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Phase analysis on the error scaling 
of entangled qubits in a 53‑qubit 
system
Wei‑Jia Huang1, Wei‑Chen Chien2, Chien‑Hung Cho1, Che‑Chun Huang1, Tsung‑Wei Huang3, 
Seng Ghee Tan4, C. Cao5, Bei Zeng5 & Ching‑Ray Chang2,6*

We have studied carefully the behaviors of entangled qubits on the IBM Rochester with various 
connectivities and under a “noisy” environment. A phase trajectory analysis based on our 
measurements of the GHZ‑like states is performed. Our results point to an important fact that 
entangled qubits are “protected” against environmental noise by a scaling property that impacts only 
the weighting of their amplitudes. The reproducibility of most measurements has been confirmed 
within a reasonably short gate operation time. But there still are a few combinations of qubits that 
show significant entanglement evolution in the form of transitions between quantum states. The 
phase trajectory of an entangled evolution, and the impact of the sudden death of GHZ‑like states and 
the revival of newly excited states are analyzed in details. All observed trajectories of entangled qubits 
arise under the influences of the newly excited states in a “noisy” intermediate‑scale quantum (NISQ) 
computer.

Quantum  entanglement1–3 is an important index of a truly observable quantum phenomenon. This phenom-
enon occurs when the nonlocality of a pair of particles is generated due to mutual interactions. Therefore, the 
independent quantum state of each particle cannot be relied upon to understand the physical phenomenon of 
entanglement. Even when the pair is separated over a long distance, quantum entanglement might still persist. 
This is the major difference between classical and quantum physics. Quantum entanglement has been the focus 
of intense theoretical and experimental research for its potentially wide applications. The existence of quantum 
entanglement and hence the applicability of the 2N Hilbert  space4,5 are the major advantages of quantum comput-
ers compared to classical. Many specific indicators, such as quantum  volume6 and Mermin’s  inequality7–9, provide 
the theoretical quantification to determine whether quantum entanglement exists in a multi-qubit system.

Quantum entanglement and decoherence are closely related. Natural physical systems are usually not com-
pletely isolated from the external world and the result of interactions with the environment is the major source 
of decoherence. According to quantum mechanics, entanglement creates associations between the constitu-
ent quantum states of subsystems. Quantum nonlocality is generally described as equivalent to entanglement. 
It is also considered as a requisite condition for quantum  teleportation10,11 and quantum  cryptography12–14. 
Many experiments have already demonstrated that electrons, photons, neutrinos, molecules and even diamond 
vacancies show quantum  entanglement15,16. The use of entanglement in  communication17,  computing18 and 
quantum  radar19 is a very active area of research and development. From previous reported  results20 for the IBM 
 Rochester21, entanglement of a large number of qubits are easily affected by the environmental noise, but the 
entanglement states of a small number of qubits are relatively  stable20. Also, our measurements provide another 
easy test for the entanglement of a N-qubit  system20. Generally, a 2-qubit pair uses Bell’s22 or Mermin’s  inequality7 
to distinguish its “quantum-ness” from local realism (LR). The GHZ-like  states8,23–25 are used as the initial states 
for both Bell’s and Mermin’s. Although the phase angles tested for the maximum values of LR are different, the 
basic physics for both are similar—difference lies only in the superposition of the subsystem quantum states. For 
multiple qubits, maximal values of Mermin’s  polynomials26 are often relied upon to understand the entangle-
ment physics of a N-qubit system and its quantum  subsystems20. However, transitions between states can occur 
if the energy levels of the  NISQ27 system fluctuate (Supplement A). In some cases, entanglement can disappear 
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completely within a finite interval—this is sometimes known as the “Entangled Sudden Death” (ESD)28. On 
the other hand, decoherence is related to the relaxation time T1 and the dephasing time T2

29
. This phenomenon 

has recently attracted the interest of many researchers because it directly affects the dynamic performance of a 
quantum computer. Actual implementation of quantum computation and quantum communication depends 
on the lifetime of the qubits. One of the most difficult obstacles that must be overcome for the development 
of fault-tolerant quantum computers is to fully understand the evolution mechanisms of the entangled states. 
Entangled states might lose coherence due to interaction with the environments. Therefore, entangled states 
collapse because of the aforementioned de-coherence, as well as due to the process of measurement. In order to 
successfully develop a fault-tolerant universal quantum computer, it is necessary to have a full understanding 
of the evolution of entangled states and the procedures of quantum measurement. In the following, we would 
carefully study the behavior of the two-qubit subsystems on the IBM Rochester under a noisy environment.

Phase  analysis30,31 is a common method to study responses in classical systems. The initial phase used in 
the GHZ-like  state8,23–25 in Mermin’s polynomials has a natural advantage for the phase trajectory analysis of 
an entangled system—in particular the evolution of transitions between states. Taking the GHZ-like state as 
initial, we apply the phase trajectory analysis on the IBM Rochester and systematically explore the effects of 
various initial phase angles. Measurement results would depend on the measurement period, cycle and time. 
We explore the evolution of entangled pairs with different initial phase angles. Several patterns of phase trajec-
tory are observed in our measurements. Our phase trajectory analysis shows “normal” and “abnormal” circles 
of amplitude variation, and that superposition can transit between states (Supplement A). The evolution of the 
superposition of entangled states with noise are also studied (Supplement C) based on noise models  discussed32,33 
previously. Most quantum measurements of phase trajectory on the IBM Rochester give repeatable circles but 
with different radius. However, some specific combinations of qubits (e.g. connection 4–6) are very unstable and 
irreproducible, staying coherent only within a very short time interval. Phase trajectory analysis shows interest-
ing entanglement evolution, evident in the varying shapes of the so-called abnormal circles. Some entanglement 
evolution even switches between large and small circles, and the radius of entanglement exceeds the LR limit. 
From the Mermin’s polynomials’ point of  view7,26, the entanglement of a 2-qubit state can suddenly disappear 
(i.e., within LR value) and revive at a later stage (i.e., outside of LR value). Our quantum computer measurement 
results are further compared with numerical analysis with noise (Supplement C) as well as classical simulations 
(Supplement D). It can be concluded that all observed trajectories arise due to the entanglement properties of 
the newly excited states on a NISQ computer.

Methods and theory
I n  g e n e r a l  M e r m i n’s   p o l y n o m i a l s 2 6  i s  g i v e n  a s  M1 = â1  a n d  w h e n  n  >  1 
Mn = 1

2

[
Mn−1 ⊗

(
ân + â′n

)
+M

′
n−1 ⊗

(
ân + â′n

)]
 , where ân is linear combination of Pauli matrices. In our 

case, the two qubits Mermin’s  polynomials7,23 (n = 2) and ân = X , â′n = Y  for n = 1,2 then formula are

Usually the GHZ-like  state23–25 is used to measure the Mermin’s inequalities with method as shown in Eq. (1), 
and the GHZ-like  state23–25 is

The advantage of GHZ-like initial state is that phase analysis can be easily implemented for  measurements20, 
with the variation of eiϕ . Also, maximum value can be obtained for Mermin’s polynomials at a certain phase angle.

The expectation values of the Mermin’s polynomials for a 2-qubit are easily derived as shown:

Here we would modify the Mermin’s  polynomials7 with measurement method as shown in Eq. (4), and actu-
ally carry out measurements on IBM Rochester with 〈W2〉 and its associated 

〈
W

′
2

〉
.

For a pure GHZ-like  state8,23–25, since XY + YX = 2YX , measurements for 〈W2〉 
〈
W

′
2

〉
 as opposed to M2,M

′
2 

give exactly the same values. However, because of the environmental noise in a NISQ system, there are other 
possible states besides the initial GHZ-like states, that can be excited before measurement (Supplement A). A 
possible excited entangled state (Supplement A) can be written as

(1)
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which is a quantum state in the subspace spanned by |01� and |10� , r, a, θ are parameters that determines the 
density matrix of ρ′. The newly entangled state ρ’ can be generated as a result of energy fluctuation, and

Therefore, one could not observe noise-excited entanglement states in a NISQ system with the conventional 
M2 andM

′
2 . However, with our modified measurements of 〈W2〉 and 

〈
W

′
2

〉
,

as shown in Eq. (7), the entangled evolution of noise-excited states in a NISQ system can be easily measured. In 
other words, 〈W2〉 and 

〈
W

′
2

〉
 measurements allow the study of phase trajectory portraits of not only the GHZ-

like states, but also any noise-induced quantum states. Therefore, the modified 〈W2〉 and 
〈
W

′
2

〉
 measurements 

will be used for our phase trajectory analysis throughout.

Quantum circuit
A single qubit with a H gate can produce a GHZ-like state, and the second qubit is entangled with the GHZ-like 

state. A U1(ϕ) =
[
1 0

0 e
iϕ

]
 gate then operates on the qubit from the H gate. Together, the three gates form a com-

plete quantum circuit in our oracle. For a 2-qubit entanglement testing, we set |GHZ2� = 1√
2

(
|00� + e

iϕ |11�
)
 as 

shown in Fig.  1a. Where the Hadamard and Controlled-NOT gates make the initial state become the 
|GHZ2� = 1√

2

(
|00� + e

iϕ |11�
)
 , with φ = 0. Then we use the U1(ϕ) to give the phase φ between 0 to 2π. In IBM 

system, the measurement direction is defined the quantum state project on z-axis. Therefore, the measurement 
direction must be redefined along x or y-axis, for realizing the measurement as Eq. (4). In practice the Hadamard 
and adjoint phase gate  are used for changing the measurement direction, as shown in 
Fig. 1b

Results
We have carried out phase trajectory analysis for 2-qubit systems on the IBM Rochester—with 1,024 shots for 
each experiment for better accuracy—and also simulations on classical computer with different relaxation time 
T1 (Fig. 2). Figure 2a shows the measurements of 〈W2〉 and 

〈
W

′
2

〉
 on the IBM Rochester. Figure 2b shows the 

classical simulation of 〈W2〉 and 
〈
W

′
2

〉
 for different T1. All 2-qubit pairs on the IBM Rochester were  measured20, 

but we only showed results for chosen pairs of [7,16], [13,14], [15,18], [24,25], [25,29]. In particular, we carried 
out three different measurements for pair [4,6]. Figure 2a clearly shows that the entangled radii are different for 
all different 2-qubit pairs, even though they could be of the same phase. Measurement results were then compared 
with classical simulations involving different T1. From Fig. 2b, it is clear that radii of the circles shrink as the T1 
value decreases. On a NISQ computer, the performance of qubits is commonly affected by the noise environ-
ments. In the classical simulations, we used the Qiskit module with gate time equal to 0.1 s, and different T1 are 
determined through the fitting of the amplitude of |1� (Supplement D). Larger T1 means less environment noise 
and the coherence of quantum entanglement sustains for a longer interval. From classical simulations, the 
amplitude of the superposition of the initial states will be affected by the environment noise. But the circular 
phase trajectories seem impervious to the environment noise as long as states |00� and |11� remain.

To study noise, we introduced parameters γ0t and γ1t to the amplitude of the GHZ-like state and the noise-
excited ρ′ (Supplement A). Considering both |�� and the newly excited ρ′ on a NISQ computer, measurements 

(6)Tr
(
ρ′
M2

)
= Tr

(
ρ′
M

′
2

)
= 0.

(7)Tr
(
ρ′
W2

)
= Tr

(
ρ′
W

′
2

)
= 4r sin θ ,

Figure 1.  (a) The quantum circuit for preparing a 2-qubit GHZ-like initial state, |GHZ2� = 1√
2
(|00� + e

iϕ |11� , 
with φ between 0 and 2π. H represents the Hadamard gate, U1(ϕ) is a gate that rotates a quantum state about the 
z axis to impart phase φ, and CNOT gate entangles the two qubits. (b) The quantum circuit of YX measurement 
for the 2-qubit pair. In our measurement method, the  and H need to be prepared before the measurement. 
The reason is that the measurement direction is defined along z-axis in IBM system. After  and H , the z-axis 
will be rotation alone y and x-axis, hence after measurements will get the expected value along y and x-axis. 
Therefore, we call it the YX measurement for the 2-qubit pair.
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of 〈W2〉 and 
〈
W

′
2

〉
 show different trajectories arising due to the influence of the entanglement strength (charac-

terized by parameter γ0t and γ1t). Our theoretical analytic results and classical simulations of the influences of 
|00� ρ′ and |11� are given in Supplement C and D. Quantum measurements on the IBM NISQ computer indeed 
testifies strongly to our theory of amplitude transition between states, as evident in the significant changes of the 
circular radii. The superposition amplitude of the GHZ-like states are indeed very sensitive to the environment, 
but the persistence of the circular trajectories speaks for an important fact, i.e. their entanglement is reasonably 
robust. In fact, the redistribution of the amplitudes suggests that the noise induces energy transition between 
states |00� and |11�.

It is important to note that the circular shapes persist (Fig. 2a) and the sinusoidal waves are all in phase 
(Fig. 2c). Classical simulations show that the amplitudes of sinusoidal waves will decrease as T1 decreases (Fig. 2c) 
but no phase shift is induced by any environmental noise. This indicates that entangled qubits are “protected” 
against environmental noise by a scaling property that impacts only the weighting of their amplitudes (Supple-
ment C).

Besides the commonly circular, some unusual trajectories were also observed in our measurements for 〈W2〉 
and 

〈
W

′
2

〉
 . For qubit pair [4,6], we observed a lot of peculiar patterns from December 2019 to January 2020. 

Measurements on other entangled pairs are mostly repeatable, but pair [4,6] could not be reproduced over 

Figure 2.  Phase trajectories of 〈W2〉 and 
〈
W

′
2

〉
 (a, b) and the relationships of 〈W2〉 with the initial phase angles 

φ (c, d). Measurements are carried out for 2-qubit pairs on the IBM Rochester. Experimental shots are 1024; 
each data point is the average of five measurements; and the average values and standard variations are plotted. 
(a) Phase trajectories for six different 2-qubit pairs with different initial phase angles φ. (b) Classical simulation 
of 2-qubit pairs with different T1. (c) 〈W2〉 and initial phase angle φ. (d) Classical simulation results for different 
T1.
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different cycles. It should be noted that these observations only existed for pair [4,6] during that period of time. 
We had carried out seven measurements for pair [4,6]; patterns of trajectories are shown below and the underly-
ing mechanisms are discussed.

There are two circular trajectories shown in Fig. 3, and a direct transition from the large circle with radius 
2.1 to the small circle with radius 0.5 is observed. Large and small circles are still in phase but with different 
amplitudes (Fig. 3b). The change of radius for the circular trajectories indicates that the quantum system is dis-
sipative, and the amplitude weight for state |11� reduces accordingly. From Fig. 2, transitions from large to small 
circles can be linked to the reduction of T1, and it is thus clear that the abrupt change of radius (Fig. 3a) is the 
result of a sudden increase in the environment noise at that point.

Environmental noise is the source of instability responsible for all the amplitude fluctuation on a NISQ com-
puter. This leads to the transitions between four circles that we observed in Fig. 4. However, data of the same 
color can still fit the circle of a specific radius. Since the circles still persist, entanglement between |00� and |11� 
remains robust at all times (Supplement C). Once again environment noise fails to destroy the entanglement but 

Figure 3.  A phase trajectory of transition pattern between small and large circles for 〈W2〉 and 
〈
W

′
2

〉
 

measurements of pair [4,6] at 4th run on IBM Rochester. Experimental shots are 1024. (a) The trajectory of 〈W2〉 
and 

〈
W

′
2

〉
 . (b) The relationship between 〈W2〉 , 

〈
W

′
2

〉
 and phase angle φ. The radius of outer circle is 2.1 and 

inner circle is 0.5. The maximal value of GHZ-like state is 2
√
2.

Figure 4.  A transition pattern between four circles for 〈W2〉 and 
〈
W

′
2

〉
 measurement of pair [4,6]. (a) The 

trajectories of 〈W2〉 and 
〈
W

′
2

〉
 . (b) The relationship between 〈W2〉 , 

〈
W

′
2

〉
 and phase angles φ. Data measured on 

the IBM Rochester are marked in four different colors to denote the different radii. Transition between circles 
are fluctuating in the NISQ system. The maximal value of the GHZ-like state is 2

√
2.
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does impact heavily on the weights of the superposition amplitudes. Here, the four radii of approximately 0.25, 
0.375, 0.6, 0.9 represent their normalized maximal values of the Mermin’s polynomial.

However, it is worth noting that measurement results did show phase shifts in certain cases. This is in spite 
of the fact that the input phase of the GHZ-like states were initially assigned in all those cases. Some unexpected 
backward dots could also be found in this measurement result. The straightforward speculation here is that large 
noise environment could impact both the entangled phase and amplitude.

Other than transitions between several circles of different radii, an interesting phase trajectory that shows up 
in line and circular paths is observed in Fig. 5. It is obvious that the initially partial circle comes from the super-
position of states |00� and |11� . From Eq. (7), if state |11� dissipate into ρ′, i.e., a state supported by |01� and |10� 
(see supplement C), a linear projection based on the measurement of 〈W2〉 and 

〈
W

′
2

〉
 should be observed. The 

GHZ–like state will be mixed with state ρ′ which arises as an excitation from the noisy environments during the 
dynamic processes of entanglement. Even though the initial states are the GHZ-like states only, states 
|00�, |01�, |10�, |11� can combine in a superposition fashion on a NISQ computer. From our numerical simulations 
and analytic analysis (Supplement C,D), the line along the �W2� =

〈
W

′
2

〉
 direction can be explained by the 

vanishing of the high energy entangled state |11� . The graph in Fig. 5 clearly demonstrates a transition of the 
higher energy |11� to state ρ′. However, if the conventional M2 and M ′

2 were adopted for measurements instead, 
the trajectory of the entangled states would have shrunk to a point instead of showing up as a line. This makes 
the study of their entanglement behaviors much more difficult. The benefit of using the 〈W2〉 and 

〈
W

′
2

〉
 measure-

ments becomes obvious here. From Eqs. (3) to (7), the phase dependence of the 〈W2〉 measurement for the 

GHZ-like state is cos
(
ϕ − π

4

)
 , while that for a general excited state ρ′, where ρ′ =





0 0 0 0

0 a re
−iθ 0

0 re
iθ 1− a 0

0 0 0 0



 , 〈W2〉 

measurement for the GHZ-like state is 4r sin(θ ). For some noise models, such as the depolarizing noise located 
before the CNOT gate (Supplement C), sin(θ) = sin(φ) = cos(ϕ − π

2
) . The |11� state “dies” suddenly and states ρ′ 

appear at the crossing point of the circular and the line paths. A π/4 phase shift observed in Fig. 5b clearly sup-
ports the interpretation around the sudden death of state |11� and the sudden birth of states ρ′.

Even though the GHZ-like state is prepared for measurement, the initial line trajectory in Fig. 6 indicates 
that state |11� disappears immediately after it is assigned. Instead, state ρ′ is very much alive since the beginning. 
However, the rebirth of state |11� changes the line back into the large circular path again. This result suggests that 
energy transfer between the IBM Rochester qubits and the environment (i.e., circuitry and control system to 
interact with the qubits) is indeed fluctuating throughout the course of many measurements. Phase shift around 
φ = π/4 in Fig. 6b also implies the sudden emergence of state ρ′.

Discussion and conclusion
Today’s quantum computer is still pretty much a NISQ system. Many research efforts are now focused on the 
elimination of  noises34, and the emulation of quantum computers on classical  platforms35. Applications the likes 
of quantum adiabatic optimization  algorithms36, variational quantum  eigensolvers37, hash preimage  attacks38, 
and modeling of viral  diffusion39, are to all still run on NISQ computers. Therefore, understanding the phase 
trajectory of measurements for entangled qubits will speed up their eventual adoptions on quantum  computers40. 
The entanglement of pair [4,6] produces trajectories beyond circular paths, which suggests that the effect of 

Figure 5.  A transition pattern between a circle and a line for 〈W2〉 and 
〈
W

′
2

〉
 of pair [4,6]. (a) The trajectory of 

〈W2〉 and 
〈
W

′
2

〉
 . (b) The relationship between 〈W2〉 , 

〈
W

′
2

〉
 and phase angles φ. The radius of circle is 2.1. The 

maximal value of the GHZ-like state is 2
√
2.
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energy fluctuation in a NISQ system is significant for certain connectivity of qubits. For an energy-stable NISQ, 
the phase trajectory is always constant, i.e., the trajectory is always circular, while for unstable and noisy quantum 
computer, multiple circular paths of different radii can be observed. The observation of line trajectories from 
both simulation and experimental results on the IBM Rochester can also be understood from our noise and 
classical simulations (supplement C and D). The missing of state |11� due to insufficient energy on the quantum 
computer is the underlying cause for the interesting phase trajectory observed in our analysis. From Figs. 5 and 
6, a large circular path becomes a line along direction �W2� =

〈
W

′
2

〉
 and vice versa. This observation shows that 

the system energy fluctuates heavily and the sudden death and birth of quantum states occur all the time. In 
other words, entanglement strength and superposition of entangled states do constantly fluctuate in a noisy 
environment. Nonetheless, entanglement for other qubit pairs persists in all measurements, only the amplitudes 
of their superposition states vary. This constancy of the radii during phase analysis suggested the scaling possibil-
ity of error mitigation for the different chosen connectivity of qubits.

In summary, we have developed a modified Mermin’s polynomials, and applied them to study the phase 
trajectory of quantum entanglement on a IBM Q 53-qubit quantum computer. Most of the qubit pair results fall 
within the prediction of the Mermin’s polynomials. Pair [4,6] shows a very strange behavior though and did not 
exactly obey the LR predictions of Bell’s inequality and Mermin’s polynomials. The observation of a large circular 
path with radius outside of the LR limit confirmed its state of entanglement. But a small circle, within the LR 
limit, that still shows quantum correlations of measurement, cannot be explained by the hidden variable or the 
physics of LR. In particular, a straight line along the diagonal direction is also observed within the LR limit, and 
this suggests that the quantum states die a sudden death under a noisy environment but revive again later. We 
use both classical simulations and theoretical analysis to study our measurement results from the IBM Rochester. 
We conjectured that the line trajectories within the LR limit could still be a result of entanglement. The projection 
of Hilbert’s space onto the classical world gets modified with our use of the modified Mermin’s polynomials of 
〈W2〉 and 

〈
W

′
2

〉
 . Although straight lines are not the typical results, they could still represent entanglement. In 

fact, a π/4 phase shift in Figs. 5b and 6b at the line-circle path crossing point supports the existence of entangle-
ment. We offer a more plausible explanation from the point of view of quantum entanglement of states |01� and 
|10� . Sudden deaths and revivals of quantum states do not destroy entanglement. They merely show a lack of 
energy in the system to sustain the higher energy state. Therefore, we can conclude that the IBM Rochester shows 
a reasonably good performance with entangled qubits even for the very unstable pair [4,6]. The phase trajectory 
within LR is a projection of quantum entangled states subject to the fluctuation of system energy. Last, the NISQ 
IBM Rochester does still sport unstable qubit pairs, e.g. [4,6] which should be avoided by users.

Data availability
All data supporting the findings of this study are available from the authors upon request.
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