

and σ are the interaction strength and length, respectively. The beads are connected by springs and form linear 
architecture. The potential of spring is Usp(b) = 1

2k(b− b0)
2 where k is the spring constant and b− b0 is the 

stretching length. The beads have repulsive interaction with the the confining wall via a LJ 9-3 potential, 
Uw(r) = εw

[

2
15

(

σw
r

)9 −
(

σw
r

)3
]

 , shifted and truncated at r = 6

√

2
5σw . We set εw = 3.0ε , σw = σ , k = 600ε/σ 2 , 

and b0 = σ . The temperature T is controlled by using Langevin  thermostat54 and set to be 1.0 ε/kB . The relaxation 
time for the temperature control is 1.0 σ

√
m/ε . Here kB is the Boltzmann constant and m is the mass of a bead. 

Under this setting, the wall potential attains the value of thermal energy kBT at r = 0.76σ . It implies that the wall 
has an effective thickness equal to 0.26σ because the bead radius is 0.5σ . Therefore, we set the cavity wall on a 
sphere of diameter DC = D + 0.52σ , which produces the desired disk diameter D in the study. The two parallel 
walls are placed in a way to create a confining space with the gap height equal to H = 1.5σ . The pore channel is 
open on the side of the disklike cavity and modeled by a cylinder with the effective diameter dp = 1.5σ and length 
ℓp = 1.0σ.

We vary the number of beads on a chain from N = 8 to 1024, as a power of 2, and denote it by NgN = 2gN . 
The diameter D is varied to produce the desired initial volume fraction φ0 of monomers in the cavity at a given 
N. It can be shown that φ0 is related to N, D and H by

We see that φ0 is about equal to the two-dimensional volume fraction N
(

σ
D

)2 multiplying the factor 2σ3H if H ≪ D . 
We study the cases of the initial volume fraction equal to φ0,gF = 0.3× 2−gF where the generation number gF is 
varied from 0 to 10. The corresponding diameter D can be thus calculated by the formula

(6)φ0 = N
� σ

D

�2
×





2σ

3H
�

1− 1
3

�

H
D

�2
�





(7)DgD = σ

√

2gD

0.3
×

√

2σ

3H
+

1

3

(

H

σ

)2

· 0.3× 2−gD .

Figure 2.  (a) Setting of the quasi two-dimensional ejection system, which is realized by adding an upper and 
a lower confining wall on top of the three-dimensional “spherical cavity–pore channel–semispace” ejection 
system. (b) Snapshots of the system at the three processing phases: (i) loading, (ii) equilibration, and (iii) 
ejection. The chain has 512 beads and the volume fraction of beads after fully loaded into the cavity is 0.3.
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Here gD = gN + gF is the generation number for D. Using the generation numbers allows us to investigate the 
scaling behaviors in a logical way. For each studied ( NgN , DgD , φ0,gF ) case, five hundred independent runs are 
performed. The simulation trajectories are recorded for post analysis. The case with gF = ∞ is also studied for 
comparison. It simulates the situation that a chain is transported across a line barrier through a small pore in a 
quasi two-dimensional space. To prevent falling of the entire chain back into the cavity, especially when D is large, 
we have set a reflective wall at the pore entrance which interacts only with the head monomer to bounce it back 
into the pore. Therefore, searching for the pore entrance from the inside of the cavity for the head monomer is not 
involved in this study. We remark that there is no external stimulus applied in the model. The ejection of chain is 
effectuated spontaneously because of the favor of thermodynamics. However, chemical potential difference does 
exist in the different regions of the system. The pore channel has a small diameter and thus the chemical potential 
for a monomer presenting inside it is generally higher than the one presenting in the cavity and in the outer 
semi-space, determined basically by the local volume fraction. In a real case, some mechanism or extra chemical 
potential gradient may exist inside the pore to help progresses of an ejection. We do not study the effect here.

In this paper, we choose m , σ , ε to be the mass, length, energy units, respectively. A physical quantity will be 
reported only by its value in the following text, without explicitly mentioning the unit. For example, the ejection 
time “ τej = 100.0 ” means τej = 100.0 tu where tu = σ

√
m/ε is the time unit. The velocity “ Vej = 3.0 ” means 

Vej = 3.0 σ/tu.

Results
Ejection speed. The ejection kinetics is directly studied by calculating the averaged ejection speed 〈Vej〉 . 
The speed is not constant and varies a lot during a process. As we will see, the largest ejection speed in a process 
could be hundred times, or even more, larger than the smallest speed, depending on the condition of ejection. 
Knowing the variation of 〈Vej〉 allows to understand how a chain is ejected at any moment of a process.

The speed 〈Vej〉 at a state m is equal to σ/W(m) where σ is the length of a segment and W(m) is the mean 
dwelling time at the state. We recall that m is the number of the monomers remaining in the cavity. The variation 
of W as a function of m is also called the waiting time function, which can be calculated from the simulations by 
measuring the duration time of a chain staying at each state m. Figure 3 presents 〈Vej〉 as a function of m in an 
ejection process for different chain lengths and cavity diameters. Because m decreases with time, the 〈Vej〉 curve 
should be looked from the right to the left in the figure to follow the direction of time arrow. The chain length 
N is varied from N5 = 32 to N10 = 1024 and the cavity diameter D is varied from D3 to D18 in this study, where 
the values of Dg are given by Eq. (7). The cases with infinite diameter D = D∞ are also studied for references, 
which corresponds to the translocation of polymer in a two-dimensional space.

We observe two main variational behaviors in a typical ejection process: 〈Vej〉 decreases at the confined stage 
and turns to show increasing behavior at the non-confined stage. On the log-log plot, the two variations follows 
essentially the scaling mz1 and m−z2P , respectively, where the predicted exponents are z1 = (dν − 1)−1 = 2.0 and 
z2P = 2ν = 1.5 by setting d = 2 and ν = 0.75 . The two values are significantly larger than the exponents for the 
three-dimensional ejection, z1 = 1.25 and z2P = 1.239,40.

The kinetics equation in Eq. (2) implies that 〈Vej〉 should be identical to each other for different N values at a 
given state m if D (and hence N∗ ) is fixed. However, the simulations reveal that the speed curve for a longer chain 
is evidently lower than the one for a shorter chain. To rectify it, we have introduced a chain length dependence 
for the friction coefficient, η ∼ η0N

x1 , to reduce the ejection speed. The reason for the increase of η with N will 
be explained later, after Fig. 7. An exponent of x1 = 1/3 has been found in the study of the three-dimensional 
 ejection39,40. Here the scaling argument is extended and x1 is anticipated to be 1/2 in our two-dimensional case. 
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We can see that the ejection speed at starting (near m = N ) descends with increasing the chain length as φ0 is 
fixed. It follows grosso modo a scaling N−x1 , indicated by a dash-dotted line in the figure. In order to determine 
the value of x1 , we plot the rescaled speed �Vej� × Nx1+z1m−z1 in Fig. 4, by setting different values for x1 . Under 
the fixed-φ0 condition, the rescaled speed at the confined stage is expected to be constant for different chain 
lengths because

which is derived from Eq. (2) together with the scaling assumption for η . Here v0 = σ/�t0 is the characteristic 
speed, served as the unit.

As we can see, the rescaled curve is leveled off for a while as m > N∗ and becomes bent-up as m approaches 
N. The leveling-off value is found to be independent of N by setting x1 = 0.47 at the four studied φ0 values (refer 
to Panel (b)). Decreasing or increasing x1 tilts the leveling to the right or the left, as shown in the panels (a) and 
(c) of the figure. It gives the best estimate for the x1 exponent. We will come back to explain later why the curve 
is curved up near m = N.

If we plot �Vej� × Nx1+z1mz2P versus m, the rescaled speed will be leveled off in the non-confined stage 
( m < N∗ ), according to Eq. (5). The rescaling has still involved the factor Nx1+z1 in the multiplication, which 
guarantees the rescaled curves coinciding in the confined stage at a given φ0 value. Figure 5 shows the search for 
the value of the exponent z2P . We find that setting z2P = 1.43 (see Panel (b)) produces the best overall horizontal 
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lines in the non-confined stage. Decreasing or increasing z2P inclines the horizontal lines to the right (in Panel 
(a)) or to the left (in Panel (c)).

To understand the details of the speed scaling in the non-confined stage, we plot 〈Vej〉 as a function of m for 
D = ∞ in Fig. 6a. We can see that the ejection increases its speed with decreasing m and the speed curves fol-
low a universal path when m becomes small. According to the physical pictures described in "General ejection 
theory in a d-dimensional space" section, the process stays entirely in a non-confined situation. In the first half 
part of the process ( m > 0.5N ), the free energy of the system goes uphill and the “ejection” is a Kramers escape 
problem. We have derived a formula for the escape time (refer to the case N −mp < N∗ in Table 1) and the 
ejection speed in this part exhibits an overall scaling with the exponent equal to −z2E . In the second half part 
of the process, the number m of the monomers in the cavity becomes smaller than the one s in the semi-space. 
At this moment, the ejection is driven by the entropic pulling of the chain segments from the outside. The free 
energy goes downhill, and the ejection speed is described by Eq. (5) and scales as Vej ∼ m−z2P . Figure 6b shows 
the variation of 〈Vej〉 vs. m/N. By performing non-linear regression fits in the two regions, 0.01 < m/N < 0.5 
and 0.5 < m/N < 0.95 , separately, for the chain lengths from N = 64 to 1024, we report the best estimates for 
the two exponents: z2P = 1.43(3) and z2E = 1.18(6) . To see the difference of the exponents, we have plotted the 
rescaled speed �Vej� ×m1.43 versus m/N in Fig. 6c. The rescaled curves are horizontal in the region m/N < 0.5 
and turn to show m0.25 scaling when m/N > 0.5.

Despite the fact that the ejection speed can be well described by the kinetics equation Eq. (5) in the non-
confined stage, a large bending-up effect, away from the predicted scaling Vej ∼ mz1 for the confined stage, has 
been observed in Fig. 3 particularly when the m value is close to N. The deviation occurs when the monomers 
are very dense in the cavity and the effect can be taken into account by considering the “second” virial term for 
the free  energy55

where B2 is the 2nd virial coefficient for the semidilute polymer solution. The kinetics equation for m at the 
confined stage is thus rectified:

The second virial term boosts the growth of the speed which bends the curve up in the log-log plot.
To verify the theory, we combine directly Eqs. (10) and (5) and approximate the ejection speed of the process 

by using a single equation

Here A1 and A2 are two prefactors which give the required weightings for the two scaling speeds derived sepa-
rately in the confined and non-confined stages. We have utilized the scaling relation D ∼ σNν

∗ to substitute N∗ in 
the equation. Having the approximated speed equation on hand, we are able to perform non-linear regression fits 
for the simulation data and find A1 = 3.04 , B2 = 0.010 , and A2 = 0.20 . We make the plot of Eq. (11) in Fig. 7a 
by plugging in the three fitting parameters for the set of the studied N and D, using the theoretical exponents 
x1 = 0.5 , z1 = 2.0 , and z2P = 1.5.

Astonishing agreements in many features of the speed curves are observed between the theoretical plot 
and the simulations (Fig. 3). For example, the ejection speed in the non-confined stage is well described by the 
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scaling m−z2P , while in the confined stage, the curve curves up from the scaling line mz1 as m approaches N. The 
initial speed for different chain lengths does not follow well the predicted decreasing N−x1 , as shown in Fig. 3. It 
is unlike the three-dimensional  case40 where the initial speed follows essentially N−0.33 . To see more clearly the 
impact of the second virial term on the two-dimensional ejection, we replot Eq. (11) by setting B2 = 0 in Fig. 7b, 
which switches off the second virial. We see right away that the two defectives are gone. The ejection speed in 
the confined stage and the initial speed both follow the desired scalings. It demonstrates the strong influence of 
the second virial term for the two-dimensional case, compared to the three-dimensional one.

Figure 7c,d present the change of the speed profiles with and without involving the second virial, respectively, 
under the condition that there is no chain length dependence Nx1 in the denominator of the confined stage in 
Eq. (11). We can see that the Vej curves are collapsed for different N at the same m-state value as D is fixed, and 
the initial speed stops decreasing with N. The profiles look very different to the ones observed in Fig. 3. It shows 
the necessity to have the N−x1 dependence in the confined stage to describe correctly the ejection speed.

The appearance of the dependence reflects the fact that the effective friction coefficient should scale like 
η ∼ η0N

x1 . The results suggest that the energy dissipation in the confined stage does not come only from the 
traversing monomer in the pore but also from certain following monomers, owing to the chain connectivity. 
These monomers move with a similar speed Vej in the cavity and are estimated to have a length of about the cav-
ity size D, or equivalently about m1/d monomers. The monomers just ejected to the outer space participate the 
energy dissipation too. We estimate about (N −m)1/d such monomers to give up their speed Vej at that moment. 
Because the ejection speed is derived from the balancing equation dF/dt = −ηV2

ej where the dissipation is pre-
sumed to occur only at the pore, the effective friction coefficient η is thus η0(m1/d + (N −m)1/d) , which scales 
roughly like η0N1/d if N is large. As a consequence, the ejection speed exhibits the chain length dependence with 
x1 = 1/d in the confined stage.

Concerning the effective friction coefficient in the non-confined stage, we expect that η scales as η0my2P . The 
key difference with in the confined stage is that all the monomers on the cis side now participate the energy dis-
sipation. These monomers are not confined by the cavity and hence show a net movement toward the pore with 
the drift speed estimated to be vd ∼ dRm

dt ∼ d(σmν )
dt ∼ mν−1σ dm

dt ∼ mν−1Vej . Under this situation, the rate of the 
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Figure 7.  Ejection speed Vej predicted by Eq. (11) for various N and D with the parameters: (a) A1 = 3.04 , 
B2 = 0.01 , A2 = 0.20 , and (b) A1 = 3.04 , B2 = 0 , A2 = 0.20 . The exponents x1 , z1 , and z2P are set to the 
two-dimensional values, 0.5, 2.0, and 1.5, respectively. The chain length Ni is 2i and the cavity diameter Dg is 
calculated by Eq. (7). Panels (c) and (d) present the same plots as Panels (a) and (b), respectively, except that x1 
is set to zero, which turns off the chain length dependence Nx1 in Eq. (11).
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energy dissipation is dominated by the m monomers on the cis side and about m · η0v2d ∼ η0m
2ν−1V2

ej . Therefore, 
the exponent y2P is 2ν − 1 , from which we obtained the ejection speed Vej ∼ v0m

−z2P with z2P = 1+ y2P = 2ν.
Before ending this subsection, we study the scaling behavior of the critical number N∗ . The number is deter-

mined by searching for the position of the minimum ejection speed in Fig. 3. The results are given in Fig. 8.
We find that N∗ scales as D1.29(6) in Panel (a), and is independent of N because the data obtained from different 

chain lengths lie on a universal line. It agrees with our assumption that D ∼ σNν
∗ , which implies N∗ ∼ (D/σ)1/ν . 

Since ν is about 0.75 for a two-dimensional space, an exponent value around 4/3 is expected on the figure. Con-
cerning the scaling against the initial volume fraction, because φ0 ∼ N(σ/D)d , we anticipate N∗ ∼ (N/φ0)

1/(dν) . 
It gives N∗ ∼ (N/φ0)

2/3 . This is exactly what we have observed in the panel (b). The sets of data decrease in a 
parallel manner for different chain lengths. The longer chain possesses a larger N∗ value at a given φ0.

Decrease of number of monomers in the cavity. We study the variation of the number of monomers 
m in the cavity during an ejection process. Because the mean time 〈t〉 to reach a state m depends on the chain 
length and the initial volume fraction, we rescale the time and the number of the monomers by the total time 〈τ 〉 
and N, respectively, in order to compare different simulations. Figure 9a presents the results of m/N vs. 〈t〉/〈τ 〉 at 
three selected φ0 values for different chain lengths.

We observe that the number of the monomers does not decrease smoothly. A plateau region appears at the 
beginning of the curve, as φ0 is not large, with the value of m descended by 1. The descending number cor-
responds to the pore length ℓp = 1.0 . The phenomena have been identified in the three dimensional ejection 
and can be analogous to a nucleation  process39,40. Once the first monomer escapes the pore channel and reaches 
the semi-space, the ejection can take place in a smooth way without stalling. Therefore, the required descend-
ing number 1 can be regarded as the “critical nucleus size” here for the further growth of the number of the 
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Figure 8.  (a) Critical monomer number N∗ as a function of the cavity diameter D for various chain lengths N. 
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monomers in the semi-space. At large φ0 value such as 0.3, the plateau region does not appear and the curve 
decreases directly from the beginning.

To understand properly the decreasing behavior, we trim the critical nucleus size mn off and replot the curves 
using the two trimmed variables: �t̃� = (�t� − τn)/(�τ � − τn) and m̃ = (m−mn)/(N −mn) where mn is one 
in this case and τn is the the nucleation time which is equal to the time 〈τent〉 spent in the entering stage for the 
heading monomer to go across the pore. We can see in Fig. 9b that the curves now decrease smoothly without 
stalling. At φ0 = φ0,∞ , the trimmed curves are overlapped with each other, following a master descending curve 
for different chain lengths. With φ0 being increased, the concave curves turn to show covexness in the small �t̃� 
region. The longer the chain length, the faster the descending will be.

The variation of m with time can be predicted by solving the kinetics equation for the confined stage, Eq. (2), 
with the initial condition m = N at t = 0 , and reads as

where t0 ∼ ζ1N
1+z1∗ N1−z1+x1�t0 and ζ1 = (z1 − 1)−1 . For the non-confined stage, the variation can be solved 

from Eq. (5), with the “finial” state condition m = 0 at t = τej . We obtain

where ζ2 = (z2 + 1)−1 . To understand how good the prediction is, we plot the two functions: (m̃−1/ζ1 − 1)/�t� 
vs. m and m̃ vs. �τej� − �t� , from the simulations in Fig. 10. The previous function is expected to be 1/t0 , which 
is constant for m close to N at large φ0 . The latter should exhibit a power-law growth with an exponent ζ2 in the 
small �τej� − �t� region.
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the legends while the chain length N is indicated directly near the corresponding curves.
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Figure 11.  (a) m vs. 〈t〉/〈τ 〉 for various pore length ℓp at φ0 = φ0,∞ , φ0,1 , and φ0,0 . (b) Time variation of the 
number of monomers plotted in the normalized coordinates m̃ and �t̃� at the three φ0 . The value of ℓp can be read 
in the legend.
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Because the predicted z1 exponent is 2.0, we set ζ1 = 1.0 in the Panel (a) of the figure. We can see that the 
(m̃−1/ζ1 − 1)/�t� curves are essentially horizontal over a broad range of m in the confined stage ( m > N∗ ) as φ0 is 
large for the chain length varied from N7 to N10 . Figure 10b shows that m̃ follows a scaling relation (�τej� − �t�)0.4 . 
The exponent ζ2 = 0.4 gives z2 = 1.5 , which corresponds well to the predicted value and the findings in Fig. 3. 
The exponents ζ1 and ζ2 found here are significantly smaller than the ones for the three-dimensional ejection: 
ζ1 = 4.0 and ζ2 = 0.45440.

To understand the stalling for the decrease of 〈m〉 occurred at the beginning of the process, we performed 
simulations with N = 32 for different pore lengths. The results are given in Fig. 11a as a function of the normal-
ized time 〈t〉/〈τ 〉 . The curves are plotted by using the “line-point” representation where each data point gives the 
required time to reach the given integer m state.

The stalling time is found to increase with ℓp at φ0 = φ0,1 . If we look carefully, we can see that the plateau 
constitutes exactly mp data points. Similar behavior is also observed for φ0 < φ0,1 , for example, for the extreme 
case φ0 = φ0,∞ = 0.0 plotted at the top of the panel. The plateaus of the curves can be removed by shifting the 
time and the monomer number to be �t� − τn and m−mn , respectively, with the critical nucleus size mn = mp 
and the nucleation time τn = �τent� . The resulting curves exhibit astonishing overlaps on the normalized coordi-
nates and become independent of ℓp , as given in Fig. 11b. It shows that the entering stage and the main ejection 
stage are decoupled. Each stage possesses its own scaling and can be studied independently. Please notice that at 
φ0 = φ0,0 ≡ 0.3 , no plateau region appears on the curve. It is because the initial volume fraction of monomers 
in the cavity is about equal to the volume fraction φp for a monomer to be presented in the  channel39,40. Here 
φp can be evaluated by 16πσ

3/(πr2pσ) ≃ 0.296 with rp = 0.75σ being the pore radius. In this case, we have set 
both mn and τn to zero.

Figure 12a shows how the entering time varies with the pore length. In addition to φ0,g = 0.3× 2−g with 
g = 0 , 1, 2, 3, ∞ , extra simulations have been performed at φ0 = 0.2 , 0.25 and 0.4 to study the variation in details.

We observe that the 〈τent〉 data falls on a straight line in the semi-log plot when φ0 is smaller than φp ≃ 0.296 . It 
suggests that �τent� ≃ an exp(bnℓp) with an and bn being two parameters depending on φ0 . For φ0 ≥ φp , the curve 
bends down in the semi-log plot and does not follow well the exponential growth. bn and an can be obtained by 
nonlinear regression fits, and the results are presented in Panels (b) and (c). The value of bn is about 2.5 at φ0 = 0 
and decreases with increasing φ0 . The extension of the bn curve hits zero at φ0 around 0.3, which corresponds to 
the φp value. an decreases also with φ0 . Different to bn , the magnitude reduces several orders.

The exponential dependence of 〈τent〉 on ℓp suggests an Arrhenius type of transition for the heading monomers 
to go across the pore. An amount of energy Ea = mp�µcp is required for the chain to gain from the thermal 
fluctuations to be able to send the first monomer to the semi-space for the following process. Here mp = ℓp/σ 
is the number of monomers needed to span the pore and �µcp = µp − µc is the chemical potential difference 
between the cavity and the pore, which is directly related to the volume fraction difference between the two 
regions. Ea is thus the “activation energy”, and the Arrhenius equation predicts the transition rate k ∝ exp(− Ea

kBT
) 

which gives the required passage time across the pore to be about exp( �µcp

σkBT
ℓp) . A detailed calculation from the 

Fokker–Planck equation yields the same result: �τent� ∼ η exp
(

mp�µcp

kBT

)

 , valid for mp�µcp ≫ kBT (cf. Eq. S3 
in Appendix A in SI). It is the “first passage time” of the Kramers’ escape problem. We also call it the nucleation 
time here because the concept of nucleation has be adopted in the discussion.

If mp�µcp is not much greater than kBT , Eq. (S3) predicts �τent� ∼
ηℓ2p
2kBT

 for mp|�µcp| ≪ kBT , happened 
when φ0 is close φp , and �τent� ∼ (

ησ
|�µcp| )ℓp for mp�µcp < −kBT , happened when φ0 ≫ φp . The previous situ-

ation predicts a diffusion-like motion for the head monomer to come across the pore and therefore, 〈τent〉 is 
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Figure 12.  (a) 〈τent〉 as a function of ℓp in the semi-log plot. The value of φ0 is given near the corresponding 
curve. The data are fit by non-linear regression method via the form an exp(bnℓp) for φ0 > φp . (b) bn vs. φ0 . (c) 
an vs. φ0.
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proportional to ℓ2p . The latter depicts a constant motion where the heading monomers are driven through the 
pore by a driving force |�µcp|

σ
 , which produces a mean drift speed |�µcp|

ησ
 . Consequently, 〈τent〉 is proportional to 

ℓp . The data for φ0 = 0.3 and 0.4 in Panel (a) correspond to the two situations and hence, do not lie on a straight 
line in the semi-log plot.

To make evident the scaling, we replot 〈τent〉 against ℓp in Fig. 13a using the log–log scales.
We can see that 〈τent〉 behaves as ℓ2.04(5)p  at φ0 = 0.3 . The φ0 value is about φp and therefore corresponds to the 

case showing the diffusive kinetics. Increasing φ0 to 0.4 gives �τent� ∼ ℓ1.72(6)p  . It exhibits a super-diffusion behav-
ior with the diffusion exponent equal to 2/1.72 = 1.16 . The φ0 value is not high enough to show pure constant 
motion in the entering stage with �τent� ∝ ℓp . We cannot go further to investigate higher-φ0 cases, because the 
volume fraction has been close to the close pack value in our quasi-2D confining model. It is known that the 
packing fraction of a close pack in a pure two-dimensional space is φ(2D)

cl = πr2/2√
3r2

= 0.9069 . In our model, the 

volume fraction is related to the corresponding 2D packing by φ0 = φ
(2D)
0 × 2σ

3H . A close-pack 2D arrangement 
thus gives φ0 ≃ 0.4030 because H = 1.5σ in this study. The value φ0 = 0.4 has been about the maximum volume 
fraction that we can investigate. For the cases with φ0 smaller than 0.3, the data follow the exponential growth 
with ℓp , as shown in the figure.

Figure 13b compares the descending behavior of m for ℓp = 5 at various φ0 values. Figure 13c is the zoom-in 
of the curves near the starting point, m = 32 . We can see that the descending behavior, and thus the kinetics, 
changes when m goes across the number N −mp = 27 . For φ0 < φp , the descending curve is concave in the 
entering stage. It changes to show convexness when φ0 becomes close or larger than φp.

Processing time analysis. The scaling behavior of the spending time in an ejection process is analyzed in 
this section. The process can be divided into the three stages: (1) the entering stage, for the head monomer to 
enter and pass through the pore channel, (2) the main ejection stage, for the body of the chain to be transported 
from the disklike cavity, through the channel, to the semi-space, and (3) the leaving stage, for the tail monomer 
to leave the pore channel to the semi-space. The total processing time is thus the sum of the duration in the three 
stages, �τ � = �τent� + �τej� + �τleav� . The main ejection stage can be further separated into the two stages: the 
confined stage, in which the chain segments suffer from the confinement of the cavity and are pressed out of it, 
and the non-confined stage, occurred when the pervaded space of the rested chain segments becomes smaller 
than the cavity size. The ejection time is thus equal to �τej� = �τ1� + �τ2� , the sum of the time in the two stages. 
We have argued that 〈τ2〉 for the non-confined stage can be furthermore split into the two terms, 〈τ2E〉 and 〈τ2P〉 , 
according to the way of the chain being driven. 〈τ2E〉 is the thermal escape time occurred when the chain length 
in the cavity is still longer than the one in the semi-space in the non-confined stage, while 〈τ2P〉 is the time spent 
for the chain driven by the entropic pulling from the outside when the outer chain becomes longer than the 
remaining one in the cavity. A sketch for the free energy change in these stages has been given in Fig. 1.

We first study the variations of the decomposed time as a function of N, in Fig. 14, under the fixing D and 
fixing φ0 conditions. Panel (a) reveals that at a given D, 〈τent〉 grows like N1.56(3) and turns to show fast decreasing 
behavior as N becomes larger than the critical N∗ ∼ (D/σ)1/ν . If it is φ0 being fixed (see Panel (c)), 〈τent〉 exhibits 
a change of the scaling behavior from N0.19(5) to N1.56(3) with decreasing the φ0 value. Recall that 〈τent〉 is the 
nucleation time and varies as η exp

(

ℓp�µcp

σkBT

)

 . The fixed-φ0 study implies that �µcp is fixed because the chemical 
potential difference is directly related to the volume fraction difference between the cavity and the pore. It is thus 
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Figure 13.  (a) 〈τent〉 as a function of ℓp in log-log scales. The chain length is 32 and the value of φ0 is indicated 
in the legend. (b) Descending of m plotted in the normalized time coordinate 〈t〉/〈τ 〉 . The pore length ℓp is 5.0. 
The φ0 value is given near the corresponding curve. Panel (c) is a zoom-in of the panel (b) near the starting 
point m = 32.
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the change of the effective friction coefficient η which leads to the change of the scaling. In the previous three-
dimensional  study39,40, we have obtained the nucleation time N0.32(2) at large φ0 and N1.58(6) at small φ0 . At that 
study, we have proposed a scaling argument for the change of η from Nx1 to N1+ν with decreasing φ0 . It looks 
that the proposed scaling fails to be extended for the two-dimensional case. The exponent larger than one for a 
process started by a non-confined stage, φ0 < φ∗ , is understandable. Because the chain is not restricted, the 
entering of the head monomer across the pore needs to overcome the drag of the entire chain and also the con-
formational fluctuations of the chain in the cis region. Long entering time is expected with the scaling exponent 
of N larger than one, which is attributed to the contribution of the friction coefficient. If the chain is initially 
confined (ie., φ0 > φ∗ ), the cavity wall bounces the chain back into the interior and the chain fluctuation is 
restricted. The trials for the escape of the head monomer become much easier. Consequently, the required time 
is shortened with a chain length exponent smaller than one, reflecting effectively on the friction coefficient. The 
mechanism which influences the effective friction in this entering (nucleation) stage deserves detailed investiga-
tion in the future.

The ejection time 〈τej〉 changes from N2.56(4) to N0.50(3) with increasing N in Panel (a). The results are very 
close to the prediction given in Table 1: τej is dominated by τ2 , scaling like N1+z2P when N < N∗ , and by τ1 , scaling 
like Nx1N2

∗ when N is much larger than N∗ , where the expected z2P and x1 exponents are 2ν and 1/d, respectively, 
with ν = 3

d+2 = 0.75 in the two-dimensional ( d = 2 ) space. If the φ0-fixed condition is applied, the scaling is 
switched from N1.78(3) to N2.56(4) by reducing the φ0 value, as seen in Panel (c). The two exponents agree with 
the predictions x1 + 2

dν ≃ 1.83 and 1+ z2P = 2.5 , respectively. Here the additional term 2dν comes into the first 
exponent because the dominated time τ1 has the extra scaling dependence N2

∗ ∼ (N/φ0)
2/(dν) on N as φ0 is fixed.

Panels (a) and (c) also show that the leaving time 〈τleav〉 is negligibly small in comparison with 〈τent〉 and 〈τej〉 , 
and is basically a constant.

The decomposition of 〈τej〉 shows that 〈τ1〉 scales like N0.49(3) in Panel (b) and N1.79(5) in Panel (d). They are 
close the predicted scaling Nx1 and Nx1+(2/dν) for the D-fixed and φ0-fixed cases. The 〈τ2E〉 data in the two panels 
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Figure 14.  (a) 〈τent〉 , 〈τej〉 , 〈τleav〉 , and (b) 〈τ1〉 , 〈τ2E〉 , 〈τ2P〉 as a function of N, plotted under the D-fixed 
condition. The value of D can be read in the legends, calculated by Eq. (7). (c) 〈τent〉 , 〈τej〉 , 〈τleav〉 , and (d) 〈τ1〉 , 
〈τ2E〉 , 〈τ2P〉 as a function of N, plotted under the φ0-fixed condition. The value of φ0 can be read in the legends, 
calculated by φ0,j = 0.3× 2−j.
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lie basically on a line N2.58(3) . It has been shown in Fig. 6 that z2E is about 1.18, which gives y2E ≃ 0.18 smaller 
than x1 . The dominated scaling for 〈τ2E〉 is thus N2+x1 according to Table 1. The 〈τ2P〉 time is expected to show 
N1+z2P∗  for N > 2N∗ and N1+z2P for N < 2N∗ . Again, the obtained exponents, 1.72(5) at the large φ0 and 2.54(2) 
at the small φ0 in Panel (d), are quite close to the theoretical values 1+z2P

dν ≃ 1.67 and 1+ z2P = 2.5 , respectively.
The variations of the different time components versus D for the φ0-fixed and N-fixed conditions are given in 

Fig. 15. We see in Panel (a) that 〈τent〉 scales as D0.36(4) at φ0 = φ0,1 ≡ 0.15 . Decreasing φ0 moves upward the curve 
in a parallel manner. The curve is then “reflected” toward right after meeting the demarcating line D1.95(8) , and 
the scaling changes to D3.06(2) . The results are consistent with the ones in Fig. 14c because φ0 ∼ N

(

σ
D

)2 which 
yields the scaling exponent for D about twice of the one for N at a given φ0 value. Similarly, the ejection time 
〈τej〉 scales like D3.55(3) at large φ0 and D4.96(3) at small φ0 . The two exponents are about twice of the ones found 
in Fig. 14c. The leaving time 〈τleav〉 stays small and is about constant with varying D.

The components of the ejection time in Panel (b) show the following scaling behaviors: �τ1� ∼ D3.58(3) (hap-
pened when φ0 is large), �τ2E� ∼ D5.19(8) (happened when φ0 is small), and �τ2P� ∼ D3.44(5) at large φ0 and D5.01(4) 
at small φ0 . The exponents are found to be the double of the ones in Fig. 14d.

Figure 15c reveals that 〈τent〉 grows faster than a power law when D is smaller than the critical value D∗ ∼ σNν 
and becomes horizontal when D > D∗ , if N is fixed. The scaling line D1.95(8) in the figure tells how 〈τent〉 varies at 
the critical diameter. The ejection time 〈τej〉 grows initial as D2.68(5) , following the predicted behavior D2/ν , and 
turns to becomes horizontal as D > D∗ . Panel (d) shows that the component 〈τ1〉 exhibits a D2.68(5) scaling. 〈τ2E〉 
is about constant in the concerned large D region and 〈τ2P〉 possesses the exponent value 2.98(5) for D < D∗ and 
turns to be leveled-off for D > D∗ . The previous exponent is close to the theoretical value 1+z2P

ν
.

Figure 16 presents the variations of the different time components against the initial volume fraction φ0 . 
With N being fixed, Panels (a) and (b) are, in fact, the replots of Fig. 15c,d through the abscissa mapping 
φ0 ≃ N(σ/D)2 . In the plots, 〈τent〉 is flat in the small φ0 region and decreases quickly as φ0 passes a critical value 
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Figure 15.  (a) 〈τent〉 , 〈τej〉 , 〈τleav〉 , and (b) 〈τ1〉 , 〈τ2E〉 , 〈τ2P〉 as a function of D, plotted under the φ0-fixed 
condition. The value of φ0 can be read in the legends, calculated by φ0,j = 0.3× 2−j . (c) 〈τent〉 , 〈τej〉 , 〈τleav〉 , and 
(d) 〈τ1〉 , 〈τ2E〉 , 〈τ2P〉 as a function of D, plotted under the N-fixed condition. The chain length N can be read in 
the legends where Ni = 2i.
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Figure 16.  (a) 〈τent〉 , 〈τej〉 , 〈τleav〉 , and (b) 〈τ1〉 , 〈τ2E〉 , 〈τ2P〉 as a function of φ0 , plotted under the N-fixed 
condition. The chain length N is indicated in the legends with Ni = 2i . (c) 〈τent〉 , 〈τej〉 , 〈τleav〉 , and (d) 〈τ1〉 , 
〈τ2E〉 , 〈τ2P〉 as a function of φ0 , plotted under the D-fixed condition. The D value can be found in the legends, 
calculated by Eq. (7).
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Figure 17.  (a) 〈τleav〉 as a function of ℓp at various φ0 values, indicated in the legend. (b) 〈τleav〉 vs. φ0 with ℓp 
being fixed. The chain length is 32.
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φ0∗ . The curves join a master dropping curve and become zero (minus infinity in the log scale) at φ0 ≃ φp . 〈τej〉 
shows a power-law decreasing behavior φ−1.32(5)

0  as φ0 > φ0∗ . In the confined stage, we observe the scaling 
�τ1� ∼ φ

−1.35(4)
0  . In the non-confined stage, 〈τ2E〉 is about constant while 〈τ2P〉 changes the scaling from N1+z2P 

(independent of φ0 ) to be N1+z2P∗ ∼ (N/φ0)
(1+z2P)/(dν) when passing the critical point. The obtained exponent 

−1.50(4) for φ0 is somewhat larger than the predicted value − 1+z2P
2ν ≃ −1.67.

The plots in Fig. 16c,d can be related to Fig. 14a,b via the same mapping φ0 ≃ N(σ/D)2 but it is the D value 
being fixed. Therefore, the scaling exponents extracted from the two sets of figures should be identical. We can 
see that 〈τent〉 increases with φ0 with a consistent exponent 1.53(3) for φ0 < φ0∗ . In the region φ0 > φ0∗ , the 
decreasing curves collapse and tend to be zero at φ0 around 0.3. 〈τej〉 shows φ2.54(3)

0  for the cases experiencing 
only the non-confined stage, while it changes to φ0.52(5)

0  for the ones experiencing the confined and then non-
confined stages. The scaling exponents for 〈τ1〉 and 〈τ2E〉 are 0.46(6) and 2.54(6), respectively. The 〈τ2P〉 data show 
consistent scaling φ2.49(5)

0  and tend to be leveled off as φ0 is large.
As seen in the above figures, the leaving time 〈τleav〉 does not change basically with varying the N, D, and φ0 

variables. It is because the relevant quantity, the pore length ℓp , is fixed in the study. To explore the behavior of 
〈τleav〉 , we have performed simulations for N = 32 by varying ℓp . The results are shown in Fig. 17.

We can see in Panel (a) that the leaving time increases with the pore length at various φ0 values and tends to 
grow as ℓ1.14(8)p  . Panel (b) reveals that the 〈τleav〉 value is basically independent of the initial volume fraction φ0 . 
The reason for the properties is explained below. At the final moment of an ejection process (the leaving stage), 
the chain tail is driven across the pore channel by the chemical potential difference �µps between the pore and 
the outer semi-space. The initial volume fraction φ0 thus has no effect on the leaving mechanism. The leaving 
time is predicted to be about �t0

(

kBT
|�µps|σ

)

ℓp , which is proportional to the pore length. What we have observed 
agrees mainly with the prediction.

Discussions and conclusions
To make connection with applications, we present time variational curves of the ejection coordinate s in Fig. 18. 
Because the processing time τ of an ejection varies a lot from one process to the others, the curves are plotted by 
using the normalized time and ejection coordinates, t/τ and s/N, for comparison. Five typical curves, together 
with the mean curve averaged over 500 independent runs, are presented at the three selected initial volume 
fractions.

At the large volume fraction, φ0 = φ0,0 = 0.3 , the differences between individual curves is relatively small 
(refer to Panel (a)). The ejection follows mainly the path of the mean curve. In other words, the evolution of the 
ejection is quite deterministic. As φ0 decreases, the evolution becomes more and more stochastic. The random-
walk nature of the process leads to large fluctuations, upward and downward in the s-coordinate as shown in 
Panel (b). At zero initial volume fraction, φ0 = φ0,∞ , a large free energy barrier has to be overcome by the 
system. The chain struggles for leaving the cis side. We can see that in addition to the large variation, the curve 
bounces so many times with the bottom line s = 0 , until the chain finds a way to go out of the trap and finally 
reaches the trans side.

In applications, a large initial volume fraction is generally preferable so that the ejection can be effectuated 
in a controllable (deterministic) way. Figure 18a has revealed that an individual ejection spends the first 20% of 
the time on ejecting about two thirds of the chain out of the cavity and the rest the remaining 80% of the time to 
complete it. The proportion of the chain to be ejected in the first 20% time is even higher if the chain length N 
becomes longer by keeping the same φ0 value. A process like this definitely gives us a sensation that the ejection is 

s/
N
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 1 (a) φ0=φ0,0

N=128
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N
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Figure 18.  Evolution of the normalized coordinate s/N versus the normalize time t/τ in five typical ejection 
processes, plotted in colored curves, at (a) φ0 = φ0,0 , (b) φ0 = φ0,3 , and (c) φ0 = φ0,∞ . The chain length is 
N = 128 . The mean evolution is plotted on top of the five curves in black color in each panel.
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drastically slowed down or seemly “halted” after spitting out a considerable long segment from the confining cav-
ity. It might explain the experimental observations for the inhibition of DNA ejection from bacteriophages under 
certain  conditions12,24,56. In particular, increasing the osmotic pressure from the outer solution could be regarded 
as an effective reduction of the osmotic pressure difference between the inside and outside of the cavity. Thus, 
the ejection might show an evolution curve similar to the small φ0 cases given in Panels (b) and (c) of the figure.

In this study, we have generalized the ejection theory for polymer to a two-dimensional space. The kinetics 
equation was derived from the Onsager’s variational principle by using the free energy obtained in the scaling 
theory of polymer physics. The ejection speed was shown to scale as mz1/(Nx1Nz1+1

∗ ) in the confined stage and 
m−z2P in the non-confined stage with x1 = 1/d , z1 = 1/(dν − 1) , and z2P = 2ν , where m is the number of mono-
mers in the circular cavity and N∗ is the critical number of monomers to distinguish the confined and the non-
confined stages at a given cavity diameter D. The analysis showed that the non-confined stages can be further 
divided into two substages, determined by whether the chain length in the cavity is still longer than the one in 
the outer space or not. The spending time can be calculated in these stages and the ejection time τej is equal to 
τ1 + τ2E + τ2P . Because the pore has finite length, non-negligible time is required for the head monomer to 
traverse the pore channel to be able to start ejecting chain segments into the outer space. The time spent for the 
tail monomer to go across the pore channel to end the process is generally short. The two events define two 
additional stages before and after the main ejection stage, called the entering stage and the leaving stage. In the 
entering stage, τent can be calculated by solving the Kramers escape problem while τleav for the leaving stage is 
derived from the chemical potential difference. The total processing time τ is thus the sum of the three compo-
nents, τent , τej , and τleav . Each has its own scaling behavior. In the entering stage, τent is described by Eq. (S3) in 
SI. It exhibits an exponential increase with the pore length, like η exp

(

ℓp�µcp

σkBT

)

 , for φ0 much smaller than φp , the 
local volume fraction of a monomer presented in the pore channel. If φ0 is around φp , τent is characterized by a 

diffusive time 
ηℓ2p
2kBT

 . In the main ejection stage, if the confined stage is the dominated contribution, τej scales as 

Nx1+(2/dν)φ
−2/dν
0  , or equivalently N (2d+7)/3dφ

−(2d+4)/3d
0  by replacing ν with 3/(d + 2) . If the dominating is the 

non-confined stage, the scaling of τej is a combination of the two terms, N2+x1 and N1+z2P , which can be expressed 
as a function of d as N2+(1/d) and N (d+8)/(d+2) , respectively. In the leaving stage, the spending time is 
τleav ∼ ℓp

(

kBT
σ |�µps|

)

.
Elaborated molecular dynamics simulations have been performed to verify the generalized ejection theory 

in the two-dimensional space. By varying the chain length N, the cavity diameter D, and thus the initial volume 
fraction φ0 , we demonstrated that the ejection speed can be well described by the kinetics equation Eq. (11) with 
the scaling exponents in consistent with the predictions (Figs. 3, 4, 5, 6, 7). The study for the local minimum of 
the ejection speed did show that the critical number N∗ varies as D1/ν with ν = 0.75 being the two-dimensional 
Flory exponent (Fig. 8). The time evolution of m revealed that a nucleation-like stage occurs prior to the main 
ejection stage. The trimmed curves were described by Eqs. (12) and (13), respectively, when m approaches the 
starting and the ending point of the ejection stage, with the exponents ζ1 = 1.0 and ζ2 = 0.4 (Figs. 9, 10, 11). 
The entering time was then examined by varying the pore length, and shown to fulfill the properties of the first 
passage time obtained from the Kramers escape problem (Figs. 12, 13). The total processing time was decom-
posed in Figs. 14, 15, 16 and the scaling behaviors were verified carefully in each stage by varying N, D, φ0 . The 
results support the predicted behaviors given in Table 1. Finally, the leaving time was checked and demonstrated 
linearly proportional to the pore length (Fig. 17). Owing to the consistency of the various scaling behaviors in 
the different stages, we conclude that the free energy landscape of ejection should be as sketched as in Fig. 1.

The ejection theory has been demonstrated valid both in this two-dimensional study and in the previous 
three-dimensional  investigation39,40. It is a very robust theory able to predict variations of various quantities such 
as the ejection speed, the ejection coordinate, and the ejection time. A process starting with a high density as 
well as with zero volume fraction can be well explained under the same theoretical framework. In other words, 
the theory can be used to understand the phenomena of polymer ejection and the polymer translocation across 
a wall. It shows how complicated the kinetics can be in releasing a confined or non-confined polymer through a 
channel. It allows people to get insight of the ejection physics and helps researchers in the development of vari-
ous ejection devices for two-dimensional or three-dimensional applications.
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