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Interpretable and parameter 
optimized ensemble model 
for knee osteoarthritis assessment 
using radiographs
Mohammed Bany Muhammad* & Mohammed Yeasin

Knee osteoarthritis (KOA) is an orthopedic disorder with a substantial impact on mobility and quality 
of life. An accurate assessment of the KOA levels is imperative in prioritizing meaningful patient care. 
Quantifying osteoarthritis features such as osteophytes and joint space narrowing (JSN) from low-
resolution images (i.e., X-ray images) are mostly subjective. We implement an objective assessment 
and quantification of KOA to aid practitioners. In particular, we developed an interpretable ensemble 
of convolutional neural network (CNN) models consisting of three modules. First, we developed a 
scale-invariant and aspect ratio preserving model to localize Knee joints. Second, we created multiple 
instances of "hyperparameter optimized" CNN models with diversity and build an ensemble scoring 
system to assess the severity of KOA according to the Kellgren–Lawrence grading (KL) scale. Third, we 
provided visual explanations of the predictions by the ensemble model. We tested our models using 
a collection of 37,996 Knee joints from the Osteoarthritis Initiative (OAI) dataset. Our results show a 
superior (13–27%) performance improvement compared to the state-of-the-art methods.

Osteoarthritis (OA) is a common form of degenerative joint disorder characterized by functional impairment 
and chronic pain. OA has a profound impact on the economy, individuals, and society. The economic direct 
and indirect burden in the US is estimated at around $100  billion1. OA affects 12.1% (32.5 million) of the adult 
population and is considered the 5th cause of disability in the  US1,2. It ranked in 2013 as the second most costly 
condition to treat in US hospitals after  Septicemia3. The social burden of OA is represented by the increasing 
functional impairments and loss of independence in older  communities2.

KOA is the most prevalent type of OA and represents the 11th cause leading to  disability1,4. The degen-
erative nature of KOA imposes increasing costs upon patients ($4000–$5000 for moderate levels of KOA to 
$8000–$10,000 for severe cases of KOA)5. KOA is more prevalent among two categories, the first, females aged 
60 years or more when compared to males of the same  age6. The second category includes all younger people 
characterized by  obesity7.

In general, diagnosed cases with KOA shows a marginally positive association with age and weight.
Physicians rely on radiographs and patient clinical records to assess the KOA severity level. Radiographic 

images are the primary means to determine the class of osteoarthritis and will be used for a long time due to 
many reasons that include affordability and availability. The low-resolution radiographs limit the physicians’ abil-
ity to quantify the joint OA abnormalities: JSN, Sclerosis, Cyst, Attrition, Chondrocalcinosis, and Osteophytes.

In KOA, JSN, Chondrocalcinosis, and Attrition are quantified at the lateral compartment and medial com-
partment. JSN and attrition are graded based on Osteoarthritis Research Society International (OARSI) with a 
four-level grading  system8. In contrast, chondrocalcinosis is graded based on OARSI with a two-level grading 
system. All other OA features are detected/quantified at four points: the lateral femur compartment, medial 
femur compartment, tibia lateral compartment, and tibia medial compartment. Osteophytes and Sclerosis are 
graded based on OARSI with a four-level grading system. Meanwhile, the cyst is graded based on OARSI with 
a two-level grading system (Fig. 1) for feature location.

In the process of scoring KOA, Physicians map quantified features from X-ray images (Osteophytes and JSN) 
into a 5 level grading system based on the KL grading  scale9. ‘Grade 0’ corresponds to the normal knee, ’Grade 
1’ corresponds to doubtful KOA, ’Grade 2’ corresponds to mild KOA, ’Grade 3’ corresponds to moderate KOA, 
and ’Grade 4’ corresponds to severe case of KOA (Fig. 2).
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Since the 1950s, researchers have used different methods to quantify the KOA severity from radiographs. In 
general, we can group most of the semi-automated methods into three categories. The geometric approaches 
utilize variants of image processing techniques such as edge and contour detectors, vertical intensity profiling, 
and spectral clustering to characterize the  JSN10–12. Such methods failed to account for most OA features such 
as Sclerosis, cyst, attrition, chondrocalcinosis, and osteophytes. That motivated researchers to turn to classical 
machine learning and pattern recognition algorithms for KOA severity assessment to improve the assessment 
accuracy. They utilized methods such as (but are not limited to): Self-organizing Map (SOM)13, Weighted neigh-
bor distance using the compound hierarchy of algorithms representing morphology (WND-CHARM)14 using 
features like Gray Level Co-occurrence Matrix (GLCM), histogram of oriented gradients (HOG), Multi-scale 
Histograms, Zernike moment, First Four Moments, Tamura Texture, and Chebyshev Statistics. In general, this 
approach failed to match the performance achieved by radiographs expert readers.

Since the 2010s, with the rise of deep learning (DL) in various computer vision tasks, the third line of work 
based on CNN modeling dominates the research field in the scope of such problems. Antony et al. introduced 
the first CNN-based architecture for scoring KOA severity based on  radiographs15,16. Using Antony’s two-step 
procedure (joint localization and OA severity quantification), several methods utilized different CNN-based 
architectures to quantify KOA based on radiographs. CNN-based methods included deep Siamese  CNN15, deep 
ensemble  CNN17, graph  CNN18, attention-based end-to-end CNN  architectures19, improved Faster R-CNN20, 
and densely connected  CNN21–23. In general, all methods implementing CNN for KOA severity assessment out-
performed all previous methods and achieved performance comparable to human (quadratic Kappa coefficient 
(0.6624, 0.6625, 0.6726) calculated for expert radiograph readers for OA severity assessment), and that reflects the 
difficulty for both human and CNN based models in quantifying the severity level of KOA.

To the best of our knowledge, this is the first study to design and implement a reliable, interpretable, param-
eter optimized, and fully automated CNN-based model for KOA severity assessment based on radiographs 
from all six clinical visits in the OAI. Our systematic approach implements: (i) data preprocessing to enhance 
radiographs, (ii) data augmentation to increase the number of images used for training purposes, (iii) modify 
single shot multi-box detector (SSD)27 to localize knee joints with high accuracy, (iv) address class imbalance to 
obtain optimal bias-variance trade-off, (v) assess the severity of KOA using stacked CNN-based ensemble model, 

Figure 1.  Radiographic knee anatomy and OA feature locations.

Figure 2.  KL starts with KL = 0 representing normal and KL = 4 representing most severe cases of OA.
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and locate OA features using Eigen-CAM28,29. The proposed approach is not disease-specific and is expected 
to be equally suitable for modeling any other disease if similar care is taken in data processing and building 
parameter-optimized interpretable models.

Results
Data processing. OAI dataset contains radiographs collected at six clinical visits. The baseline visit contains 
4796 radiographs for 4796 patients. The number of collected radiographs decreases with each clinical visit due to 
patients dropping from the OAI study. The total number of collected radiographs in six clinical visits is 22,279. 
Since each knee is quantified separately, we have a total of 44,558 different knees. To train the modified SSD 
model, we have manually annotated (locate the coordinates of an abounding box that enclose the kneecap area) 
600 images with a total of 1200 kneecaps.

Results of knee joint detection. We split annotated radiographs equally for training, validating, and 
testing models. We used the train and validation set to fine-tune the MobileNet V1 in the SSD architecture and 
used the test set to quantify the localization results based on the Jaccard index [defined as the area of intersection 
over the area of union (IOU)].

In General, the modified SSD architecture detects 43,981 joints and fails to detect 577 knee joints. The modi-
fied SSD architecture is an exceptionally accurate 95% IOU based on the 0.75 Jaccard index. Table 1 shows a 
comparison with state-of-the-art methods for the task of knee joint localization. In general, the modified SDD 
model show (2–4%) performance improvement when compared to state-of-the-art DL-based methods (last 
2 years) for the task of knee localization, and most importantly, it maximizes the use of available radiographs 
for the following process.

Performance of diverse CNN base models. After knee joint localization, we excluded all radiographs 
that underwent total knee replacement and excluded radiographs with no KL level. The total number of local-
ized knee joints available is 37,996. To train, validate, and test models, we used a 60%–20%–20% split ratio for 
training, validation, and testing, respectively. We used the training and validation set to train (22,796 radio-
graphs) and validate (7601 radiographs) the base models. And the test set to evaluate the stacked ensemble 
learner. Table 2 shows the performance of CNN base models ranging from 0.69 to 0.71% average class accuracy. 
Table 4 reports performances of state-of-the-art methods. Any base model’s performance outperforms most of 
the reported work for the KOA severity assessment (Table 4) irrespective of simplified design and shallower 
design for some base models. This performance improvement is attributed to training using a more significant 
number of radiographs and building parameter-optimized models.

Results of ensemble of CNN models. Ensemble models rely on the diversity of base models to enhance 
performance. The diversity of 1 represents complete disagreement between base models, and 0 represents com-
plete agreement. With 0 diversity between base models (all base models have the same performance), the ensem-
ble learners’ accuracy is minimum. Theoretically higher the diversity of base models learned patterns higher 
the performance of ensemble  learners30. To measure the diversity between base models, we used the modified 

Table 1.  Comparison of the knee localization task.

Year Method IOU

2016 Reference15 0.386

2017 Reference16 0.830

2018 Reference4 0.830

2019 Reference17 0.910

2019 Reference20 0.924

2020 Reference23 0.930

2020 Ours 0.950

Table 2.  Classification metrics for the base models.

Base model Average precision Average recall F1 score Average class accuracy

Base Model 1 0.69 0.68 0.68 0.69

Base Model 2 0.70 0.68 0.68 0.69

Base Model 3 0.69 0.69 0.68 0.69

Base Model 4 0.72 0.70 0.71 0.71

Base Model 5 0.70 0.69 0.69 0.69

Base Model 6 0.72 0.70 0.71 0.71
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non-pairwise measure interrater reliability (κ) to account for the chance in agreement. The overall measured 
diversity for base models is 0.3359.

To train the stacked ensemble model (Fig. 7), we used all CNN base models’ output as inputs to the super 
learner. We experimented with support vector machines (SVM)31, Random Forest (RF)32, and Gradient Boosting 
Machines (GBM)33 for decision level fusion to create the ensemble model. SVM provides a slightly better average 
class accuracy (1%) compared to other methods. To validate the SVM classifier as a super learner, we used the 
test radiographs (7599 radiographs).

To tune the SVM classifier, we set the categorical range of the kernel to (’linear’, ’poly’, ’rbf ’, ’sigmoid’), the 
range of the regularization parameter (C) between (0–10), and the range of kernel coefficient gamma) between 
(0–1). The optimal parameters that maximize the accuracy are C = 1, Kernel = ’rbf ’ and Gamma = 0.02.

In Table 3 and Fig. 3, we present the performance and the normalized confusion matrix, respectively. Meas-
ured sensitivity for normal, doubtful, mild, moderate, and severe OA is 94%, 61%, 90%, 96%, and 97%, respec-
tively. The model had a weighted average F1 score of 87%.

Table 3.  Classification metrics for the super learner.

KL level Precision Recall F1 Score Support

KL = 0 0.89 0.94 0.90 3041

KL = 1 0.72 0.61 0.66 1457

KL = 2 0.88 0.90 0.89 1825

KL = 3 0.97 0.96 0.96 986

KL = 4 0.96 0.97 0.96 290

Accuracy 0.87 7599

Macro Avg 0.88 0.88 0.88 7599

Weighted Avg 0.86 0.87 0.87 7599

Figure 3.  Normalized confusion matrix for the super learner model.

Table 4.  Comparison with state-of-the-art DL-based methods for KOA severity assessment task.

Year Method Validation set size Average class accuracy (%)

2016 Reference15 2686 59.60

2017 Reference16 4400 62.29

2018 Reference4 2957 66.70

2019 Reference17 1890 69.50

2019 Reference19 1495 64.3

2019 Reference20 1385 74.3

2020 Reference23 1770 60.0

2020 Reference22 4090 71.0

2020 Ours 7599 87.0
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The normalized confusion matrix tested on 7599 radiographs shows near-perfect diagonal matrix except for 
the doubtful level [KL = 1]. It also shows zero confusion among non-adjacent levels of OA, and that reflects the 
superior generalization of the model.

Using the super learner in stacking ensemble learning boosted the average class accuracy to 0.87, representing 
a 7% improvement over a simple majority vote ensemble learning using the same base models.

To demonstrate the proposed pipeline’s effectiveness, we presented in Table 4 results of the stacked CNN 
ensemble model compared with the state-of-the-art methods trained and validated on standard OA datasets.

All methods listed in Table 4 except for Ref.17 implement different variations of typical CNN architectures 
trained to predict the severity of KOA, Ref.17 utilize a simple majority vote for a number of shallow CNN archi-
tectures to predict the severity of KOA meanwhile our work utilizes ensemble learning from optimized CNN 
models and employ the SVM as a super learner to minimize the confusion at higher levels of KOA severity levels.

In summary, we achieve a 95% average IOU in localizing knee joint and 87.0% average class accuracy for the 
KOA severity assessment using the entire set of radiographs in the OAI dataset for all six clinical visits.

Prediction visual explanations. Tools that aim at providing visual explanations of CNN prediction can 
play an essential role in the design process by verifying generalization capability. Also, it can provide a measure 
of trustworthiness in the CNN-Based models for the end-users.

To explore learned patterns from the Stacked ensemble CNN model, we used Eigen-CAM to generate visual 
explanations of the ensemble CNN for different grades of KL, as shown in (Fig. 4). We can identify consistent 
patterns for each class level and different patterns across different class levels of KOA. Such visualization provides 
qualitative evidence of learning (no overfitting) and helps identify relevant features that match expected OA 
features (JSN and Osteophytes) in the joint medial and lateral margins.

Discussion
This work proposed an end-to-end optimized and interpretable DL-based CNN architecture that fully automates 
the process of KOA severity assessment using models built using the OAI dataset and tested on 7599 knee joints 
that the models never saw. First, the proposed model achieves an average class accuracy of 87%. Second, a 21% 
improvement over the average weighted quadratic kappa factor compared with expert readers in the KOA severity 
assessment. These results indicate the superiority of the model over expert performance. Third, 0.87% F1 Score 
and that by far exceeds any reported results, we present the robust metrics F1 Score due to imbalance in class 
levels in the OAI dataset and its ability to reflect both Recall (how good is the learned patterns) and Precision 
(better accuracy).

Building deep CNN models requires massive data volume. Arguably the deeper the model better the per-
formance and hence the better the generalization capability. In general, the number of learnable parameters is 
proportional to the CNN model’s depth, and hence more data is required to learn model parameters. In this work, 
we build deeper models compared to our previous  work17 by utilizing all radiographs from the longitudinal OAI 
dataset. We also implement data augmentation methods that do not affect OA features and provide adequate 
variation to generate virtual radiographs for training purposes only.

The process of building reliable CNN-based models requires, first, building a diverse set of models that 
exceeds the quadratic kappa factor among human experts judging the severity of KOA. We achieved that by 
utilizing all best practices such as data preprocessing, Bayesian hyper-parameter optimization to optimize and 
fine-tune all parameters, and multi-level learning such as stacking. Second, the process requires robustness, 
and that is obtained by augmenting the training data and paying attention to the Bias-Variance trade-off. Third, 
rigorous performance evaluation of models by examining the test accuracy, precision, and recall (the ability of 
not picking garbage), consistency of prediction using F1 score, and generalization capability using AUC (higher 
AUC → better generalization). Fourth, it requires the ability to decode error, and finally, the process requires 
interpretability (visual explanations of prediction), which is achieved using Eigen-CAM tools.

Even though we presented the best performance among reported work, we have noted three limitations to 
our work. First, our models provided a lower performance in classifying KL = 1 compared to other KL levels. The 
same observation can be noted in all other reported methods. This consistent lower performance is justified as 
the KL grading scale is flawed and relies on JSN and Osteophytes only and discards OA features such as Sclerosis, 
Cyst, Attrition, and Chondrocalcinosis. Second, we did train and validate our models based on the OAI dataset 
only since we could not obtain datasets like MOST or KNHANES, and we firmly believe that obtaining radio-
graphs from other datasets will enable us to achieve higher performance and helps show a better generalization. 
Third, a final limitation to be noted is that this work entirely relies on radiographs and does not synthesize other 
modalities, such as patient clinical records.

In general, we presented a reliable and fully automated pipeline that can function as a decision support system 
in this work. This work will assist experts in achieving more objective and less subjective in assessing KOA. Also, 
the visualization of model prediction using Eigen-CAM will build trust in determining the KOA severity level.

Methods
In (Fig. 5), we show the computational building blocks used for modeling of OA severity assessment based on 
radiographs from the OAI dataset. The proposed pipeline in (Fig. 5) is a sequential step by step, optimized for 
maximum performance. First, we extract and process all radiographs from six clinical visits. Second, we local-
ize knee joints. Third, we split the data between training, validation, and test to train and evaluate multi-level 
architecture. Fourth, we implement data augmenting for the training dataset. Fifth, we used hyperparameter 
optimization at every level of the training and evaluation of the stacked ensemble model. Finally, we visualize 
learned patterns from radiographs.
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Data. The Osteoarthritis Initiative (OAI) is a multi-center, longitudinal, prospective observational study col-
lected by the University of California San Francisco (UCSF), sponsored by the National Institute of Health 
(NIH), and labeled (OA severity level) by Boston University X-ray reading center (BU). The data set aims at 
a better understanding of how to prevent and treat KOA. The OAI dataset contains data for 4796 individuals 
(41.5%) men and (58.5%) women aged between 45–79 years  old34. The dataset is open for public access at http:// 
www. oai. ucsf. edu/. The Radiographs used in this study from the OAI dataset include baseline and five clinical 
visits. Radiographs in OAI are bilateral Posterior-Anterior (PA) fixed flexion knee X-ray images provided in a 
digital imaging and communications in medicine (DICOM) format. Table 5 presents the KL distribution, the 
number of available radiographs, and the percentage of the missing KL levels in baseline and the follow-up clini-
cal visits.

Figure 4.  Ensemble CNN prediction explanations produced using Eigen-CAM for three sample images for 
different severity levels.

http://www.oai.ucsf.edu/
http://www.oai.ucsf.edu/
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Data preprocessing. The radiographs in the OAI dataset are in a DICOM format. We convert all images 
into the Joint Photographic Experts Group (JPEG) format for subsequent processing convenience. Then we 
equalize intensity in each image using contrast limited adaptive histogram equalization (CLAHE) with a tile 
grid size of (8 × 8) and a clipping limit of 2. CLAHE improves contrast in images by redistributing the lightness 
values in the image and also enhances edges in local regions. In the last step, we scale all image intensities to 
(0–1) range.

The total number of Knee X-ray images available in the entire OAI data set is 22,279. The radiographs are 
in the DICOM X-ray format. To obtain single limp joints, we separate left and right knee joints (44,558 exam-
ples available for training and evaluating predictive models). To increase the number of examples for training 
purposes only, we used standard data augmentation methods such as a horizontal right-left flip, vertical shift of 
a maximum of 20% of image height, and brightness rescale of range [0.9, 1.1] of original pixel intensity values.

Localization model. An accurate object localization within images enables CNN feature extraction to the 
region of interest (ROI), and that helps minimize extracting irrelevant features and improve computational effi-
ciency. The bilateral PA X-ray images in OAI include all bone structures around a specific joint. For example, 
each bilateral PA fixed flexion knee radiograph contains almost all femur bone, left kneecap area, right kneecap 
area, and tibia bone. To assess each kneecap separately, we need to process/classify each knee separately. At the 
same time, we need to account for variances resulting from using different imaging devices made by different 
vendors. Current methods used for joint localization in medical images do not address variances like scale and 
aspect ratio. To address Current methods limitation, we adopted a three-step procedure.

1. A vertical split of raw X-Ray images to isolate left and right Knees in the bilateral PA fixed flexion radiographs 
(single limp radiographs).

2. Utilize SSD with a pre-trained Mobilenet  v135 model for kneecap detection.
3. Resize all cropped images based on the center point and the minimum between width and height of localized 

joint to a new size of 224 × 224 to unify the scale and to preserve the aspect ratio.

In general, SSD outperforms methods such as Faster-RCNN36 and  Yolo37 in terms of localization accuracy 
[mean average precision (mAP)] and real-time localization [frame per second (FPS)]. The SSD architecture is 
relatively uncomplicated and simpler to train compared to methods that rely on region proposal networks such 
as Faster R-CNN. The localization architecture is presented in (Fig. 6).

To reduce the number of needed annotated images, we utilized a pre-trained quantized COCO SSD MobileNet 
v1 model and used the annotated knee joints to fine-tune the MobileNet v1 in the SSD model. MobileNet v1 is 

Figure 5.  Proposed pipeline for workflow. (a) Data concatenation for baseline visit and follow-up visits, (b) 
Kneecap area localization, (c) Train test validation split (d) Data augmentation, (e) Ensemble learning, (f) Visual 
explanation of predicted classes.

Table 5.  Distribution of KOA severity levels in the OAI dataset.

Visiting cycle KL0 KL1 KL2 KL3 KL4 Missing KL Available Radiographs

Baseline 3448 1597 2374 1239 295 639 (6.66%) 4796

12-month 3113 1445 2221 1230 355 1228 (12.8%) 3660

36-month 2735 1252 1986 1147 377 2095 (21.84%) 4106

48-month 2606 1196 1884 1062 389 2455 (25.59%) 3700

72-month 1866 1007 471 201 26 6021 (62.77%) 3085

96-month 1899 987 488 239 47 5932 (61.84%) 2932
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a lightweight convolutional neural network architecture from Google known for its relatively small number of 
parameters (4.2 Million parameters) and low complexity. The low number of parameters enables low processing 
machines (mobile and embedded vision applications) to use MobileNet v1 in different computer vision tasks.

Parameter optimized CNN base models. CNN represents a compelling candidate for base model selec-
tion in ensemble learning methods, powered by CNN’s unparalleled performance in various computer vision 
tasks such as image classification, object localization, visual question answering (VQA), semantic segmentation, 
and image captioning. We designed six diverse CNN architectures as a base model with trainable parameters 
that range between 2,384,549 and between 23,610,661. The Models were trained to predict the KOA severity level 
(ground-truth) provided by the BU X-ray reading center for OAI 0.2.3 dataset for the variable V00XRKL [BU 
reading for KL (Grades 0–4)]. In Table 6, we detailed the network architecture for all base models.

Introducing diversity into base models. To introduce diversity among different CNN classifiers, we 
varied Conv2D layers kernel size, training batch, and hyperparameters values. To ensure maximum perfor-
mance for each base model, we used Bayesian optimization to optimize all different architectures’ hyperpa-
rameters. The hyperparameters included the training batch size, kernel size, stride size, activation function type, 
dropout rate, l2 regularization penalty, number of dense layers, and number of nodes in each dense layer. To reduce 
overfitting, we used a single dropout layer in every model. To account for the skewed distribution of KL levels, 
we used a heuristic inspired by logistic regression in rare events  data38. We trained base models to minimize 
categorical cross-entropy loss function using the Adam optimizer with a criterion-based reducing learning rate 
starting from 0.001.

Ensemble model. Ensemble learners improve generalization by combining several weak learners to account 
for noise, bias, and variance, techniques such as bagging, boosting, unweighted average, majority vote, and stack-
ing. Bagging (Bootstrap Aggregation) is a two-step operation. In the first weak learners, classify samples drawn 
with replacement from the training data. In the second, the ensemble technique aggregates the output of the base 
models. In general, bagging (e.g., Random Forest) improves accuracy, reduces variance, and increases stability. 
Boosting converts weak learners into stronger learners using different metaheuristics. In general, boosting aims 
at reducing bias and variance (e.g., AdaBoost, Gradient Boosting).

The unweighted average combines predictions at the SoftMax layer level with equal weights. The majority 
vote combines predictions at the SoftMax layer’s output with equal weights (prediction vote count). Stacking or 
stacked generalization combines similar or different classification or regression base models using a meta-learner. 
In general, stacking allows mixing different types of models at different levels (base or meta-learner level) to 
boost accuracy (Fig. 7). The super learner is a particular case of stacking where the super learner is used to find 
the base learners’ optimal weights in the ensemble model by minimizing the loss function based on the cross-
validated output of the base  learners39.

To select base models for the super learner ensemble model, we used Eigen-CAM to check for models that 
show consistent learned patterns. We kept models that show learned patterns for diversity check and excluded 
models that show no learned or consistent visual patterns. Moreover, we excluded all models that do not add 
to the overall diversity of the selected models. For the super learner choice, we experimented with classical 
machine classifiers such as support vector machines (SVM)31, Random Forest (RF)32, and Gradient Boosting 
Machines (GBM)33.

Prediction explanations. As the case with most DL methods, CNN’s inner workings are usually referred 
to as a black-box operation. CNN models end users raise justified concerns such as generalization capability 

Figure 6.  The network architecture for knee localization network.
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and the ability to decode prediction failure. We utilize a state-of-the-art approach Eigen-CAM to provide class 
activation maps for CNN output decisions (class discriminative) to address such concerns. Eigen-CAM gener-
ates class activation maps (CAM) for CNN prediction using the learned feature’s principal components at the 
last Conv2D layer in CNN models.

Eigen-CAM is an intuitive class-independent tool that can work with any CNN architecture without the 
need to modify or retrain the model. The class independence property enables Eigen-CAM to visualize learned 
patterns independent from dense layers and the SoftMax layer (does not require a correct decision at the CNN 
model’s output). This property enables decoding prediction failure and helps with the design process of CNN 
architectures. In general, Eigen-CAM provides a better and consistent explanation with less computation (does 
not require any backpropagation operations to generate visual explanations).

Table 6.  Network architecture of the base models in the stacked ensemble CNN.

Base Model 1 Base Model 2 Base Model 3

Layer Filters Kernel size Stride Layer Filters Kernel size Stride Layer Filters Kernel size Stride

Conv1 32 11 × 11 1 Conv1 32 9 × 9 1 Conv1 32 7 × 7 1

MaxPool1 – 2 × 2 2 MaxPool1 – 2 × 2 2 MaxPool1 – 2 × 2 2

Conv2 64 9 × 9 1 Conv2 64 7 × 7 1 Conv2 64 7 × 7 1

MaxPool2 – 2 × 2 2 MaxPool2 – 2 × 2 2 MaxPool2 – 2 × 2 2

Conv3 96 5 × 5 1 Conv3 96 5 × 5 1 Conv3 96 5 × 5 1

MaxPool3 – 2 × 2 2 MaxPool3 – 2 × 2 2 MaxPool3 – 2 × 2 2

Conv4 128 5 × 5 1 Conv4 128 5 × 5 1 Conv4 128 5 × 5 1

MaxPool4 – 2 × 2 2 MaxPool4 – 2 × 2 2 MaxPool4 – 2 × 2 2

Conv5 256 3 × 3 1 Conv5 256 3 × 3 1 Conv5 256 3 × 3 1

MaxPool5 – 2 × 2 2 MaxPool5 – 2 × 2 2 MaxPool5 – 2 × 2 2

Conv6 256 3 × 3 1 Conv6 256 3 × 3 1 Conv6 256 3 × 3 1

MaxPool6 – 2 × 2 2 MaxPool6 – 2 × 2 2 MaxPool6 – 2 × 2 2

Conv7 512 3 × 3 1 Conv7 512 3 × 3 1 Conv7 512 3 × 3 1

MaxPool7 – 2 × 2 2 MaxPool7 – 2 × 2 2 MaxPool7 – 2 × 2 2

Flatten Flatten Flatten

Fc1 2048 Fc1 2048 Fc1 1024

Dropout 0.1 Dropout 0.1 Dropout 0.1

SoftMax (Number-of-Class = 5)

Base Model 4 Base Model 5 Base Model 6

Layer Filters Kernel size Stride Layer Filters Kernel size Stride Layer Filters Kernel size Stride

Conv1 32 3 × 3 1 Conv1 32 11 × 11 1 Conv1 32 5 × 5 1

Conv2 32 3 × 3 1 MaxPool1 – 2 × 2 2 Conv2 32 5 × 5 1

MaxPool1 – 2 × 2 2 Conv2 64 9 × 9 1 MaxPool1 – 2 × 2 2

Conv3 64 3 × 3 1 MaxPool2 – 2 × 2 2 Conv3 64 3 × 3 1

Conv4 64 3 × 3 1 Conv3 96 7 × 7 1 Conv4 64 3 × 3 1

MaxPool2 – 2 × 2 2 MaxPool3 – 2 × 2 2 MaxPool2 – 2 × 2 2

Conv5 96 3 × 3 1 Conv3 128 5 × 5 1 Conv5 96 3 × 3 1

Conv6 96 3 × 3 1 MaxPool4 – 2 × 2 2 Conv6 96 3 × 3 1

MaxPool3 – 2 × 2 2 Conv4 256 3 × 3 1 MaxPool3 – 2 × 2 2

Conv7 128 3 × 3 1 MaxPool5 – 2 × 2 2 Conv7 128 3 × 3 1

Conv8 128 3 × 3 1 Conv5 256 3 × 3 1 Conv8 128 3 × 3 1

MaxPool4 – 2 × 2 2 MaxPool6 – 2 × 2 2 MaxPool4 – 2 × 2 2

Conv9 256 3 × 3 1 Conv6 512 3 × 3 1 Conv9 256 3 × 3 1

Conv10 256 3 × 3 1 MaxPool7 – 2 × 2 2 Conv10 256 3 × 3 1

MaxPool5 – 2 × 2 2 MaxPool5 – 2 × 2 2

Conv11 256 3 × 3 1 Conv11 256 3 × 3 1

Conv12 256 3 × 3 1 Conv12 256 3 × 3 1

MaxPool6 – 2 × 2 2 MaxPool6 – 2 × 2 2

Flatten Flatten Flatten

Fc1 1024 Fc1 1024 Fc1 1024

Dropout 0.1 Dropout 0.1 Dropout 0.1

SoftMax (number-of-class = 5)
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