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The inherent community structure 
of hyperbolic networks
Bianka Kovács1 & Gergely Palla1,2,3*

A remarkable approach for grasping the relevant statistical features of real networks with the help 
of random graphs is offered by hyperbolic models, centred around the idea of placing nodes in a 
low-dimensional hyperbolic space, and connecting node pairs with a probability depending on 
the hyperbolic distance. It is widely appreciated that these models can generate random graphs 
that are small-world, highly clustered and scale-free at the same time; thus, reproducing the most 
fundamental common features of real networks. In the present work, we focus on a less well-known 
property of the popularity-similarity optimisation model and the S1/H2 model from this model family, 
namely that the networks generated by these approaches also contain communities for a wide range 
of the parameters, which was certainly not an intention at the design of the models. We extracted 
the communities from the studied networks using well-established community finding methods such 
as Louvain, Infomap and label propagation. The observed high modularity values indicate that the 
community structure can become very pronounced under certain conditions. In addition, the modules 
found by the different algorithms show good consistency, implying that these are indeed relevant 
and apparent structural units. Since the appearance of communities is rather common in networks 
representing real systems as well, this feature of hyperbolic models makes them even more suitable 
for describing real networks than thought before.

Complex network theory is a rapidly expanding interdisciplinary field, strongly interwoven with statistical phys-
ics, concentrating on the interesting non-trivial statistical features of the graphs representing the connections/
interactions between entities of complex  systems1–3. Over the last two decades, the vast number of studies of 
real networks have shown that some of these features seem to be almost universal, such as the small-world 
 property4,5, the relatively high clustering  coefficient6, the inhomogeneous degree  distribution7,8, and the pres-
ence of  communities9–11. Grasping these properties in a unified modelling framework is a non-trivial problem; 
however, a very notable approach pointing in this direction is given by hyperbolic network  models12–18 centred 
around the idea of placing nodes on a hyperbolic plane, and drawing links with a probability depending on the 
metric distance.

Probably the most well-known model from this family is the popularity-similarity optimisation (PSO) 
 model12, working in the native disk representation of the two-dimensional hyperbolic space. Here the nodes 
are introduced one by one with logarithmically increasing radial coordinates and uniformly random angular 
coordinates, and the newly appearing nodes connect to the previous ones with a probability decreasing with 
the hyperbolic distance. This model is known to be capable of generating networks that are small-world, highly 
clustered and scale-free at the same time. Roughly speaking, the degree of the nodes is determined by their radial 
coordinate—with the inner nodes becoming eventually hubs—and due to a parameter-controlled outward shift 
of the nodes (corresponding to popularity fading), the decay exponent of the degree distribution is also tune-
able in the model. By changing the cutoff of the connection probability as a function of the hyperbolic distance 
with another parameter called the temperature, the clustering coefficient of the resulting random graphs can 
be adjusted as well.

Another remarkable hyperbolic network model, capable of generating small-world, highly clustered and scale-
free random graphs is given by the S1/H2  model17,19. In the S1 model nodes are placed on a circle and are given a 
hidden variable drawn from a power-law distribution. Here the connection probability depends on the angular 
distance between the nodes and the hidden variables. By converting the hidden variables to radial coordinates 
in the native disk representation of the hyperbolic plane, we arrive to the equivalent H2 model, where the con-
nection probabilities depend on the hyperbolic distance between the nodes in a similar way as in the PSO model.
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In parallel with the success of hyperbolic models, there have also been several studies carried out focusing on 
possible hidden metric spaces behind real networks, starting with the examination of the self-similarity of scale-
free  networks17, followed by reports on the hyperbolicity of protein interaction  networks20,21, the  Internet22–24, 
brain  networks25, or the world trade  network26. Furthermore, a connection between the navigability of networks 
and hyperbolic spaces was  shown22,27, the geometric nature of  weights28 and  clustering29,30 was demonstrated, 
methods for measuring the hyperbolicity of networks were  introduced31. Hyperbolic networks are also closely 
related to network models based on simplicial  complexes32,33, where the emergent geometry of the generated 
random graphs was shown to be hyperbolic. In addition, significant achievements were obtained related to the 
problem of hyperbolic embedding as  well13,19,23,34–36, where the task is to find the most suitable node coordinates 
in a hyperbolic space given an input network topology.

Returning to hyperbolic network models, in the recent years there have also been efforts devoted to the 
development of generative methods capable of producing hyperbolic random graphs with an apparent commu-
nity  structure14–16,18. Clusters or communities in hyperbolic networks usually correspond to separated angular 
 regions37–42. In accordance with this, in Refs.15,16 the uniform angular distribution of the nodes was replaced by 
a multimodal distribution, where communities arise naturally at the peaks. The appearance of communities in 
Refs.14,18 was achieved by applying a geometric preferential attachment process, also inducing the formation of 
denser angular regions corresponding to communities.

Although the above-mentioned ideas do provide very interesting models with ’built-in’ community forma-
tion, in the present paper we would like to draw the attention to the lesser-known but somewhat surprising fact 
that angular inhomogeneity is not a necessary condition for the presence of communities in hyperbolic network 
models, and that communities can appear in networks generated by the ’plain’ PSO model or the S1/H2 model 
as well. This was first shown for the E-PSO model (a generalisation of the PSO  model13) in Refs.37,39 and for 
the S1/H2 model in Ref.38, along with the proposition of the “Community-Sector hypothesis”, supposing that 
most members of a community gather in the same angular sector on the hyperbolic plane. In the closely related 
study of Ref.40, the dependence of the modularity (a commonly used quality score for communities introduced 
in Ref.43) on the temperature parameter T ∈ [0, 1) of the E-PSO model (controlling the clustering coefficient) 
for communities found by the Louvain  method44 was also studied to some extent. According to the results, the 
modularity can be even above 0.7 when T is low, and gradually decreases when T is increased; however, can still 
stay above 0.3 when T approaches 1. In parallel with these studies, in Ref.45 the analogy between the hyperbolic 
embedding and the community structure was studied mostly for real networks and partly for synthetic graphs 
generated by the PSO model, where again, the PSO networks were observed to have a notable community 
structure, just like the real networks.

Even though the above results already provide important signs related to the presence of communities in 
hyperbolic networks with homogeneous angular node distribution, here we revisit this phenomenon in a detailed 
in-depth study, motivated by the following. First of all, in spite that a modularity value above 0.3 can be a good 
community indicator in  practice46, it is important to note that a high modularity value alone is not always accom-
panied by a true modular structure, as e.g. Erdős–Rényi random  graphs47 or scale-free networks obtained with 
the Barabási–Albert  model48 can also yield modularity values above 0.8 under certain  circumstances49,50. Thus, 
in order to have a truly solid claim about the presence of communities in random graph models without any 
explicit community formation mechanism, it is best to back up the large modularity values with further analysis 
of the supposed modular structure from multiple aspects.

Another task of high importance is the more detailed exploration of the parameter space. Apart from simple 
parameters such as the network size and the average degree, both the PSO model and the S1/H2 model have 
basically two parameters: one controlling the decay exponent γ of the scale-free degree distribution and the other 
controlling the clustering coefficient. By analysing the effect of these parameters on the communities, we can gain 
a clear picture about what sort of modular structure can be expected when the aim is to generate a hyperbolic 
random graph with specified γ and clustering coefficient values.

Along this line, here we generate random graphs according to the PSO and the S1/H2 models in a wide 
range of parameter settings and examine their community structure with the help of three well-established 
community finding algorithms given by the Louvain  method44, the Infomap  algorithm51 and asynchronous label 
 propagation52. The Louvain approach is known to be a very efficient modularity maximising method, while the 
other two algorithms included do not build on the modularity and extract the modular structure of the studied 
networks based on different concepts. By applying independent community finding methods, the comparison 
between the found modules can reveal whether they correspond to strong, significant structures that can be 
located consistently in several different ways or not. In order to gain a quantitative comparison between the com-
munities found by the different methods, we rely on the concept of the adjusted mutual information (AMI)53, 
a well-known information-theoretic similarity measure. Besides the modularity, we also examine the angular 
separation index (ASI) of the  communities42 corresponding to a measure developed specifically for hyperbolic 
networks, characterising the angular mixing of the groups of nodes (communities) on the native disk.

The paper is organised as follows. In “Methods and preliminaries” section we describe the PSO and S1/H2 
models used for network generation, together with a short summary of the applied community finding methods 
and the quality measures used for evaluating the detected community structures. This is followed by the details 
of our analyses in “Results” section, whereas we discuss the implications of our findings in “Discussion and 
conclusions” section.



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:16050  | https://doi.org/10.1038/s41598-021-93921-2

www.nature.com/scientificreports/

Methods and preliminaries
We begin the description of the used methods with a brief introduction to hyperbolic network models, including 
both the PSO model and the S1/H2 model. Then we continue with summarising the applied community-related 
measures: the concept of modularity, the angular separation index and the adjusted mutual information. We 
close the section with the description of the used community finding algorithms, given by asynchronous label 
propagation, the Louvain algorithm and the Infomap method.

Hyperbolic network models. When studying the underlying hyperbolic geometry of complex networks, 
commonly the native representation of the two-dimensional hyperbolic space is  used54, in which the hyperbolic 
plane of constant curvature K < 0 is represented by a disk of infinite radius in the Euclidean plane (for which 
K = 0 ). In this representation the Euclidean angles between hyperbolic lines are equal to their hyperbolic val-
ues, and the radial coordinate r of a point (defined as its Euclidean distance from the disk centre) is equal to its 
hyperbolic distance from the disk centre. The hyperbolic distance between two points is measured along their 
connecting hyperbolic line, which is either the arc of the Euclidean circle going through the given points and 
intersecting the disk’s boundary perpendicularly or—if the disk centre falls on the Euclidean line connecting the 
two points in question—the corresponding diameter of the disk. The hyperbolic distance x between two points 
at polar coordinates (r, θ) and (r′, θ ′) fulfills the hyperbolic law of cosines written as

where ζ =
√
−K  and �θ = π − |π − |θ − θ ′|| is the angle between the examined points. According to Ref.54, 

for 2 ·
√

e−2ζ r + e−2ζ r′ < �θ and sufficiently large ζ r and ζ r′ , the hyperbolic distance can be approximated as

The PSO model for network generation. In the popularity–similarity optimisation model, nodes are placed one 
by one in the above-described native disk representation of the hyperbolic plane and connected with probabili-
ties depending on the hyperbolic distance. The parameters of the model can be listed as follows:

• The curvature K < 0 of the hyperbolic plane, controlled by ζ =
√
−K > 0 . Changing the value of ζ corre-

sponds to a simple rescaling of the hyperbolic distances; the usual custom is to set the value of ζ to 1 (i.e. set 
K to −1).

• The final number of nodes N ∈ Z
+ in the network.

• The number of connections m ∈ Z
+ established by the newly appearing nodes, corresponding to the half of 

the average degree 〈k〉 . (The first m nodes of the network form a complete graph).
• The popularity fading parameter β ∈ (0, 1] , controlling the outward drift of the nodes on the native disk. 

The exponent γ of the power-law decaying tail of the degree distribution is related to the popularity fading 
parameter as γ = 1+ 1/β.

• The temperature T ∈ [0, 1) , controlling the average clustering of the network, where a lower temperature 
results in a higher average clustering coefficient.

During the random graph generation process, initially the network is empty, and at each time step i = 1, 2, ...,N 
a new node joins the network as follows: 

1. The new node i appears at polar coordinates (rii , θi) , where the radial coordinate rii is set to 2
ζ
ln(i) and the 

angular coordinate θi is sampled from [0, 2π) uniformly at random.
2. The radial coordinate of each previously (at time j < i ) appeared node j is increased according to the formula 

rji = βrjj + (1− β)rii in order to simulate popularity fading.
3. The new node i establishes connections with previously appeared nodes. Only single links are permitted. 

(a) If the number of previously appeared nodes is not larger than m, node i connects to all of them.
(b) Otherwise, the new node i connects to m of the previously appeared nodes, where the connection 

probabilities are determined by the hyperbolic distances between the node pairs, which can be calcu-
lated based on Eq. (1). If T = 0 , node i simply connects to the m hyperbolically closest nodes, whereas 
at temperatures T > 0 , any previous node j = 1, 2, ..., i − 1 gets connected to node i with probability 

 where the cutoff distance Ri is set to 

 ensuring that the expected number of nodes connecting to the new node i at its arrival is equal to m.

(1)cosh(ζx) = cosh(ζ r) cosh(ζ r′)− sinh(ζ r) sinh(ζ r′) cos(�θ),

(2)x ≈ r + r′ + 2

ζ
· ln

(

�θ

2

)

.

(3)p(xij) =
1

1+ e
ζ
2T (xij−Ri)

,

(4)Ri =











rii − 2
ζ
ln

�

2T
sin(Tπ) ·

1−e−
ζ
2 (1−β)rii

m(1−β)

�

if β < 1,

rii − 2
ζ
ln
�

T
sin(Tπ) ·

ζ rii
m

�

if β = 1,
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The S1/H2 model for network generation. In the S1  model17, first the N number of nodes are placed on a one-
dimensional sphere (i.e. a circle) and each is given a hidden variable κi ∈ [κ0,∞), i = 1, 2, ...,N . Then, each pair 
of nodes becomes connected with a probability taking into account both the angular distance and the hidden 
variables. In the below-described  algorithm19, κi corresponds to the expected degree k̄i of node i in the thermo-
dynamic limit. Thus, the connection rule can be phrased in a simple, intuitive way, namely the nodes that are 
closer in the hidden metric space underlying the network are more likely to be connected, but in the meantime 
nodes with higher degree obtain farther-reaching connections as well. In the equivalent H2  model19, the hidden 
variable κi is converted into the radial coordinate ri in the native representation of the hyperbolic plane, and the 
connection probability depends on the hyperbolic distance between the nodes that expresses the effect of both 
the similarity and the node degrees (the popularity).

The parameters of these models can be listed as follows:

• The total number of nodes N.
• The average degree 〈k〉.
• The exponent γ of the tail of the degree distribution following a power law of the form P(k) ∼ k−γ . Although 

these models can accommodate any degree distribution in general, here we use only power laws with γ > 2 
values, in order to generate networks having similar properties as in case of the PSO model.

• The parameter 1 < α , controlling the average clustering coefficient 〈c〉 of the generated network 
( limα→1�c� = 0).

In the S1 model, a network of N number of nodes—each of them indexed by i ∈ [1,N]—is generated through 
the following steps: 

1. For each node i an angular coordinate θi is sampled from the interval [0, 2π) uniformly at random.
2. For each node i a hidden variable κi is sampled from the interval [κ0,∞) according to the distribution 

ρ(κ) = (γ − 1) · κ−γ

κ
1−γ
0

 , where κ0 = γ−2

γ−1
· �k�.

3. Each pair of nodes i − j is connected with probability 

 where �θij = π − |π − |θi − θj|| is the angular distance between the nodes and µ = α
2π�k� · sin

(

π
α

)

.
To facilitate a straightforward comparison with the PSO model, we converted the hidden variable associated to 
the nodes into a radial coordinate in the native representation of the hyperbolic plane (at K = −1 curvature) as

where R̂ = 2 ln

(

N

µπκ2
0

)

 . Note that using this hyperbolic representation (i.e. the H2 model) the connection prob-

ability (5) becomes pij =
[

1+ e
α
2 ·(xij−R̂)

]−1
 , depending on the hyperbolic distance xij in the same way as the 

connection probability in Eq. (3).

Finding and evaluating communities. Communities (also referred to as modules, cohesive groups, 
clusters) are frequently occurring structural units in complex networks having usually a larger internal and 
a smaller external link density, lacking however a widely accepted unique definition. Finding, evaluating and 
comparing communities are all non-trivial problems, with a vast number of different solutions suggested in the 
 literature9–11. Here we first describe the concept of modularity, corresponding to the most widely used measure 
for quantifying the quality of communities. This is followed by the angular separation index, providing a score 
specific for hyperbolic networks, measuring the angular intermixing between communities in the hyperbolic 
disk, and the adjusted mutual information, allowing the quantitative comparison between community partitions 
found by different methods. In our studies, we have picked three well-grounded, commonly used methods for 
detecting communities, namely the asynchronous label propagation, the Louvain algorithm, and Infomap.

Modularity. Probably the most well-known quality measure for communities is given by the  modularity43, 
comparing the observed density of links between the members of the same community with the expected link 
density based on some random null model, written in general as

where N is the number of nodes in the network, Aij denotes an element the adjacency matrix ( Aij ≡ Aji = 1 if i 
is connected to j and otherwise Aij ≡ Aji = 0 ), Pij gives the connection probability between nodes i and j in the 
null model, L stands for the total number of links in the network, ci is the community to which node i belongs 
and the Kronecker delta δci ,cj ensures that non-zero contribution can come only from node pairs in the same 

(5)pij =
1

1+
(

N ·�θij
2π ·µ·κi ·κj

)α ,

(6)ri = R̂ − 2 ln

(

κi

κ0

)

,

(7)Q = 1

2L

N
∑

i=1

N
∑

j=1

[

Aij − Pij
]

δci ,cj ,
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community. This quality measure can take values in the Q ∈ [−1/2, 1] interval, where larger values of Q indicate 
stronger communities that have a significantly larger internal link density compared to the random expectation.

In practice, a natural choice for the null model is provided by the configuration model, where the connection 
probability between nodes i and j can be given with the node degrees ki and kj simply as Pij = kikj

2L  . This form has 
also been extended to weighted  networks55, where the number of links L is replaced by M = 1

2 ·
∑N

i=1

∑N
j=1 wij 

(with wij denoting the link weight between nodes i and j), and the node degrees are replaced by the node strengths 
defined e.g. for node i as si =

∑N
ℓ=1 wiℓ , resulting in

In order to take into account the hyperbolic distances along the links, we adopted the practice suggested in 
Ref.35, and used in our community analysis a link weight defined as

for adjacent nodes i and j, where the hyperbolic distance xij was calculated based on Eq. (1) using ζ = 1.

Angular separation index. In networks embedded into the hyperbolic disk, communities usually occupy well-
defined angular regions, having little or no overlap with the region of the other  communities37–42. A quantitative 
score characterising this tendency is given by the angular separation index (ASI)42. Its basic idea is to compare 
the number of “mistakes” in the angular arrangement—i.e. the number oi of nodes belonging to other communi-
ties falling between the boundaries of the given module i—summed over all the C communities of the network 
with the highest total number of mistakes obtained with the same clustering of the nodes when the angular 
coordinates are shuffled at random. Formally, the ASI can be expressed as

where the maximisation in the denominator is over a fixed number of random shuffles (we used 1000 shuffles, 
i.e. r = 1, 2, ..., 1000 , as suggested in Ref.42). Accordingly, an ASI value close to 1 indicates well-separated clusters 
with a low intermixing in the angular coordinates of the members, and an ASI value close to 0 is obtained when 
the angular arrangement of the members of different clusters is random.

Adjusted mutual information. In the field of community detection, together with the rapid increase in the 
number of different algorithms proposed, came the need for well-grounded methods for comparing the results 
of the different approaches. Since e.g. the number of found communities and the sizes of the modules can show 
large variations across the different methods, judging the extent of similarity between two community partitions 
is non-trivial. Given two sets of communities A and B over the same network, hosting CA and CB number of 
communities each, a well-known information-theoretic similarity measure is offered by the normalised mutual 
information (NMI)56,57, that can be defined based on the mutual information

and the entropies

where Nij denotes the number of shared members of communities i and j, Ni and Nj stand for the number of nodes 
in the individual communities, and the total number of nodes in the network is given by N. There are several 
different possibilities for normalising the mutual information MI(A, B) , e.g. we can divide it by the maximum, 
the arithmetic mean or the geometric mean of the entropies H(A) and H(B)53. In the present study we used the 
maximum of the entropies; thus, throughout the paper

This quantity becomes 1 if and only if the partitions A and B are identical, otherwise its value is lower than 1.
The concept of adjusted mutual information (AMI) supplements this consistent upper bound with a consist-

ent zero expectation corresponding to the similarity we can expect by random  chance53,58. To achieve this, the 
average mutual information of random partitions A′ and B′ is subtracted from the nominator, and the average 
maximum entropy of random partitions is subtracted from the denominator yielding

(8)Q = 1

2M
·

N
∑

i=1

N
∑

j=1

[

wij −
sisj

2M

]

δci ,cj .

(9)wij ≡ wji =
1

1+ xij

(10)ASI = 1−
∑C

i=1 oi

max
r

(

∑C
i=1 o

(r)
i

) ,

(11)MI(A, B) = −
CA
∑

i=1

CB
∑

j=1

Nij

N
ln

(

NijN

NiNj

)

(12)H(A) = −
CA
∑

i=1

Ni

N
ln

(

Ni

N

)

, H(B) = −
CB
∑

j=1

Nj

N
ln

(

Nj

N

)

,

(13)NMI(A, B) ≡ MI(A, B)

max [H(A), H(B)]
.
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Asynchronous label propagation algorithm for community detection. The asynchronous label propagation 
 algorithm52 simulates the diffusion of labels along the links in the examined network, where the nodes are 
labelled by the identifier of the community to which they belong, and these labels are regularly updated based 
on the labels of the neighbouring nodes using a majority rule. The idea behind this method is that as the labels 
propagate, the densely connected groups of nodes will reach a consensus on a unique label. This approach is not 
aimed at optimising any predefined measure or function.

Initially, a unique community label is assigned to each node in the network. Afterwards, the following asyn-
chronous update process is repeated until every node in the network has at least as many neighbours within its 
own community as it has in any other communities: 

1. Nodes are arranged in a random order.
2. According to this order, we iterate over the nodes and update their label one by one based on their neigh-

bours: each node joins the community to which most of its neighbours currently belong. Note that the 
label of the neighbours may have already been updated in the given iteration. The neighbouring labels are 
weighted based on the strength of their link connected to the current node, and ties in the weighted number 
of neighbours are broken at random.

Due to the random propagation of the labels, in this approach it is possible that distinct communities may 
eventually settle to the same label. Therefore, after the termination of the above algorithm, we also applied a 
breadth-first search on the subgraphs of each individual community to separate the disconnected (i.e. connected 
only via nodes of different communities in the original network) groups of nodes having the same label, as sug-
gested in Ref.52.

Louvain algorithm for community detection. Though finding the exact maximum of modularity is a compu-
tationally hard  problem59, over the years several heuristic modularity optimisation methods were  proposed9,10, 
and one of the most popular among these is the Louvain  algorithm44. This approach is capable of unfolding a 
complete hierarchical community structure (where modules can be composed of submodules) within a relatively 
short time even for extremely large networks. The algorithm is repeating two phases iteratively until the modu-
larity stops improving: 

1. Searching for a local maximum in the modularity at the given organisation level of the network.

• First, a unique community is assigned to each node of the current network.
• This is followed by a repeated iteration over the nodes until the modularity does not increase any further 

(or, in our case, until the gain in the modularity decreases below a threshold of �Qmin = 10−7).

• We evaluate the changes in the modularity that would take place if the current node i was transferred 
to the community of each of its neighbours.

• If all the calculated modularity changes are negative, node i stays in its current community. Otherwise, 
we carry out the transfer of node i where the improvement in the modularity is the largest.

2. Moving up to the next organisation level of the system represented by the network between the just found 
communities:

• Each community is considered as a single node.
• A self-loop is created for each new node, weighted by twice the sum of the link weights within the cor-

responding community.
• The new nodes are connected by links weighted by the sum of the link weights between the correspond-

ing community members on the previous organisation level.

In our investigations, we weighted the links in the examined hyperbolic networks according to Eq. (9) and con-
sidered only the final partition (i.e. the top-level community structure, having the highest modularity among 
the different organisation levels) found by the implementation of the algorithm available.

Infomap algorithm for community detection. The Infomap algorithm, as suggested by its name, provides an 
information-theoretic approach for finding communities in  networks51 based on a correspondence between 
the optimal community structure and the most parsimonious description of an infinitely long random walk 
trajectory on the network. The random walk can be considered as a proxy for the flow in the network (travelling 
passengers, spreading ideas, etc.), making its components interdependent to varying extents. It is intuitive to 
assume that communities correspond to localized regions of the network where random walkers spend a lot of 
time. We can take advantage of this property of communities when aiming for the most compact description of 
a random walker trajectory as follows.

(14)AMI(A, B) = MI(A, B)− �MI(A′, B′)�rand
max [H(A), H(B)]− �max [H(A′), H(B′)]�rand

.
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In a simple approach, the trajectory is corresponding to the sequence of the visited nodes, each labelled with 
a unique codeword. However, trajectories can be defined more concisely by using a map-like description fol-
lowing the principle of geographic maps, where e.g. the same street names appear in multiple cities. In a similar 
manner, after naming the communities, the code words of the nodes can be recycled among the different com-
munities, and only the members of the same community have to be given unique names. By limiting the number 
of different code words used to denote the nodes, the length of these code words can be reduced, leading to a 
considerable saving in the length of the trajectory description. Naturally, the recycling of the code words also 
comes at a cost, namely one has to indicate when the random walker leaves a given community to enter a new 
one by specifying the code word of the new community. Nevertheless, if communities are well separated from 
each other, then the transition between communities is not frequent, and we gain in the length of the trajectory 
description even with this extra cost taken into account.

For a map-like trajectory description based on a given community structure, the efficiency can be evaluated 
by the so-called map  equation51, expressing the optimal code length (i.e. the theoretical lower bound of the code 
length) for an average movement of an infinitely long random walk. The Infomap algorithm itself searches for 
the multi-level, hierarchical network partition minimising the map equation in a heuristic manner, splitting 
modules into submodules, subsubmodules and so on in order to reduce the description length. If the splitting 
of a given leaf in the community hierarchy does not decrease the description length anymore, the downward 
growth of the given branch in the hierarchy is stopped. In our community analysis, we used link weights calcu-
lated according to Eq. (9) and queried from the output of the algorithm the communities corresponding to the 
leaves of the community hierarchy.

Results
We generated random graphs using the PSO and the S1/H2 models in a wide range of parameter settings, and 
used the obtained networks as inputs for the community finding methods given by the asynchronous label 
propagation, the Louvain and the Infomap algorithms. According to the results, the hyperbolic random graphs 
seemed to possess a strong community structure for several regions of the parameter space.

As an illustration, in Fig. 1 we show the partition found by the Louvain algorithm in networks of size 
N = 1000 both according to the layout in the native disk representation of the two-dimensional hyperbolic 
space and according to a standard layout in the Euclidean plane. In Fig. 1a,c, the sets of nodes grouped together 
by Louvain occupy well-defined angular regions in the hyperbolic disk with barely any overlap with the region of 
the neighbouring communities. However, according to Fig. 1b,d, the detected communities are clearly outlined 
even in such layouts which do not build on the hyperbolic origin of the networks.

We found that the angular separation of the detected modules exemplified by Fig. 1a,c is quite general in the 
hyperbolic disk. Using the angular separation index (ASI), we evaluated quantitatively the angular separation of 
the modules obtained with the asynchronous label propagation, the Louvain and the Infomap algorithms for a 
large variety of the network generation parameters. In the case of the PSO model, for both the temperature T and 
the popularity fading parameter β we took 10 equidistant data points between 0 and 1 (altogether 100 parameter 
combinations in the T − β parameter plane) and generated 100 networks with each parameter setting. In the case 
of the S1/H2 model, to allow a straightforward comparison with the results seen for the PSO model, instead of 
the original model parameters α and γ we changed to 1/α (analogous to the temperature T in the PSO model) 
and 1/(γ − 1) (equivalent to the popularity fading parameter β in the PSO model). Similarly to the studies of the 
PSO model, we considered a 9× 9 grid in the 1/α − 1/(γ − 1) parameter plane (our simulations relied on finite 
α values and γ > 2 ; thus, the T = 1/α = 0 and the β = 1/(γ − 1) = 1 points are not contained in the studied 
grid), and generated 100 networks for each parameter combination. As it is shown in Fig. 2, for PSO and S1/H2 
networks of size N = 10,000 and average degree �k� = 10 a considerably high ASI can be obtained with all three 
community finding methods for most of the T − β and α − γ parameter settings.

In order to verify that the angularly separated modules detected by the asynchronous label propagation, 
the Louvain and the Infomap algorithms are indeed relevant structural units of the networks, we measured the 
quality of the extracted community partitions by the weighted modularity Q given in Eq. (8). In Figs. 3 and 4, 
we show the corresponding results for networks of size N = 10,000 and expected average degree �k� = 10 , 
where the weighted modularity is plotted as a function of the model parameters with the help of heat maps. 
According to Fig. 3, for a considerably large region in the parameter plane the modularity averaged over 100 
networks is larger than 0.65 for the communities found by Infomap (Fig. 3c), larger than 0.75 for the communi-
ties extracted by asynchronous label propagation (Fig. 3a) and larger than 0.85 for the communities located by 
Louvain (Fig. 3b). For Louvain and Infomap, the highest scores in the modularity are achieved at low T and β 
parameters, corresponding to networks with a high average clustering coefficient and a rather homogeneous 
degree distribution. The modularity is high in this region also for the asynchronous label propagation; however, 
in this case the highest modularity values occur for mid-range β values. When β approaches 1, the observed Q 
seems to decrease for all community finding methods. Nevertheless, Q can still take relatively high values at e.g. 
β = 0.6 , where the generated network is expected to be scale-free with a degree decay exponent of γ ≃ 2.67 . 
According to the results displayed in Fig. 4, the maximum of Q for the S1/H2 model is in the low-value regime 
of the 1/α − 1/(γ − 1) parameter plane for all three community finding methods, where the modularity values 
seem to be higher by a small margin compared to the case of the PSO model, e.g. reaching up to �Q� = 0.99 for 
the communities found by Louvain.

As mentioned in the Introduction, a large modularity value alone does not always indicate a true modular 
structure as e.g. both Erdős–Rényi random graphs and Barabási–Albert random graphs have been shown to 
display relatively high modularity values under certain  circumstances49,50. However, for random graphs gener-
ated by the aforementioned two classical models with the same size and link density as in Figs. 3 and 4, the 
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modularity can reach up to only about 0.28, which is significantly smaller compared to the Q values we observed 
in the studied hyperbolic networks. Furthermore, in the present study 2 out of the 3 community finding methods 
applied are not based on modularity maximisation, and they still find communities that yield high Q values.

A further question arising related to the results shown in Figs. 3 and 4 is whether we are facing a finite size 
effect of some sort, where the large modularity observed at the current system size N = 10,000 will decrease 
when the networks are enlarged, eventually approaching zero in the thermodynamic limit. The results displayed 
in Fig. 5 clearly show that this is not the case, as the highest weighted modularity Q achieved between the asyn-
chronous label propagation, the Louvain and the Infomap algorithms increases as a function of N for both the 
PSO and the S1/H2 networks for almost all parameter settings. The only exception occurs in Fig. 5f, where it 

Figure 1.  Communities found by the Louvain algorithm in hyperbolic networks. (a) The obtained communities 
(colour coded) in a network with N = 1000 number of nodes, generated by the PSO model with parameters 
m = 5 (corresponding to �k� = 10 ), β = 0.7 (corresponding to γ = 2.43 ) and T = 0.2 (resulting in an average 
clustering coefficient of 0.58). The layout shows the network in the native disk representation of the two-
dimensional hyperbolic space of curvature K = −1 , with the nodes arranged according to their coordinates 
assigned during the network generation process. The weighted modularity for the found partition is Q = 0.75 
and the angular separation index is ASI = 1.0 . (b) Layout of the network shown in  (a) on the Euclidean 
plane. (c) The detected communities in a network generated by the S1/H2 model with parameters N = 1000 , 
�k� = 10 , γ = 2.43 and α = 5 (resulting in an average clustering coefficient of 0.71), shown in the native disk 
representation of the hyperbolic plane of curvature K = −1 . The weighted modularity of the shown partition 
is Q = 0.74 , the angular separation index is ASI = 0.998 . (d) Layout of the same network as in  (c) on the 
Euclidean plane.
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is hard to judge whether Q remains constant or is slightly increasing for the red coloured curve corresponding 
to α = 1.11 and γ = 2.11 in the S1/H2 model. Based on Fig. 5, we can conclude that in the parameter regime 
where high Q values were observed in the present work, the modularity seems to show an increasing tendency 
when the studied hyperbolic networks are enlarged and the parameters (other than the number of nodes) of the 
network generation process are kept constant.

Figure 2.  Angular separation index in the PSO and the S1/H2 models. The results for the PSO model are 
given in the left column (a,c,e), whereas the ASI obtained for the S1/H2 model appears in the right column 
(b,d,f). The ASI for the communities detected by asynchronous label propagation is given in the top row (a,b), 
the ASI regarding the results of Louvain is shown in the middle row (c,d) and the ASI for the partitions found 
by Infomap is presented in the bottom row (e,f). We show the measured ASI (indicated by the color, averaged 
over 100 samples) as a function of the model parameters T and β , or 1/α and 1/(γ − 1) for networks of size 
N = 10,000 and expected average degree �k� = 10.
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In order to examine the significance of the found communities from another aspect, we also compared the 
community partitions obtained with the different methods using the adjusted mutual information. The results 
are displayed in Fig. 6 with the help of heat maps, showing the AMI averaged over 100 networks as a function 
of the model parameters in the studied parameter planes. According to the figure, the highest similarity values 
occur between the communities found by asynchronous label propagation and Infomap (Fig. 6a,b). These can 
reach up to even �AMI� = 0.9 , indicating an almost one-to-one correspondence between the modules of the 
different partitions. On the other hand, the lowest similarity values can be observed for Louvain and Infomap 
(Fig. 6e,f), where the typical value of the AMI is about 0.5. However, this is still in the range of acceptable con-
sistency between the different partitions and is definitely way higher than what we would expect e.g. for random 
partitions. Therefore, based on Fig. 6 we can say that in those parameter regions where the communities are 
characterised by relatively high modularity scores, the partitions obtained with the different community detec-
tion methods also show significant consistency with each other. This fact reassures that the modules we observe 
in the studied hyperbolic networks are indeed relevant and apparent structural units that can be detected based 
on multiple approaches in a consistent way.

A basic statistic regarding the revealed community structures is given by the community size distribution, 
which is exemplified by Fig. 7 for the three examined community finding methods. According to that, the size 
of the communities found by the asynchronous label propagation follows more or less a power law for both the 
PSO model (Fig. 7a) and the S1/H2 model (Fig. 7b). In the regime of small and middle-sized communities, the 
curve corresponding to Infomap seems to be close to that; however, towards the larger sizes it decays faster. In 
contrast, the community size distribution yielded by Louvain is quite distinct from the curves obtained with both 
asynchronous label propagation and Infomap, mostly due to a peak at higher community sizes for both the PSO 
model and the S1/H2 model. This difference between the community size distributions is in correspondence 
with the results seen for the AMI, where the output of Infomap and asynchronous label propagation turned out 
to be more similar to each other than to Louvain.

An interesting question related to the visibly strong community structure obtained with the studied hyperbolic 
models is how does it relate to the community structure of such networks where the angular distribution of the 

Figure 3.  Modularity in the PSO model. We show the weighted modularity Q (indicated by the color, averaged 
over 100 samples) as a function of the model parameters T and β for networks of size N = 10,000 and expected 
average degree �k� = 10 . The panels correspond to the results obtained with asynchronous label propagation (a), 
Louvain (b), Infomap (c), and when the best community partition is taken from the three methods according to 
Q (d).
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nodes is non-uniform, as in the case of the hyperbolic network models proposed in Refs.14–16,18. To address this 
question, here we define a transition between PSO networks with uniform angular node distribution and PSO 
networks generated with clear angular separation between modules in a similar fashion to the nPSO model intro-
duced in Refs.15,16, but with uniform angular distribution within the supposed communities instead of Gaussian 
distribution. Our related framework begins with generating a PSO network and then running a community 
finding algorithm on the resulting network for locating its modules (we used Louvain for this purpose). Based 
on the found communities, we can then generate PSO networks with equally-sized gaps between the supposed 
modules by dividing the [0, 2π) interval into subintervals having a width proportional to the size of the given 
community, where the aggregated width of the subintervals can be expressed as 2π(1− g) when the aggregated 
width of the gaps is 2πg . The number of nodes placed in a given subinterval is equal to the number of members 
of the corresponding community, and the angular coordinate of these nodes is distributed uniformly at random 
within the subinterval. Otherwise, the network generation process is identical to that in the original PSO model.

In Fig. 8, we show results obtained from this framework, where the top panels depict the modularity for com-
munities found by the Louvain algorithm as a function of the relative gap size g, and the bottom panels provide 
layout examples at different values of g. According to the figure, although Q increases as a function of the rela-
tive gap size g as expected, this increase is rather mild, except for large β or T parameters. In other words, the 
modularity in the uniform PSO model can be quite close to the Q that we obtain for modules with high angular 
separation, and therefore, the communities we observe in the uniform PSO model can be viewed also as a mean-
ingful limit for the modular structure of systems where the angular distribution of the nodes is non-uniform.

As a closing of this section, we draw the attention to Supplementary Information 2–4, listing further results 
on the communities found in the studied hyperbolic networks at different system sizes and average degree values. 
In addition, in Supplementary Information 5 we also examine what happens in the PSO model if the angular 
distribution of the nodes is strictly equidistant instead of homogeneous random. The qualitative behaviour 
of the communities found during these investigations is basically the same as seen here. Moreover, in Sup-
plementary Information 2–4 our analysis is repeated on an extension of the PSO model known as the E-PSO 
 model13 (described in Supplementary Information 1), yielding results that are again very similar to what we 

Figure 4.  Modularity in the S1/H2 model. We show the weighted modularity Q (indicated by the color, 
averaged over 100 samples) as a function of the model parameters 1/α and 1/(γ − 1) for networks of size 
N = 10,000 and expected average degree �k� = 10 . The panels correspond to the results obtained with 
asynchronous label propagation (a), Louvain (b), Infomap (c), and when the best community partition is taken 
from the three methods according to Q (d).
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have detailed here. Finally, in Supplementary Information 6 we show the results obtained for the examined PSO, 
E-PSO and S1/H2 networks when setting all the link weights to 1 instead of using the link weights given in Eq. (9).

Discussion and conclusions
Motivated by interesting signs of modules in hyperbolic networks with homogeneous angular node distribution 
reported in Refs.37–40,45, here we revisited the question of community structure in the PSO and the S1/H2 models 
in a detailed in-depth study. Although for both of these models the model construction itself lacks any intention-
ally built-in community structure, the networks generated in these approaches still possess apparently strong 
communities for a wide range of the model parameters, as indicated by the high modularity values measured 
on the results of three independent community finding algorithms, namely asynchronous label propagation, 
Louvain and Infomap. The significance of the found communities is supported by the fact that only 1 out of the 3 
applied methods is based on modularity optimisation, and that the comparison between the different partitions 
yielded reasonably high AMI values, indicating a considerable consistency between the results. Furthermore, the 
modularity values that can be achieved in Erdős–Rényi random graphs or Barabási–Albert scale-free networks 
at the same average degree are way lower compared to the Q values we observed in the hyperbolic networks. In 
addition, the high modularity of the studied hyperbolic networks cannot be regarded as a finite size effect, since 
Q showed an increasing tendency as a function of the system size in the parameter regimes corresponding to 
an apparent, strong community structure. Moreover, the ASI (which is a quality measure independent of the 
modularity) was also very high for the major part of the parameter space.

The parameter plane in which we examined the behaviour of the modularity corresponded to the 
(T ,β) ∈ [0, 1)× (0, 1] plane in the PSO model and the analogous ( 1

α
, 1
γ−1 ) ∈ (0, 1)× (0, 1) plane in the S1/H2 

model. The intuitive meaning of these parameters can be summarised as follows: the average clustering coefficient 

Figure 5.  Size dependence of the modularity in the PSO model and the S1/H2 model. We plotted the highest 
weighted modularity Q achieved between the asynchronous label propagation, the Louvain and the Infomap 
algorithms, as a function of the number of nodes N. The panels on the left display the results for the PSO model, 
whereas the panels on the right correspond to the S1/H2 model. The expected average degree 〈k〉 was set to 10 
in each case. The further model parameters, such as the β , T, α and γ values appear as panel titles and legends. 
Each data point was obtained by averaging over 10 networks of the given parameter set. The error bars indicate 
the standard deviations among the 10 networks.
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of the generated networks is regulated by the temperature T and its counterpart 1/α (lower values result in higher 
average clustering coefficients), while the power-law decay exponent γ of the degree distribution is controlled by 
the popularity fading parameter β in the case of the PSO model according to the formula γ = 1+ 1/β and is itself 

Figure 6.  Adjusted mutual information between the different community partitions. The results for the PSO 
model are given in the left column (a,c,e), whereas the AMI obtained for the S1/H2 model appears in the right 
column (b,d,f). The AMI between the communities detected by asynchronous label propagation and Infomap 
is given in the top row (a,b), the AMI regarding the results of asynchronous label propagation and Louvain is 
shown in the middle row (c,d) and the AMI between the partitions found by Louvain and Infomap is presented 
in the bottom row (e,f). We show the measured AMI (indicated by the color, averaged over 100 samples) as a 
function of the model parameters T and β , or 1/α and 1/(γ − 1) for networks of size N = 10,000 and expected 
average degree �k� = 10.
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a parameter of the S1/H2 model. According to our results, when changing these parameters, the behaviour of the 
modularity follows a similar pattern for both hyperbolic models and all three community finding algorithms, 
except for the PSO model combined with asynchronous label propagation.

Putting aside the above-mentioned exception, for increasing T (or 1/α) , together with a decrease in the aver-
age clustering coefficient the modularity also decreases (which is absolutely natural), and when β (or equiva-
lently, 1/(γ − 1) ) is increased, resulting in a more fat-tailed degree distribution, Q decreases again. However, the 
dependence of the modularity on the model parameters is not at all linear, instead we can observe a high, slightly 
decreasing plateau in the parameter plane with the maximum values in the origin and a relatively narrow belt of 
lower Q values at the feet of the plateau, placed far from the origin. For the communities found by asynchronous 
label propagation in the networks generated by the PSO model, the behaviour is slightly different: although Q 
is high close to the origin, for increasing β it shows a slow increasing tendency, reaching its maximum in the 

Figure 7.  Community size distributions. (a) The probability density function of the community size in the 
PSO model according to asynchronous label propagation (blue circles), Louvain (green squares) and Infomap 
(orange triangles) based on 100 networks of size N = 10,000 , expected average degree �k� = 10 , temperature 
T = 0.2 and popularity fading parameter β = 0.7 . (b) The probability density function of the community size in 
the S1/H2 model with the same symbol and colour coding as in (a), based on 100 networks of size N = 10,000 , 
expected average degree �k� = 10 , 1/α = 0.2 and 1/(γ − 1) = 0.7.
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medium β range, followed by a drop for high β values, similarly to the results seen for the other combinations 
between network generation models and community finding methods.

When considering the parameter settings close to the origin ( T → 0, β → 0 in the PSO model and 
1/α → 0, 1/(γ − 1) → 0 in the S1/H2 model), which yield the largest modularity values in most of the cases, it 
is important to note that the corresponding networks are homogeneous in terms of the degree (the degree decay 
exponent γ is large) and do not resemble scale-free real networks. The existence of such regime in the parameter 
space seems to be congruent with the small-world transition identified by the renormalisation group approach 
in Ref.60, i.e., communities are the strongest where the small-world property disappears under renormalisation, 
and the networks have a highly local nature. However, when β is increased (or equivalently, γ is decreased), the 
modularity decreases only by a small magnitude for quite some range. E.g., at β = 0.6 , corresponding to γ ≃ 2.67 , 
the modularity averaged over 100 networks can still reach up to �Q� = 0.929 in the PSO model and �Q� = 0.898 in 
the S1/H2 model. In other words, when setting the degree decay exponent to moderate values often seen in real 
systems with the help of β or by directly tuning γ , the networks obtained with the studied models can still pos-
sess a strong community structure if the other parameter (T or 1/α , controlling the clustering coefficient) is not 
pushed to extremely high values, meaning that the clustering coefficient is not reduced to extremely low values.

The regime where Q drops to lower values is on the one hand where β → 1 (or equivalently γ → 2 from 
above), corresponding to extremely fat-tailed degree distributions, and where T → 1 (or equivalently α → 1 from 
above), corresponding to networks with clustering coefficients close to zero. Thus, if one would like to generate 
scale-free hyperbolic networks having communities and a degree decay exponent close to γ = 2 , it might be a 
better option to choose the models in Refs.14–16,18, where the community formation is helped by the non-uniform 
angular distribution of the nodes. Nevertheless, except the mentioned extreme regimes, the studied “traditional” 
hyperbolic models seem to produce a strong enough community structure that can be taken as a simple model 
for the apparent modular structures often observed in real systems.

A remaining interesting question is why do the observed communities arise despite the absence of any explicit 
community formation mechanisms built into the construction of the studied models? In short, the same model 
properties that allow the development of a large clustering coefficient in the generated random graphs on the 
level of nodes also make the emergence of communities possible on a slightly larger scale. Communities are local 
structures in the sense that members connect to each other with a larger link density than to the rest of the system. 
As mentioned in the Introduction and as it can be seen in Fig. 1a,c, in hyperbolic networks such units correspond 
to well-defined angular  regions37–42 with a relatively low number of links across them. Thus, as noted in Ref.45, 
the community structure of a network can be also viewed as a coarse version of its layout in the hyperbolic space.

In our view, the key element in the formation of communities in the studied models is that due to the hyper-
bolicity (negative curvature) of the native disk, for a node newly appearing at the periphery it is much easier to 
connect radially than “sideways” (i.e. to nodes with similarly large radial coordinate), as indicated by e.g. the 
distance formula in Eq. (2). If the angular separation between the previously arrived nodes that are placed at 
smaller radii is large enough, they can become distinct attractive community cores to which the new nodes can 
connect with only a small interference (cross-links) between the different angular regions. In the PSO model, 
the condition for a large enough separation between the inner nodes is that they are pushed outwards (according 
to the popularity fading) relatively fast, i.e. β is not large. In parallel, the cutoff in the connection probability as 

Figure 8.  Transition to non-uniform angular node distribution in the case of the PSO model. The weighted 
modularity Q averaged over 100 networks of size N = 1000 and expected average degree �k� = 10 is shown 
as a function of the relative gap size g between the modules for β = 0.2 in (a), for β = 0.5 in (b) and for 
β = 0.8 in (c). (The error bars indicate the 95% confidence intervals.) In (d–g), we show a series of network 
layouts at increasing gap widths for N = 1000 , �k� = 10 , β = 0.7 and T = 0.2 , where the colours indicate the 
communities found by the Louvain algorithm.
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a function of the hyperbolic distance must also be sharp enough for localised connections; thus, T must not be 
set large either to support community formation. A similar line of arguments holds also for the S1/H2 model. 
When γ is large, then due to the relatively rapid decay in the degree distribution, the hidden variables κi take low 
values that are mapped to relatively high radial coordinates even for the inner nodes, helping the formation of 
community cores. In parallel, a large α parameter in the S1/H2 model has a similar effect to a low T value in the 
PSO model, sharpening the cutoff in the connection probability as a function of the metric distance.

We also compared the community structure in the PSO model to the communities in networks with a non-
uniform angular distribution of the nodes in a simple framework, motivated by the fact that the embedding of 
real networks is often non-homogeneous in terms of the angular coordinates, similarly to the hyperbolic models 
with built-in community formation introduced in Refs.14–16,18. Our framework enables a continuous transition 
between the homogeneous angular node distribution of the PSO model and an angular distribution with empty 
gaps between the supposed modules, where the angular coordinates are distributed uniformly at random inside 
the allowed angular regions. According to our results, the modularity shows only a mild increase as a function 
of the relative gap size for the majority of the parameter settings. Thus, the modules in the original PSO model 
can be quite close in strength to modules occurring in hyperbolic networks with a non-uniform angular node 
distribution, and the modular structure of the PSO model as a whole can be treated as a limiting case for those 
hyperbolic systems where the community structure is accompanied with a non-uniform distribution in the 
angular coordinates of the nodes.

Our findings are also closely related to the community structures observed in networks grown with the help 
of simplicial  complexes32,33 that were also shown to be hyperbolic. Explicit community formation is not built in 
these models either; however, the simplicial complexes form complete subgraphs (cliques), and when aggregat-
ing such dense structures, the appearance of communities seems to be more natural compared to the models 
studied here, where links are introduced one by one. Nevertheless, the formation of communities observed here 
deepens further the connection between hyperbolic networks and the models introduced in Refs.32,33, that are 
known to possess a strong community structure.

In conclusion, our study draws the attention to the important but less known fact that the PSO and S1/H2 
models are capable of generating random graphs that are not just small-world, highly clustered and scale-free, 
but in addition contain communities as well. Although the advantageous properties of hyperbolic models were 
already appreciated in the literature, this recognition makes them even more suitable for modelling real systems 
than thought before. In real systems, communities provide very important units at an intermediate level of the 
structural organisation of the network. Our detailed study of the behaviour of the community structure as a 
function of the model parameters show that modules are formed also in hyperbolic networks in an “automatic” 
way, simply as a consequence of the connection rules and the nature of the underlying hyperbolic geometry. These 
findings add a novel perspective and motivation for the studies and applications of hyperbolic network models.
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