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Regularized machine learning 
on molecular graph model explains 
systematic error in DFT enthalpies
Himaghna Bhattacharjee 1,2, Nikolaos Anesiadis3 & Dionisios G. Vlachos1,2*

A major goal of materials research is the discovery of novel and efficient heterogeneous catalysts 
for various chemical processes. In such studies, the candidate catalyst material is modeled using 
tens to thousands of chemical species and elementary reactions. Density Functional Theory (DFT) is 
widely used to calculate the thermochemistry of these species which might be surface species or gas-
phase molecules. The use of an approximate exchange correlation functional in the DFT framework 
introduces an important source of error in such models. This is especially true in the calculation of gas 
phase molecules whose thermochemistry is calculated using the same planewave basis set as the rest 
of the surface mechanism. Unfortunately, the nature and magnitude of these errors is unknown for 
most practical molecules. Here, we investigate the error in the enthalpy of formation for 1676 gaseous 
species using two different DFT levels of theory and the ‘ground truth values’ obtained from the NIST 
database. We featurize molecules using graph theory. We use a regularized algorithm to discover a 
sparse model of the error and identify important molecular fragments that drive this error. The model 
is robust to rigorous statistical tests and is used to correct DFT thermochemistry, achieving more than 
an order of magnitude improvement.

In-silico design of materials involves calculation of ground state properties of materials and molecules from 
first principles. Density functional theory (DFT) based on the Kohn Sham (KS) formulation of Schrødinger’s 
 equation1,2, is widely used for such calculations. While the formulation is theoretically exact, an exact functional is 
currently  lacking3. The current implementations of DFT assume an approximate form of the exchange correlation 
functional that introduces an error in the calculated ground state energies that we refer to as DFT error4. While 
approaches such as Δ-machine  learning5 have been proposed to map thermochemistry between different levels 
of functional approximations, investigating this error and accounting for it in computational models remains an 
important active area of research. Such error is particularly important for studying processes where the material 
is studied in the context of an application that involves surface intermediates connected with gas-phase reactions, 
products, and byproducts. Materials screening for heterogenous catalysis and surface science are examples of 
such applications. In such studies, the thermochemistry of the participating gas-phase species is calculated con-
sistently using the same planewave basis sets as for the surface species. Errors in the gas-phase thermochemistry 
propagate into the surface thermochemistry. Systematic ways to correct such errors are lacking. This is the core 
motivation for this work and the specific contribution addresses a key fundamental problem in improving the 
accuracy of materials screening models for surface science and catalysis applications.

One approach to estimate the error in DFT estimates is to evaluate the quantity of interest using several 
 functionals6. A similar approach is taken by the Bayesian Error Estimation Functional (BEEF)7 and  mBEEF8 
that provide a Bayesian error estimate based on a combination of functionals. Use of multiple functionals is 
computationally expensive for larger models. Importantly, some of the functionals are correlated and thus, the 
difference in prediction among functionals does not represent the true error of a functional. Currently, it is not 
clear how to reduce actual error.

A posteriori correction to the DFT predictions, using a surrogate error model, can enable refinement of 
predictions. In one  approach9, the error in the gas-phase free energy was treated as a random variable and error 
samples were drawn from a probability distribution (a uniform Dirichlet distribution) so that the experimental 
and model thermochemistry agrees. However, cancellation of  errors10 and this work indicate that the error is 
systematic, not random. Nørskov et al.11 investigated 11 gas-phase molecules in 21 reactions and assigned an 
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error to the OCO backbone of their molecules. A similar approach based on bond additivity corrections (BAC)12 
was used by Green and co-workers to fit empirical correction terms for 147 gas-phase  species13. This was done by 
regressing the difference in experimental (NIST database) enthalpy of formation and that obtained by coupled 
cluster calculations. BAC correction terms were proposed exclusively for the G3 level of theory using localized 
orbitals and the featurization is functional specific. Moreover, the featurization scheme does not consider different 
bond types. In general, these approaches require prior empirical or expert knowledge to decide the “fragments” 
to which errors are assigned.

In this work, we investigate first-principles approximation error in calculating the enthalpy of formation of 
almost 1700 gas molecules. We apply a graph theoretical framework to encode molecules in terms of subgraph 
frequencies. These subgraphs are molecular fragments, analogous to those in the group additivity framework, 
pioneered by Benson et al.14. We formulate the problem as a subgraph search problem similar to the approach 
taken by Gu et al.15, where this featurization was used for predicting the enthalpy. Here, we use this formal-
ism for learning error in DFT calculated enthalpy. Thus, while Gu et al. used this framework to discover the 
important groups for estimating enthalpy, we use this framework to discover the important molecular groups 
for predicting DFT error which might be potentially different from the groups used for predicting the enthalpy 
itself. The supervised learning algorithm performs two tasks. First, variable selection to reduce the parameter 
space. Second, regression to predict the error in DFT calculated formation enthalpy. By doing this, it discovers 
the important subgraphs contributing to the error of enthalpy of formation of species in an automated fashion 
and assigns an error to each group. This ‘error model’ is then used to estimate the error for new molecules and 
correct it. We perform rigorous statistical tests to analyze and interpret our model. We establish a theoretical 
framework for illustrating the cancellation of DFT error to several tenths of an eV as has been estimated in lit-
erature from small scale studies on specific  systems16,17. We consider different types of atoms and bond types in 
the molecular structure. An important advantage of this approach is its physical interpretability. Our model is 
agnostic to the level of theory being investigated and thus we illustrate its application on functionals which are 
known to be less accurate than the G3 methods used to fit BACs. To our knowledge, this is the first automated 
model of first principles approximation error in an extensive data set.

In the following, we briefly describe the graph theoretical framework, the LASSO algorithm and the statisti-
cal bootstrap tests used for error estimates. We discuss important molecular fragments that drive the error and 
capture the uncertainty of model results. We then illustrate how to correct DFT calculated formation enthalpy 
in a post-hoc fashion. We discuss theoretical insights that can be gained from this error framework.

Methods
Molecules were downloaded from the NIST Chemistry WebBook  database18 using an automated script which we 
have made available online (https:// github. com/ Vlach osGro up). The dataset consists of 1676 neutral molecules 
whose gas-phase enthalpy of formation as well as structures were available. Only molecules comprised of carbon, 
hydrogen, oxygen, nitrogen, and phosphorus atoms were considered.

Density functional theory. All DFT calculations were performed using the Vienna Ab Initio Simulation 
Package (VASP)19. A periodic unit cell of size 20 × 20 × 20 and a 1 × 1 × 1 Monkhorst–Pack mesh for Brillouin 
zone integration were used. The energy cutoff for the plane wave basis set was 400  eV. A force criterion of 
0.01 eV/Å was used for convergence. The ion–electron interactions were represented by the projector-augmented 
wave (PAW)20 method. Two exchange correlation functionals were considered: the Perdew–Burke–Ernzerhof 
(referred to henceforth as the ‘PBE functional’) of the Generalized Gradient Approximation (GGA) level of 
 theory21 and the Local Density Approximation (LDA)2,22. In this work, we focus on planewave basis set since 
these are used in the surface science and catalytic reaction mechanisms that involve surface and gas species, as 
mentioned in the introduction.

Thermochemistry. All thermochemistry was calculated using the pMuTT Python  package23. The vibra-
tional modes were treated as simple harmonic oscillators and zero-point corrections were applied using the 
pMuTT package. All species were treated as ideal gases at the same conditions as the experimental values 
(298.15 K and 1 atm). The values were corrected to account for the difference of formation enthalpy of the atoms 
due to the choice of reference as has been described in literature (Eq. 1 of Ref.24).

Graph theoretical framework. For this work, we utilize a graph theoretical framework to featurize mol-
ecules. A molecule is defined as a “master graph” whose nodes and edges represent the nuclei and bonds, respec-
tively. For the sake of computational efficiency, all hydrogens are lumped and not treated explicitly as nodes. 
Thus, each node is identified as a carbon, oxygen, nitrogen, or phosphorus atom. Similarly, each edge represents 
a single, double, or triple bond. The unique subgraphs of a master graph are the descriptors of the molecule. A 
data matrix for the entire set is constructed where each column represents a unique subgraph, and each row 
represents a molecule. The element dij of the data matrix corresponds to the frequency of subgraph j in molecule 
i, i.e., how many times subgraph j is found in molecule i. It is to be noted that the descriptors are strictly geo-
metrical and 2 dimensional. Furthermore, we mine all subgraphs in an automated fashion without biasing the 
results using prior knowledge. We find all subgraphs up to a maximum size of 4 linkages to be suitable. The pack-
age  RDKIT25 was used to represent molecules as graphs and  NetworkX26 was used to mine unique subgraphs 
up to isomorphism, ensuring rotational and translational symmetry. All plotting was done with the  Matplotlib27 
Python package.

https://github.com/VlachosGroup
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Statistical modeling. To systematically discover the subgraphs contributing to the error, we use the LASSO 
(least absolute shrinkage and selection operator)28 algorithm. LASSO performs descriptor (here subgraph) selec-
tion by considering all possible subgraphs up to a certain size and selecting the ones that minimize the loss func-
tion. The loss function of LASSO is formally:

where a = ypredicted − ytrue and ytrue is any response of interest, λ is a hyperparameter controlling the model 
sparsity estimated using tenfold cross validation on the training data, and ||w||1 is the L1 norm of the parameter 
vector w. λ is the regularization parameter. When λ = 0, the problem is a traditional least squares regression. 
By increasing λ, more parameters are set to zero, leading to a sparser model with less descriptors. When λ is 
too large, the model is not as accurate as it uses too few descriptors. Consequently, there is an optimum λ that 
strikes a balance between model simplicity and accuracy. This λ is the optimum of the bias-variance tradeoff. 
The response here is the (experimental-DFT enthalpy of formation).

The data set of 1676 points was split randomly into a training (90%) and an external (not seen by the model 
during training) test-set (10%). The training set was repeatedly subsampled (with replacement) by splitting it in 
60–40 ratios. The 60% sample was used to train the model and the remaining 40% (validation set) for calculation 
of performance metrics, such as mean absolute error (MAE) and the subgraph coefficients selected by LASSO. 
This process was repeated 1000 times to give a population of these metrics and capture the uncertainty and 
performance of the model. Note that the externally held out test set is fixed and thus cannot be sampled from.

P(ǫ < 2) is a probabilistic measure of model accuracy that we introduce. It represents the probability that the 
model predicts within 2 kcal/mol (absolute) for a randomly chosen molecule and serves as an empirical sur-
rogate to the posterior probability of the model performing within 2 kcal/mol accuracy. As such, the threshold 
of 2 kcal/mol is derived from pragmatic considerations. However, it is straightforward to apply the definition to 
any user-defined threshold accuracy.

P(ǫ < 2) is estimated as:

where N is the total number of points in the dataset, H[n] is the Heaviside step function (= 0 for n < 0, 1 oth-
erwise) and ǫi is the absolute error in the model prediction for point i. In Eq. (2), we run the sum over all mol-
ecules for which the absolute error is greater than 2 kcal/mol. This is done to estimate the posterior probability 
of the model performing within 2 kcal/mol accuracy. In a real application, we would expect most molecules to 
be drawn from near the mode of this distribution. Hence, instead of estimating for a given random molecule 
what the model error is likely to be (which is what metrics such as MAE try to estimate), this metric tells us how 
likely the model is to fail catastrophically (as defined by the model predicting with an accuracy worse than the 
threshold accuracy of 2 kcal/mol).

Results and discussion
Distribution of errors. The parity plot of calculated versus the NIST formation enthalpy values (Fig. 1a, 
b) suggests a systematic bias by both functionals. The PBE functional shows a smaller error (MAE: 82.19 kcal/
mol) compared to the LDA functional (MAE: 359.57 kcal/mol) consistent with the level of theory. The popula-
tion density of errors in Fig. 1c, d show a unimodal distribution of error with non-zero means underscoring 
systematic under-prediction.

Linear models of the error. The performance of the error model on the external test set is shown for both 
functionals in Fig. 2a, b. Out of 713 subgraph descriptors, the LASSO algorithm identifies 27 subgraphs for the 
PBE error model with which it can predict error within an accuracy of 3.7 kcal/mol and an  R2 value of 0.95. The 
LDA model similarly identifies 18 subgraphs and predicts error to 4.83 kcal/mol with an  R2 value of 0.99.

A significant outlier is phosphorus dioxide (circled in Fig. 2a, b) due to the inability of the models to capture 
the physics of this particular molecule. The entire dataset of 1676 molecules has only 5 molecules with a phos-
phorus atom and only this molecule contains the ṖO 2 motif. Thus, it is likely that with more training samples 
of this linkage, the model would learn the error (further discussion is given in section S5 of the Supplementary 
Information).

The learning curves of the LDA and the PBE error models are shown in Fig. 2c, d, respectively. These curves 
are generated by training models on increasing fractions of the training data and recording the MAE on the test 
set. 60% of the training data (~ 900 molecules) is sufficient to train the models, as indicated by the plateau of the 
MAE at the 0.6 mark in the learning curves.

Further insight is gained from the coefficients of the various groups contributing to the error model (Fig. 3) 
of all groups has been made available with the Supplementary Materials and their coefficients can be found on 
the GitHub page. For the PBE model (Fig. 3a), the major contributors are zeroth-order subgraphs of atoms of 
carbon (Group 708, 11.65), hydrogen (Group 709, − 3.01), oxygen (Group 710, 14.59), and nitrogen (Group 
711, 10.39), all in kcal/mol. There are significant contributions from two atom groups of N–O (Group 19, 5.35) 
and C–N (Group 21, 1.15). We call this first-order contributions to the error and can be interpreted as errors in 
calculating bond enthalpies. Finally, there are higher order contributions such as branched (Group 194, − 2.44) 
and linear (Group 196, 1.72) cyanide fragments and C–C=C–C=C (Group 15, 0.25) that indicates the presence 
of an aromatic ring. Explicit identification of the aromatic ring and other higher order structures is not possible 
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due to the subgraph size to 4 linkages. Another interesting fragment is the carbonyl fragment C–C=O (Group 
70, − 0.44). Similar trends for the LDA functional are shown in Fig. 3b. Interestingly, the contribution from the 
hydrogen atom has opposite sign between the two models. The PBE functional overpredicts the enthalpy of 
formation of Hydrogen atom whereas the LDA functional underpredicts it. The distributions of the coefficient 
of the H atom, obtained over 1000 samples, do not overlap (Figure S3) suggesting the different sign is not an 
artifact of the fitting. Since the error is defined as (experimental-DFT enthalpy of formation), a positive value 
of a coefficient for a group means that for each occurrence of that group in the molecules, the model predicts 
that the error is positive i.e., the DFT calculated enthalpy of formation is lower than the experimental value. The 
converse is true for negative coefficients.

The error bars in the coefficients are obtained by bootstrap simulation (at the 95% confidence interval). The 
spread of the coefficients indicates multiple families of solutions typical of poorly determined parameters. To fit 
714 parameters there are ~ 900 training points in each run. Moreover, since LASSO converges to a sparse solution 
using gradient descent, there might be multiple families of such sparse solutions. This is further complicated by 
the fact that molecular fragments are often linearly dependent (e.g., C–C=C can be expressed as C–C + C=C). 
Thus, it is not straightforward to use the error bars to comment on the significance of individual parameters. For 
this reason, we introduce the normalized model frequency of each “active” coefficient (i.e., of the groups chosen 
by the final model that are depicted in Fig. 3) across the bootstrap simulation. This is defined as:

Here I(condition) is the indicator function which is 1 (0) if the condition is true (false). Abs() is the absolute 
function and wj,i indicates the coefficient wj in the ith simulation. A normalized model frequency close to 1 indi-
cates that the coefficient wj is chosen by LASSO in most simulation runs. These are plotted for both models in 
Fig. 4. The high values for most coefficients indicate that they are all important for calculating the error. The exact 
numerical values may vary based on the (degenerate) family of solutions chosen by LASSO. The low normalized 
model frequency of some groups, e.g., 3, 20 and 207 in the PBE error model (Fig. 4a), are associated with groups 
with low coefficients and probably indicate “noisy” groups that do not affect the error. The full spectrum mined 
for both the models is in Figure S2.
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Figure 1.  Parity plot of calculated formation enthalpy for 1676 gas species using the (a) PBE and the (b) LDA 
functional at 298.15 K and 1 atm versus experimental enthalpies of formation. Population density of errors in 
enthalpy of formation (298.15 K, 1 atm) using the (c) PBE and (d) LDA functional.
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While interpreting individual coefficients might be complex, we used the bootstrap simulations to generate a 
population of model MAE and P(ǫ< 2) values to guarantee the performance of the general framework. The violin 
plots of the generated distributions are plotted in Fig. 5 for both models and metrics. Note that a violin plot is a 
boxplot with the surrounding shading representing the density of points i.e., at a given y-axis value, the width of 
the violin plot is proportional to the number of points with that y-axis value. From Fig. 5a, c, the median MAE 
on the validation for the PBE error model is around 5.5 kcal/mol and for the LDA error model is around 6 kcal/
mol. The long tail of the PBE error model MAE distribution is to be noted. We believe that this tail corresponds to 
runs with stratified partitioning with the testing set having bigger molecules and different subgraph distributions 
than the training set. This is discussed in detail in section S4 of the Supplementary Information. In general, model 
results above are optimistic and greater MAE in the wider chemical space should be expected. From Fig. 5b, d, 
both the PBE and LDA error models can be expected to be accurate to within 2 kcal/mol about 40% of the time.

Discussion
In this work, important subgraphs driving the error in formation enthalpy calculated using the PBE and LDA 
functionals were discovered in a data-driven fashion. This has important implications for studying the propaga-
tion of errors to the enthalpy of an elementary reaction (or any reaction in general).

Firstly, the dominant contributions seem to be from zeroth order atomic contributions. This could be a 
manifestation of the unsuitability of plane wave DFT calculations for isolated atom thermochemistry (which is 
required for referencing the enthalpies of formation) or the insufficient cancellation of errors between the dif-
ferent phases of bonded molecules and their atomic components, as discussed  in29. Using just the zeroth and 
first order (atom–atom bonds) subgraphs, it is possible to make a predictive model with an MAE of 4.15 kcal/
mol (Figure S6). This corresponds to the BAC correction model which was proposed for G3 level functionals 
with localized orbitals. In this case, similar corrections are discovered in a data-driven fashion for the PBE and 
LDA functionals with planewave basis sets. Moreover, higher level subgraph contributions account for the fur-
ther ~ 0.5 kcal/mol increase in accuracy of the full model.

Figure 2.  Parity plot of error formation enthalpy predicted by surrogate LASSO model on the test set versus 
the true error in enthalpy calculated using the PBE functional. The outlier circled is phosphorus dioxide (129.7, 
31.25). (b) Error in enthalpy calculated using the LDA functional. The circled outlier is again phosphorus 
dioxide (179.6, 64.47). Learning curves for the (c) PBE and (d) LDA models. The boxes represent mean absolute 
error on the externally held out test set on models trained on the respective fractions of the training set.
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Since the number and types of atoms are the same on the reactant and product side of a reaction, additive 
corrections associated with the enthalpies of specific atoms cancel out exactly due to sign inversion between 
reactants and products. Thus, the dominant zeroth-order groups cancel out and do not contribute to the error in 
the calculation of the overall enthalpy of reaction. Molecules having similar number of these groups (including 
similar atoms) will have similar error in enthalpies of formation. A rigorous study of this phenomena is shown 
in section S2 of the Supplementary Information. However, higher-order error contributions might be manifested 
in reaction thermochemistry, if the reaction involves breaking or forming any of the important subgraphs driv-
ing the DFT error. For example, when a reaction involves breaking or forming C–N or N–O bonds, the reaction 
thermochemistry would exhibit considerable error. In such cases, the cancellation of error heuristic would fail 
even if the reactants and products resemble each other in all other ways. If we consider that the error in reaction 
enthalpy is the major contributor to the reaction free energy error, these errors get exponentially amplified in 
the calculation of equilibrium constants (K = e

−�G0

RT  ). Clearly, the error propagated to the reaction enthalpy is 

Figure 3.  Coefficients of the key groups identified by the (a) PBE and (b) LDA error model. A list of all groups 
has been made available with the Supplementary Materials and their coefficients can be found on the GitHub 
page.
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reaction specific. While it would be possible to make a separate model of errors in reaction enthalpies, the space 
of reactions is vast. Importantly, the groups identified here represent fundamental corrections and thus gives a 
way of breaking down and explaining reaction enthalpies in terms of fragments of participating species. This is 
due to the simple fact that a chemical reaction is a linear combination of species and thermochemistry (enthalpy, 
entropy, free energy) has additive character due to being a state variable.

Due to the linear additive nature of the groups, the model, in general, will predict a larger DFT error for big-
ger molecules (having more groups) than smaller molecules. This property of the model agrees with the error 
behavior observed empirically. Figure S4a and b show the roughly linear dependence between molecule size 
(defined as the total number of atoms in the molecule) and error in formation enthalpy calculated using both the 
functionals. This assumes that groups occur independent of each other. While this is obviously not true strictly 
(bigger groups can be considered as linear combinations of smaller groups), this assumption roughly holds for 
the groups selected by LASSO. This is illustrated in Figure S5a and b, by plotting the heatmap of the absolute 

Figure 4.  Normalized model frequency based on 1000 runs for the (a) PBE and (b) LDA models.
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value (correlation and anti-correlation is treated equally) of the Pearson coefficient of correlation between the 
groups chosen by LASSO for both the functionals. The small off diagonal terms in the heatmap indicate weak 
correlation between the groups. This also depends on the maximum subgraph size cutoff. The size of groups 
(subgraphs) will increase with this cutoff but since bigger groups tend to be linear combinations of smaller ones, 
this will cause increasing correlation between the descriptors.

Finally, the parity plots in Fig. 2a, b show that the residual errors of the LASSO DFT error models are nearly 
random with no apparent structure around the diagonal. We think that this represents the residual “random” 
error implicit in the choice of DFT functional i.e., the random component of DFT error which remains after the 
systematic component is explicitly accounted for (via subgraph frequency-based error correction). The mean 
absolute value of this residual error is 4–5 kcal for both the functionals, shown in consistent with the order of 
magnitude estimates of DFT enthalpy error (with error cancellation) of few-tenths of an  eV16,17.

Correcting the enthalpies of formation of species. An important application of the approximation 
error is that it enables a posteriori correction of the calculated thermochemical properties. This is illustrated 
as a proof of concept using the error model to correct the entire dataset. Note that this is the model trained on 
90% of the data (training set) and used to predict the error of the entire data set. The dark blue and black points 
in Fig. 6a, b (PBE and LDA respectively) indicate the uncorrected gas-phase enthalpies of formation. The red 
(Fig. 6a) and green–blue (Fig. 6b) points indicate the calculated values corrected using the LASSO error model. 
It is evident that the a posteriori correction achieves greater than an order of magnitude and almost two orders 
of magnitude improvement for the PBE and LDA functional, respectively.

Conclusions
We have investigated the DFT errors in calculating the formation enthalpy of gas molecules. The errors are sys-
tematic for both LDA and GGA (PBE). We have proposed a space of molecular graphs to study first principles 
approximation errors. We show that the errors are well described by 4-edge fragments of the molecules and 
can be predicted by the LASSO regressor using a relatively small number of 27 and 18 subgraphs for PBE and 
LDA, respectively. These fragments were mined automatically from the high dimensional subgraph space. The 
chief contributions to the error are from atoms (zeroth order contributions) with significant contributions from 
select single bonds (first order or bond contributions) and a few higher order contributions from multiple bond 
groups. This framework was used to explain cancellation of errors of DFT energies and provide a diagnostic tool 
to identify when the assumption of error cancellation fails. This model could increase the accuracy of the GGA 
(LDA) calculation by more than an order of magnitude (almost two orders of magnitude).

Figure 5.  Violin plots of train and validation MAE during bootstrap simulations of the (a) PBE and (c) LDA 
model. Violin plots of train and validation P ( ǫ < 2) during bootstrap simulations of the (b) PBE and (d) LDA 
model.
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