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Microarray‑based selection 
of a serum biomarker 
panel that can discriminate 
between latent and active 
pulmonary TB
Zhihui Li, Jianjun Hu, Pengchong Liu, Dan Cui, Hongqin Di & Shucai Wu*

Bacterial culture of M. tuberculosis (MTB), the causative agent of tuberculosis (TB), from clinical 
specimens is the gold standard for laboratory diagnosis of TB, but is slow and culture‑negative TB 
cases are common. Alternative immune‑based and molecular approaches have been developed, but 
cannot discriminate between active TB (ATB) and latent TB (LTBI). Here, to identify biomarkers that 
can discriminate between ATB and LTBI/healthy individuals (HC), we profiled 116 serum samples 
(HC, LTBI and ATB) using a protein microarray containing 257 MTB secreted proteins, identifying 23 
antibodies against MTB antigens that were present at significantly higher levels in patients with ATB 
than in those with LTBI and HC (Fold change > 1.2; p < 0.05). A 4‑protein biomarker panel (Rv0934, 
Rv3881c, Rv1860 and Rv1827), optimized using SAM and ROC analysis, had a sensitivity of 67.3% and 
specificity of 91.2% for distinguishing ATB from LTBI, and 71.2% sensitivity and 96.3% specificity for 
distinguishing ATB from HC. Validation of the four candidate biomarkers in ELISA assays using 440 
serum samples gave consistent results. The promising sensitivity and specificity of this biomarker 
panel suggest it merits further investigation for its potential as a diagnostic for discriminating 
between latent and active TB.

Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), is the leading cause of death from infectious 
 diseases1. An estimated one-quarter of the world’s population is latently infected with MTB (latent tuberculosis 
infection (LTBI)), and 1.41 million people died from TB in  20192. Approximately 5–10% of those infected with 
MTB will develop active tuberculosis (ATB) during their lifetime. Pulmonary infection accounts for 75% of active 
TB  disease3 and is also the main factor underlying high tuberculosis mortality, especially in populations, such as 
individuals living with HIV-AIDS, with lowered  immunity4. The identification of MTB-infected individuals and 
the appropriate treatment of those who develop ATB are undoubtedly crucial for effective TB  control5.

Current clinical diagnosis of TB still relies on a traditional approach that includes acid-fast bacillus (AFB) 
smears, nucleic acid amplification (NAA) (e.g. Xpert MTB/RIF or Xpert MTB/RIF Ultra), and culture of M. tuber-
culosis from sputum and other respiratory specimens, in addition to evaluation of clinical  symptoms6. However, 
sputum smears have very low sensitivity (10–20%), and MTB culture lacks sensitivity and requires 2–8 weeks to 
obtain  results7. Although the speed and sensitivity of Xpert MTB/RIF is high, this technique cannot replace AFB 
sputum smears and culture methods due to its low sensitivity in detecting AFB-negative individuals, its high 
operation costs, and inconsistency in results between  laboratories8,9. Prolonging diagnosis delays the commence-
ment of appropriate treatment for TB; in the case of sputum smear-negative tuberculosis, delayed diagnosis is 
known to lead to irreversible lung  injury10, one of the causes of TB’s high mortality. In vivo tuberculin skin tests 
(TST) and in vitro interferon gamma release assays (IGRAs) are considered auxiliary methods for diagnosing 
 TB11; however, the TST cannot distinguish between healthy individuals vaccinated with the BCG and those with 
active TB disease. IGRA testing must be conducted under standard laboratory conditions by trained  personnel12 
and its reproducibility is  disputed13–15. In addition, neither test can distinguish between ATB and  LTBI16,17. There 
is therefore an urgent need for a rapid, simple and more accurate method for diagnosing active TB disease.

Serological screening of disease-related serum biomarkers is a convenient, quick and non-invasive method 
for disease diagnosis. The sensitivity and specificity of biomarkers for the disease in question is an important 

OPEN

Hebei Chest Hospital, Shijiazhuang 050041, China. *email: wushc2009@sina.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-93893-3&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:14516  | https://doi.org/10.1038/s41598-021-93893-3

www.nature.com/scientificreports/

indicator of whether they can be used in clinical practice, determining the reliability of test  results18. Serum 
biomarkers for TB, such as the 38kD, 16kD, ESAT-6, MPT63, 19kD, MPT64, MPT32, Rv1009, MTB48, Mtb81, 
MTC28, Ag85B, and KatG proteins have been  identified19, but while most show high sensitivity in ATB  patients20, 
their sensitivity and specificity is insufficient for discriminating between active TB and  LTBI21. The screening 
of new TB serum biomarkers that can discriminate between active TB and LTBI is thus of great importance for 
improving diagnostic accuracy.

Here, we set out to identify serum biomarkers that can be used to diagnose active pulmonary TB. Reason-
ing that secreted proteins are likely to be a useful source of biomarkers, we used an MTB protein microarray 
containing 257 M. tuberculosis recombinant secreted proteins. In the biomarker discovery phase of the study, we 
screened 116 samples (52 ATB, 37 LTBI, and 27 HC) with the microarray, identifying 23 antibodies that showed 
a differential pattern between the ATB and LTBI and HC groups. We then identified a panel of 4 proteins with 
high sensitivity and specificity that could distinguish ATB from LTBI, and verified the performance of these four 
proteins using ELISA assays and 440 serum samples. This panel merits further investigation for its potential in 
diagnosing active pulmonary tuberculosis.

Materials and methods
Study cohort. Serum samples from individuals with active tuberculosis (ATB, 205) or latent tuberculo-
sis (LTBI, 123) and healthy donors (HC, 112) included in this study were collected at Hebei Chest Hospital 
between May 2018 and Jan 2019. Diagnosis of active tuberculosis was based on standard criteria, including 
clinical symptoms, chest radiograph abnormalities, AFB sputum smears, bacterial culture and IGRA (X.DOT-
TB, TB Healthcare, Foshan, China) results. The active TB group included individuals who displayed TB-specific 
clinical symptoms, had abnormal chest radiography consistent with active TB, and were sputum AFB positive 
and/or bacterial culture positive. Samples from patients in the ATB group were collected before treatment. The 
LTBI group included individuals who did not display clinical symptoms, but were IGRA positive and showed 
no signs of active TB in chest X-rays. The healthy control (HC) group included individuals who did not display 
clinical symptoms, and were IGRA negative and showed no signs of TB in chest X-rays. Individuals who tested 
positive for human immunodeficiency virus (HIV), or were taking immunosuppressive or immunopotentiator 
agents were excluded from the study. This study was approved by the Ethics committee of Hebei Chest Hospital 
(Hebei Province, China), in accordance with the Declaration of Helsinki (No. 2020076). Informed consent was 
obtained from all subjects or their legal guardians if the subjects were under 18.

Serum samples. Peripheral blood samples (5 mL) were collected in vacutainer tubes. Sera were obtained by 
centrifugation at 1509×g for 10 min, and were then aliquoted into sterile polypropylene microtubes and stored 
at − 80 °C until required.

Profiling on MTB secreted protein microarrays. The MTB proteome microarrays used in this study 
were constructed by BC-BIO (Guangzhou, China). Microarrays comprised 257 recombinant M. tuberculosis 
H37Rv secreted proteins. All proteins had GST tags and were expressed and purified using a S. cerevisiae expres-
sion system. Microarrays were incubated with GST antibodies to assess their quality, human IgG and IgM being 
used as positive controls, and bovine serum protein (BSA) as a negative control.

Microarrays were blocked in blocking buffer (1× PBS, 3% BSA, 0.1% Tween 20 [pH 7.4]) for 3 h at room 
temperature with shaking. After blocking, 200 μL serum samples (1:50 dilution in PBST-B (1× PBS, 1% BSA, 
0.1% Tween 20 [pH 7.4])) were overlaid onto protein microarrays and incubated at 4 °C overnight. After wash-
ing three times in PBS containing 0.1% Tween 20 detergent (PBST), arrays were probed with goat anti-human 
IgG conjugated with Cy3, and goat anti-human IgM conjugated with Cy5 (Jackson Laboratory, PA, USA) at a 
1:1000 dilution and incubated in a dark room for 1 h at room temperature. After washing three times in PBST 
and twice in  ddH2O, arrays were dried in a SlideWash (Capital Bio) and then scanned in a GenePix 4200A slider 
scanner (Molecular Devices).

Protein array data preprocessing. The median values of the foreground (Fij) and background (Bij) 
intensities of a given protein spot (i,j) on the protein array were extracted from quantified sample array image 
data exported from GenePix Pro 6.0. The ratio of the mean signal (protein spot signal intensity (Rij): Fij/Bij) over 
the mean background signal was determined for each protein spot. This preprocessing method thus normalized 
all features in the array to their background signals. As each protein was printed on the array in duplicate, Rij 
was averaged for each protein as Rp.

Data analysis. SAM (Significance analysis of microarrays, R software (v3.6.1))22 was used to determine pro-
teins to which ATB, LTBI and HC samples showed a statistically significant immunogenic response. Stringent 
criteria were set; significantly upregulated proteins were only called if the ratio of signal intensity between the 
two groups being compared was > 1.2 at p ≤ 0.05. Significantly downregulated proteins were called if the ratio of 
the signal intensity values was < 0.83. The heatmap for the differential protein set was drawn using the ‘pheatmap’ 
package (v1.0.12)23 in the R statistical language (v3.6.1)22. Biomarker candidates were the differential proteins 
with the highest discriminant ability (Discriminant ability = Sensitivity + Specificity − 100%)24 and were selected 
for each comparison (ATB versus LTBI and ATB versus HC). Candidate biomarkers were differential proteins 
(fold change > 2 and p-value < 0.05) that satisfied the following criteria: (1) they showed at least 90% specificity 
and (2) had the highest discriminant ability (> 10%).
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Functional analysis. GO (Gene Ontology) classification of differential proteins according to molecular 
function and biological process was based on their functional annotations using the R package clusterProfiler 
(v3.4.4)25. GO ‘Biological Process’ (BP)26 and ‘molecular function’ (MF) enrichment analyses were also per-
formed for the two groups of differential proteins using clusterProfiler. The p-value threshold for significance 
was selected as < 0.05. Protein–protein interactions (PPI) between differential proteins were analysed using the 
STRING database (v10.0)27, and networks were visualized with Cytoscape (v3.4.0)28.

ELISA assays. MTB antigens (BCBIO, Guangzhou, China) were diluted to 1 μg/mL with a coating solution 
(sodium carbonate 1.59 g/L, sodium bicarbonate 2.93 g/L), added to 96-well plates, and allowed to stand over-
night at 4 °C for coating. Plates were washed three times with PBST, then blocked with blocking buffer (1× PBS, 
3% BSA, 0.1% Tween 20 [pH 7.4]) at room temperature for 3 h. 100 μL serum samples (diluted 1:100 in PBST-B) 
were added to antigen-coated wells and incubated at room temperature for 30 min. After washing the plates 
five times with PBST, anti-human IgG antibody (CWBiotech, Beijing, China), diluted 1:10,000 in PBST-B, was 
added, and incubated at room temperature for 30 min. After washing five more times with PBST, plates were 
developed using TMB substrate (BD, NJ, USA) in a dark room for 10 min at 37 °C; reactions being stopped using 
2 mol/L sulfuric acid. The optical density of the wells was determined at 450 nm/620 nm using an automated 
microplate reader (Perlong, Beijing, China).

Statements on study approvals. We confirm that all methods used in this study were carried out in 
accordance with relevant guidelines and regulations.

Results
Overall study design. We employed a two-phase  strategy29,30 to identify novel biomarkers for ATB (Fig. 1). 
In the discovery phase, we profiled serum samples from 52 ATB patients, 37 individuals with LTBI and 27 
healthy volunteers on a protein microarray containing 257 M. tuberculosis secreted proteins. After identifying 
differential antigens, i.e. proteins present at different levels in samples from ATB patients and those from indi-
viduals with LTBI or healthy individuals, promising candidate biomarkers were selected based on their sensitiv-
ity and specificity in the differential diagnosis of ATB. A panel of four biomarkers that gave optimal sensitivity 
and specificity was then selected using SAM (significance analysis of microarrays). In the subsequent validation 
phase of the study, an additional 324 serum samples were evaluated in a separate ELISA experiment along with 
the 116 samples used in the discovery phase (205 ATB, 123 LTBI, 112 HC; Table 1; Fig. 1).

MTB secreted protein microarrays. In our search for serum biomarkers associated with active TB, we 
focused on secreted proteins, reasoning that they mediate important functions through their interactions with 
host cells such as macrophages and are thus likely important in virulence and  pathogenesis31,32. We thus used 
a protein microarray containing 257 secreted proteins from the M. tuberculosis reference strain  H37Rv32,33 to 
profile serum samples from people with differing TB status. We first tested the quality and stability of the micro-
arrays by profiling one sample from the ATB, LTBI, and HC groups (selected randomly) on secreted protein 

Figure 1.  Identification of serum biomarkers that can discriminate between ATB and LTBI/healthy groups. 
Overall study design.
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microarrays. Microarray quality was validated by comparing the signal intensity of the two replicate points for 
each protein on each array (Supplementary Fig. S1). The average Pearson correlation coefficient  (R2) between 
replicate proteins was 0.99 (Supplementary Fig. S1, top right), indicating that the secreted protein microarrays 
were homogeneous and reproducible.

Differential antibodies identified using the secreted protein microarray. In the discovery phase, 
52 ATB, 37 LTBI, and 27 HC serum samples were profiled on MTB secreted protein microarrays, antibodies 
against MTB secreted proteins on the microarray being identified by developing the arrays with Cy3-labeled 
anti-human IgG antibodies. Signal intensities were normalized against the median value of the microarray, and 
comparisons were made between the groups to identify differential antibodies, thresholds being set at p ≤ 0.05 
and fold change > 1.2. Using these criteria, 37, 53, and 1 differential proteins were identified in the ATB-vs-HC, 
ATB-vs-LTBI, and LTBI-vs-HC comparisons respectively (Fig. 2a–c).

Cluster analysis of the differential proteins showed that the ATB group was well separated from the HC and 
LTBI groups (Supplementary Fig. S2). The lists of differential proteins identified in the ATB-vs-HC and ATB-
vs-LTBI comparisons had 23 proteins in common. These 23 proteins are likely a source of biomarkers that can 
discriminate the ATB group from the HC and LTBI groups (Fig. 2d,e).

Gene Ontology and protein–protein interaction network analysis. Data enrichment analysis was 
performed using clusterProfiler (R package) and GO annotation, and differential antigens were considered to be 
significantly enriched in a particular GO term when p < 0.05. Differential proteins from the ATB-vs-HC com-
parison were enriched in the ‘molecular function’, ‘ferroxidase activity’, ‘ferric iron binding’, and ‘oxidoreductase 
activity’ terms, while those from the ATB-vs-LTBI comparison were enriched in the ‘protein binding’ term 
(Fig. 3a green bar chart).

Biological process enrichment analysis of differential proteins identified in the ATB-vs-LTBI comparison 
indicated that processes related to interspecific interactions showed significant enrichment (Fig. 3a). In the 
ATB-vs-HC comparison, differential proteins were significantly enriched in biological processes related to the 
chelation and transport of metal ions (p < 0.05), the three most enriched biological processes being pathogenesis, 
iron ion transport, and iron assimilation (Fig. 3a).

We used STRING analysis of protein–protein interaction networks to determine which differential proteins 
from the ATB-vs-LTBI and ATB-vs-HC comparisons were important in the functional network. Key proteins 
included Rv1827, Rv1860, Rv3413, Rv0934, Rv3803c, and Rv3881c (ATB-vs-LTBI comparison; Fig. 3b left panel), 
and Rv3881c, Rv0064, Rv1827, Rv1860, and Rv0934 (ATB-vs-HC comparison; Fig. 3b right panel). Although 
the biological process and molecular function enrichment results for the ATB-vs-HC and ATB-vs-LTBI com-
parisons were different, there was some overlap in key proteins, Rv3881c, Rv1860, Rv0934, and Rv1827 being 
common to both lists.

ROC analysis of biomarkers and derivation of a combined panel for ATB diagnosis. To identify 
potential serum biomarkers for active pulmonary TB diagnosis, we plotted receiver operating characteristic 
(ROC) curves for differential proteins and calculated the areas under the curve (AUCs). Sensitivity and speci-
ficity values were calculated for each protein. Selecting the following criteria (a) specificity > 90%; (b) discrimi-
nant ability (sensitivity plus specificity − 100) > 10%; (b) fold change > 2; and (c) statistical significance p < 0.05), 
resulted in identification of 8 candidate proteins from the anti-IgG profiles in the ATB-vs-LTBI comparison and 
4 candidate proteins from the anti-IgG profiles in the ATB-vs-HC comparison, respectively (Fig. 4a,b, Supple-
mentary Table S1, S2). The signal intensities of the four proteins common to both the ATB-vs-LTBI and ATB-vs-
HC comparisons, Rv0934, Rv3881c, Rv1860 and Rv1827, were all significantly different (Fig. 4c). The diagnostic 

Table 1.  Demographic and diagnostic information for the study cohort.

Active tuberculosis Latent tuberculosis Healthy donors

Discovery phase

Number 52 37 27

Average age (range) 40.3 (15–76) 36.1 (17–84) 39 (18–91)

Gender (M/F) 34/19 21/16 11/16

Smear-positive (%) 28 (53.8%) – –

Culture-positive (%) 37 (71.1%) – –

IGRA positive – 37 0

Validation phase

Number 205 123 112

Average age (range) 41.9 (15–90) 39.5 (17–84) 33.5 (18–91)

Gender (M/F) 111/94 70/53 42/70

Smear-positive (%) 102 (49.7%) – –

Culture-positive (%) 150 (73.2%) – –

IGRA positive – 123 0
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performance of each candidate biomarker was assessed using areas under the receiver operating characteristic 
(ROC) curves (AUCs). The AUC values of the four proteins ranged from 0.56 to 0.788 (Table 2). Next the maxi-
mum discriminant ability values for each protein were calculated with a requirement of a minimum specificity 
of 90% (see “Materials and methods” section). The optimal cutoff values of the signal intensity for each protein 
were then determined with the corresponding sensitivity and specificity values (Table 2).

Of note, proteins Rv0934, Rv3881c, Rv1860 and Rv1827 had sensitivities > 46.2% and specificities > 97.3%, 
making them very good candidates for diagnostic biomarkers.

Figure 2.  Microarray-based selection of antigens present at different levels in serum samples from individuals 
with active TB or LTBI or healthy controls. (a–c) Volcano plots. Differential analysis of serum samples from the 
ATB and LTBI groups (a), ATB and HC groups (b) and the LTBI and HC groups (c). Volcano plots show the 
change in transformed p-value (−  log10) against the  log2 ratio in the three groups of serum samples. Blue dashed 
lines: cut-off values (ratio > 1.2 and p-value < 0.05). Red dots: antigens present at increased levels. Important 
proteins present at increased levels are labeled. (d) Venn diagram. Twenty-three antigens present at higher 
levels in the ATB group were present in both the ATB-vs-HC and ATB-vs-LTBI comparisons. (e) Hierarchical 
clustering of the 23 differential proteins (from (d)) in the ATB, LTBI and HC groups. Color bar: signal intensity 
of the antigen. The heatmap was drawn using the ‘pheatmap’ package (v1.0.12)23.
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Figure 3.  Data enrichment analysis of differential proteins according to molecular function and biological 
process using Gene Ontology. (a) Gene Ontology enrichment of differential antigens according to biological 
process (red) and molecular function (green). Y-axis: name of the enrichment GO term, X-axis: transformed 
P-values (−log10) (threshold: 0.05). Left panel: ATB-vs-LTBI, right panel: ATB-vs-HC. (b) Network analysis 
of differential proteins. The protein–protein interaction networks of differential proteins were analyzed by 
STRING, and the network was visualized using Cytoscape. The minimum required interaction score was set as 
the highest confidence (0.400) and the disconnected nodes in the network were hidden. Node size: the degree 
of difference (the larger the circle, the greater the ratio of ATB/HC or ATB/LTBI). Dashed line: interaction 
score < 0.7, solid line interaction score > 0.7. Left panel: ATB-vs-LTBI, right panel: ATB-vs-HC.
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We noted that the sensitivity values of each candidate protein ranged from 13.46 to 46.15%, so attempted 
to identify a combined biomarker panel that would offer better performance. The performance of all possible 
combinations (14 combinations) of between two and four proteins was evaluated using a previously reported 
 approach34. Firstly a binary scoring system was used to convert the actual signal intensity of each protein to 
either 1 or 0, with 1 represented a signal intensity greater than the optimal cutoff value and 0 represented a signal 
intensity lower than the optimal cutoff value. Secondly the performance of every possible combination in the 
discovery cohort was evaluated. The total binary score of a given combination of n proteins was assigned to each 
serum sample as a summary score. If the summary score of a sample was greater than k (1 ≤ k ≤ n), the sample 
was determined as positive. For each protein combination, the sensitivity and specificity at the best discriminant 
ability were recorded. Finally, the optimal protein combination and its k value with the best discriminant ability 
at a minimum specificity of 90% were identified. The best panel combination, comprised of Rv0934, Rv3881c, 
Rv1860 and Rv1827, achieved 67.3% sensitivity at 91.2% specificity with a k value of 1 for discriminating ATB 
from LTBI, and 71.2% sensitivity at 96.3% specificity for discriminating ATB from HC (Fig. 4d). In other words, 
a serum sample would be scored positive when at least one (i.e. k = 1) of the four proteins showed a signal 
intensity greater than the corresponding optimal cutoff value. These promising high sensitivity and specificity 
values suggest that this panel of four proteins is worth investigating further and applying in the development of 
a diagnostic panel for ATB.

Validation of the ATB biomarker panel using ELISA assays. To develop a clinically useful appli-
cation of the biomarkers identified here, we verified the biomarkers using an enzyme-linked immunosorbent 
assay (ELISA) platform. Rv0934, Rv3881c, Rv1860, and Rv1827 were purified from yeast and coated onto the 
individual wells of ELISA plates. Results obtained were consistent with those obtained in the discovery phase 
using microarrays; all four proteins showed significantly higher signals in the ATB group than in the HC or LTBI 
groups (Fig. 5a, Supplementary Table S3). When specificity was set at > 90%, the four proteins had sensitivities 
ranging from 13.17 to 59.02%, and ROC analysis of ELISA data gave AUC values for the four proteins of between 
0.76 and 0.86.

We next evaluated the performance of the biomarker panel against the ELISA data. The ELISA data were 
converted to a binary scoring system in a manner similar to that in the discovery phase, and the same criteria 
(specificity > 90%) were used. 71.22% and 66.83% of ATB samples in the ATB groups were correctly scored as 
positive in the ATB-vs-LTBI and ATB-vs-HC comparisons, respectively (Fig. 5b), while only 8.04% of samples 
in the LTBI group and 8.12% of samples in the HC group were scored as false positives. This biomarker panel 
thus showed a sensitivity of 71.22% at a specificity of 91.87% for ATB diagnosis based on ELISA tests.

Discussion
The lack of a rapid diagnostic test for ATB hinders the timely diagnosis and treatment of this devastating infec-
tious disease, impacting patient management and ultimately resulting in further disease transmission. Here, by 
performing a systematic search for secreted MTB antigens that can distinguish ATB from LTBI using an MTB 
secreted protein microarray and serum samples, we identified a four antigen panel (Rv0934, Rv1827, Rv1860 
and Rv3881c) that could distinguish ATB from LTBI/healthy individuals with a sensitivity of 67% and specific-
ity of 92%. Validation of this protein panel by ELISA gave similar results. This ATB diagnostic panel deserves 
further evaluation with larger cohorts of ATB and LTBI samples from different locations to determine its broad 
applicability.

The considerable efforts invested in developing tests that can distinguish latent and active TB have yet to yield 
a test with sufficient discriminatory power for clinical application. The approach taken in most studies has been 
to evaluate the discriminatory ability of known MTB antigens or combinations of antigens, rather than to take 
a systematic approach to antigen discovery. MTB antigens identified so far that can discriminate individuals 
infected with MTB from those without infection (but not from those with active TB) include ESAT-6 (Rv3875), 
CFP-10 (Rv3874), Ag85B (Rv1886c), LAM, Mtb81, MTC28, and  KatG35,36. Antigens evaluated for their ability 
to differentiate latent from active TB have been reviewed in detail  elsewhere37, and include latency-associated 
antigens from the Dormancy of survival Regulon (DosR, including Rv0081, Rv1733, Rv1737, Rv2029c, and 
Rv2031), and the Region of Difference (Rv2659c, Rv2660c), Resuscitation promoting factors (Rpfs, Rv0867c, 
Rv2389c), reactivation associated antigens (Rv1131 and Rv3862c) and the Ag85 complex (Ag85A, Ag85B and 
Ag85C). While many studies have been performed, to date, a panel of biomarkers with adequate sensitivity and 
specificity for discriminating LTBI and active TB has been elusive.

Here, we systematically searched for secreted proteins with high discriminatory ability, reasoning that these 
key components of the MTB weaponry that play important roles in pathogenesis, secreted at different stages of 
infection, likely lead to variation in the host immune  response31,32 and are thus a reservoir of potential biomarkers 
for discriminating different stages of disease. MTB can remain dormant within its host for a long time, interac-
tions between secreted bacterial proteins and host cells mediating its ability to evade the host immune system 
and survive within macrophages.

Development and application of high-throughput technologies for screening serum biomarkers of various 
diseases has shown great promise for facilitating disease  diagnosis38. Protein microarray technology can be 
used to detect changes in large numbers of proteins within a sample simultaneously, and can detect changes in 
the modification status of proteins, making it especially suitable for screening disease diagnostic markers and 
drug targets. Here, we used a commercial MTB secreted protein microarray containing 257 secreted proteins 
from the H37Rv reference strain purified using a yeast expression  system32,33. Proteins expressed using a yeast 
system have posttranslational  modifications39 and are suitable for screening functional  antigens40. Our use here 



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:14516  | https://doi.org/10.1038/s41598-021-93893-3

www.nature.com/scientificreports/



9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:14516  | https://doi.org/10.1038/s41598-021-93893-3

www.nature.com/scientificreports/

of a microarray using yeast-expressed proteins rather than proteins purified using the E. coli system may have 
facilitated our discovery of previously unreported antigens associated with active TB disease.

Our study design has several strengths. First, we employed a commercial TB secreted protein microarray 
with a high coverage of TB secreted proteins to improve the likelihood of finding potential biomarkers. Second, 
our study included samples from 328 patients with ATB or LTBI and 112 samples from healthy volunteers. 
Third, we used samples from both LTBI and healthy individuals as negative controls to improve discrimination 
of ATB. Finally, we used ELISA as an independent platform to validate the performance of the newly discovered 
biomarker panel.

Individual antigens rarely perform well enough to be useful as single biomarkers for a disease, but a panel 
of several markers can significantly improve performance. Here, individual antigens ranged in sensitivity from 
17 to 46%, but when four promising antigens were combined into a panel, the sensitivity of the panel was 62% 
at a specificity of 92%. Consistent levels of antigen-specific IgG antibodies were detected in ELISA experiments 
to validate these four antigens, all showing significant differences between healthy individuals, those who had 
LTBI, and those who had active TB, suggesting that these antigens may elicit strong humoral immune responses.

To the best of our knowledge this is the first time that these biomarker candidates have been reported in a 
marker panel for discriminating LTBI from active TB. Interestingly, previous reports on each of these biomarker 
candidates link them with different aspects of virulence or pathogenesis. Rv0934 (Periplasmic phosphate-binding 
lipoprotein, PstS1) is a 38-kDa antigen commonly used in tests for diagnosing TB  infection41. On its own, how-
ever, Rv0934 does not have sufficient sensitivity to discriminate active from latent TB. It belongs to the family of 
phosphate receptors for bacterial ABC-type lipoprotein transporters and is involved in active binding-protein-
mediated import of inorganic phosphate across the  membrane42. Rv1827 (GarA) is a conserved essential protein 
containing an FHA domain in its C-terminus. It is phosphorylated by Serine/threonine protein kinase G (PknG), 
an important virulence factor, and participates in the regulation of the tricarboxylic acid  cycle43. Rv1860 (Alanine 
and proline rich secreted protein Apa) is a 45-kDa secreted glycoprotein predicted to be involved in cell wall and 
cell processes. It is a major immunodominant antigen that is considered to have potential as a vaccine against 
tuberculosis, and can elicit proliferation of both CD4+ and CD8+ T cells and IFN-γ secretion in healthy people 
with  LTBI44. Changes in the mannosylation pattern of this protein affect its ability to stimulate T-lymphocyte 
responses. Virulence factor Rv3881c (Secreted ESX-1 substrate protein B, EspB) is a conserved alanine and gly-
cine rich protein that is a member of the PE-PPE  family45. It is reported to inhibit autophagosome formation in 
murine macrophages via downregulating the expression of IFN-γ receptor  146. Further mechanistic research on 
the involvement of these candidate biomarkers in the pathogenesis of active TB may provide interesting insights 
into the pathogenesis of active TB.

Our study also has some limitations. By focusing on secreted proteins, we may have missed other cell wall, or 
indeed intracellular proteins that provoke an important immune response during active disease. The number of 
samples tested in our study (440), particularly in the discovery phase (116) was limited. While the panel identified 

Figure 4.  Biomarker discovery. (a,b) Scatter plots of the sensitivity and specificity of all proteins on the 
microarray. Each dot represents one protein. Left panel: proteins present at different levels in the ATB-vs-
LTBI (left panel) and ATB-vs-HC (right panel) comparisons. Red dots: proteins with (1) a discriminant ability 
(sensitivity + specificity − 100) > 10%; (2) a fold change > 2 and a p-value < 0.05; and (3) at least 90% specificity. 
(b) Microarray results and annotations of the 4 proteins selected as candidate biomarkers. (c) Box plots and 
ROC curves for each of the 4 candidate biomarkers. Left panels: box plots show that the signal intensities 
of the each candidate biomarker is significantly higher in the ATB group than in the HC and LTBI control 
groups. Right panel: ROC curves. The sensitivity and specificity values obtained at the optimal cut off value for 
each candidate biomarker are also shown. (d) Performance of the top biomarker panel, comprised of Rv0934, 
Rv3881c, Rv1860, and Rv1827. Orange and light blue lines represent samples scored as positive or negative, 
respectively. A sample was predicted as ATB positive when any of the four proteins in the panel was positive. 
The heatmap was drawn using the ‘pheatmap’ package (v1.0.12)23.

◂

Table 2.  AUC analysis of potential ATB diagnostic biomarkers in the ATB-vs-LTBI and ATB-vs-HC 
comparisons. a Proteins marked with an asterisk (*) were selected as candidate biomarkers in both 
comparisons.

Proteina

ATB-vs-LTBI ATB-vs-HC

AUC Specificity (%) Sensitivity (%) AUC Specificity (%) Sensitivity (%)

Rv0934* 0.735 97.297 46.154 0.788 100.000 51.923

Rv1827* 0.560 97.297 17.308 0.563 100.000 13.462

Rv1860* 0.655 100.000 25.000 0.637 100.000 26.923

Rv3881c* 0.634 97.297 23.077 0.611 96.296 30.769

Rv2236c 0.708 97.297 28.163 0.710 77.778 63.462

Rv3248c 0.680 94.595 25.000 0.491 59.259 53.846

Rv3413c 0.629 97.297 26.923 0.570 88.889 32.692

Rv3803c 0.674 94.595 38.462 0.670 48.148 82.692
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here showed high discriminatory power in this study cohort, one limitation is that all participants recruited were 
Chinese, raising the small possibility that there could be an ethnic bias. A larger cohort of samples, preferably 
drawn from more than one geographical region will be necessary to further evaluate the potential of this panel 
as a diagnostic test. We also did not discriminate between AFB positive and AFB negative active TB cases, nor 
did we consider extrapulmonary TB cases. All patients included were adults, so we are unable to predict if this 
panel would be efficacious for the diagnosis of childhood TB. In addition, pulmonary TB patients included in 
our study were sputum AFB positive and/or bacterial culture positive cases. The specificity of our marker panel 
for distinguishing ATB from HC in such cases was high (96.3%), however, its sensitivity (71.2%) falls short of 
that specified in the WHO’s optimal Target Product Profile (TPP) for non-sputum-based TB diagnosis tests 
(98%)47. Nonetheless, like other biomarker studies published that similarly did not reach these  standards9,48,49, 
our study has useful reference value for those engaged in biomarker discovery. Further work on optimizing this 
panel will be necessary.

Of note, our four-antigen panel was unable to discriminate between individuals with latent TB and uninfected 
individuals (control group). Given the availability of many commercial platforms for IGRA-based detection of 

Figure 5.  ELISA validation of candidate biomarkers. (a) Validation of the 4 candidate protein biomarkers. Left 
panels: box plots showing that the signal intensities of the four candidate biomarkers are significantly higher 
in the ATB group than in the HC and LTBI control groups. Right panels: ROC curves. The sensitivity and 
specificity values obtained at the optimal cut off value are shown for each protein. (b) Performance of the top 
biomarker panel, comprised of Rv0934, Rv3881c, Rv1860, and Rv1827. Orange and light blue lines represent 
samples scored as positives and negatives, respectively. A sample was predicted as ATB positive when any of the 
four proteins in the panel was positive. The heatmap was drawn using the ‘pheatmap’ package (v1.0.12)23.
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MTB infection based on ESAT-6/CFP-10-induced stimulation of IFN-γ release, the most likely application of 
the biomarker panel developed here would be as an ELISA test that is combined with one of the commercial 
ESAT-6/CFP-10 IGRA assays. Further research is also needed to identify biomarkers associated with other stages 
of MTB infection (e.g. recovery, re-activation), and prognostic markers that can predict treatment outcome.

The availability of rapid tests that can accurately detect active TB using the biomarker panel developed here 
should not only facilitate timely treatment of patients with TB, but should also greatly facilitate the implemen-
tation of proactive TB case-finding programs and ultimately reduce the spread of TB within the community, 
making a significant contribution to achieving the WHO’s End TB goals for eliminating TB by 2035.
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