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Network and co‑expression 
analysis of airway smooth muscle 
cell transcriptome delineates 
potential gene signatures 
in asthma
Priyanka Banerjee1, Premanand Balraj1, Nilesh Sudhakar Ambhore1, Sarah A. Wicher2, 
Rodney D. Britt Jr.3,4, Christina M. Pabelick2,5, Y. S. Prakash2,5 & Venkatachalem Sathish1,6*

Airway smooth muscle (ASM) is known for its role in asthma exacerbations characterized by 
acute bronchoconstriction and remodeling. The molecular mechanisms underlying multiple gene 
interactions regulating gene expression in asthma remain elusive. Herein, we explored the regulatory 
relationship between ASM genes to uncover the putative mechanism underlying asthma in humans. 
To this end, the gene expression from human ASM was measured with RNA‑Seq in non‑asthmatic 
and asthmatic groups. The gene network for the asthmatic and non‑asthmatic group was constructed 
by prioritizing differentially expressed genes (DEGs) (121) and transcription factors (TFs) (116). 
Furthermore, we identified differentially connected or co‑expressed genes in each group. The 
asthmatic group showed a loss of gene connectivity due to the rewiring of major regulators. Notably, 
TFs such as ZNF792, SMAD1, and SMAD7 were differentially correlated in the asthmatic ASM. 
Additionally, the DEGs, TFs, and differentially connected genes over‑represented in the pathways 
involved with herpes simplex virus infection, Hippo and TGF‑β signaling, adherens junctions, gap 
junctions, and ferroptosis. The rewiring of major regulators unveiled in this study likely modulates 
the expression of gene‑targets as an adaptive response to asthma. These multiple gene interactions 
pointed out novel targets and pathways for asthma exacerbations.
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AHR  Airway hyperresponsiveness
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DCE  Differentially co-expressed
DE  Differentially expressed
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GEO  Gene expression omnibus
lncRNAs  Long non-coding RNAs
NCBI  National Center for Biotechnology Information
PCIT  Partial correlation and information theory
RIF  Regulatory impact factor
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TFBS  Transcription factor binding sites
TFs  Transcription factors

Asthma is a chronic inflammatory disease of airways characterized by inflammation, hyperresponsiveness (AHR), 
and  remodeling1–4. Structural and inflammatory changes throughout the airway lead to bronchoconstriction 
contributing to airflow  obstruction5. The airflow obstruction is due to a combination of increased smooth muscle 
in the airway (increase in number or size) and functional abnormality (increased contractility/decreased relaxa-
tion). This calls for attention to decipher the role of airway smooth muscle (ASM) cells in asthma exacerbations. 
ASM cells role in asthma pathophysiology is well  elucidated5–12. Along with changes in airway structure and 
function, developmental abnormalities such as genetic disorders also play a role in asthma  exacerbations12. Apart 
from being multifactorial, asthma is polygenic, and thus the transmission of disease through generations does 
not follow Mendelian  inheritance13. Combinatorial action of genes and environmental factors results in altered 
gene expression patterns that could trigger the disease’s onset.

One of the approaches to assess the phenotypic differences between asthmatic and healthy states is by unrave-
ling the genome-wide baseline gene expression profile in human ASM cells. Transformations in the asthmatic 
ASM cells physiological properties that could contribute to AHR would likely be manifested by deregulated gene 
expression patterns associated with the underlying biological pathway, which determines the overall function-
ality of cell/tissue. A plethora of genetic and genomic  analysis12–16 and transcriptome  analysis17,18 altering the 
molecular mechanisms associated with asthma are reported to discern the disease pathophysiology. Transcrip-
tomic signatures with the response to glucocorticoid exposure on human ASM cells were reported  previously18. 
In an independent study, CRISPLD2 was identified as a glucocorticoid responsive gene modulating the cytokine 
function in human ASM  cells17. Furthermore, the gene expression profile from laser microdissected ASM tissue 
in asthma showed, RPTOR, VANGL1, FAM129A, and LEPREL1 were associated with  AHR19.

Interestingly, all these studies identified the genes differentially expressed (DE) between asthmatic and non-
asthmatic controls. In clinical research, altered or differential expression patterns can pinpoint the candidate 
biomarkers, therapeutic targets, and gene signatures for diagnostics. However, the particular gene expression 
pattern may not always translate into meaningful biological activity. Even though the differential expression 
may be involved with a biological pathway, it remains challenging to assess whether inhibition or activation of 
a specific biological pathway will alleviate or worsen the disease. Furthermore, the differential gene expression 
approach disregards the effect of multiple interactions involved with gene expression  regulation20, a key target 
to phenotype determination. Additionally, transcription factors (TFs) play a pivotal role in the expression of 
smooth muscle contractile proteins and may modulate the  phenotypes21. However, it is difficult to gain insight 
into gene regulation by TFs from differential expression analysis alone.

To overcome the limitations mentioned above, gene–gene co-expression networks are used to extract genome-
scale information that encapsulates multiple regulatory systems’ activity. This approach has the potential to 
highlight specific molecular mechanisms in disease. Moreover, it focuses on a few highly connected hub genes 
and translates predictions into a testable  hypothesis22. Gene co-expression networks are often constructed fol-
lowing guilt-by-association assumption representing nodes (genes) and edges (gene–gene associations)23,24, and 
this gene network topology provides a framework for molecular  characterization25. To gain insights into the gene 
co-expression between various conditions of interest, differential co-expression analysis have emerged that oper-
ates on the level of gene-pairs rather than a single gene. Furthermore, a differential network analysis compares 
gene interconnections between groups (diseased and healthy), indicating differences in the underlying molecular 
 mechanisms26,27 and identifying network rewiring in  disease28.

Even though we have an insight into the molecular basis of asthma, no ASM cell-specific data is available on 
multiple gene–gene interactions that shed light on the molecular mechanisms involved with gene expression 
regulation. As a result, the extent of these differences affecting the coordinated function of genes and pathway 
regulation in asthma remains elusive. Therefore, we hypothesized that genes are differentially co-expressed 
(DCE), and gene networks are rewired in human asthmatic ASM cells. In the present study, we uncovered the 
interplay between the genes that are not only DE but also DCE and rewired between asthmatic and non-asthmatic 
human ASM cells. Herein, we identified regulatory interactions between the genes and network connectivity loss 
in the asthmatic group. This suggests a network rewiring of major regulators that modulates target genes’ expres-
sion in response to the disease. Furthermore, on validation of pathway specific DEGs, we identified a significant 
fold change in the mRNA expression of genes quantified in human and mouse ASM.

Results
RNA‑Seq transcriptome profiling of human ASM cells. The human ASM data from NCBI GEO 
GSE119578 were analyzed to ascertain the variation in the transcriptome profile of the asthmatic (case) vs. non-
asthmatic (control). A schematic representation of the study design and analysis steps are given in Fig. 1. We 
obtained an average of 19.7 million raw sequencing reads per sample (ranging from 16.7 to 22.2 million reads 
per sample). The descriptive statistics and mapping rates per sample are reported in Supplementary Table S1. 
Of these samples, an average of 90.42% of reads was aligned to hg38 genome reference downloaded from the 
Ensembl database. Based on the QC summary metrics from FastQC and MultiQC, each sample’s sequencing 
and alignment results were above 90% and were included in the differential expression analysis. After the CPM 
filter approach, we identified 15,411 genes out of 60,671 reported in the Ensembl annotation file. We identi-
fied 121 genes significantly differentially expressed (DE) after correcting for false discovery rate by the Benja-
mini–Hochberg approach (Fig. 2, Supplementary Table S2). Among the DEGs, 83 genes were upregulated, such 
as BCHE, PCDH19, PCDH9, KIAA1671, CLSTN2, and the SLC family genes (SLC2A12, SLC7A11) (padj < 0.1) 
(Fig. 2). Thirty-eight genes were downregulated (Fig. 2) in the case, such as genes belonging to the tubulin fam-
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ily (TUBA1B, TUBB6, TUBA1A, TUBA1C), LRRC17, and SLC39A14. The top 10 significant genes upregulated 
and downregulated are given in Table 1. We also identified fifteen DE long non-coding RNAs (lncRNAs) such as 
KCNQ1OT1, TMEM161B-AS1, GABPB1-AS1, AC137932.1, AC003681.1, MIR29B2CHG, Z95331.1, HOXB-AS2, 
AC103702.1, SAP30L-AS1, ZNF337-AS1, ARAP1-AS2, BX322234.1, LINC00886, and LOXL1-AS1 (padj < 0.1) 
relevant to asthma in our study (Supplementary Table S2).

We observed the hierarchical clustering for DE genes and sample groups in the heatmap (Fig. 3). The case and 
control samples were grouped into two specific clusters (Fig. 3), while the genes were grouped into two major 
cluster groups, including ten subgroups.

Regulatory transcription factors. TFs play a central regulatory role in controlling gene expression. We 
used regulatory impact factor (RIF1 and RIF2) analysis to assign a score and identify the TFs regulating the 
expression of DEGs. TFs with RIF1 and RIF2 z-scores less than − 2 or greater than 2 (threshold as suggested 
previously)29 were considered significant (Supplementary Table S3). We identified 116 TFs as the potential regu-
lators modulating the expression of DEGs. ZNF792 (z-score = 2.66) and HOXB8 (z-score =  − 2.74) showed the 
most extreme value for RIF1 while ZNF207 (z-score = 3.04) and AFF3 (z-score =  − 2.82) were identified with the 
most extreme value of RIF2 (Supplementary Table S3). The genes encoding TFs are identified as key regulators 
and are reported as TFs throughout the text.

PCIT and network analysis. We created two networks based on the partial correlation and information 
theory (PCIT) algorithm to identify differences in gene co-expression profiles between the conditions. The cor-
relation of 15,411 genes retrieved 1,224,774 significantly correlated gene pairs in case, whereas 1,230,450 cor-
relations for control. Herein, we aimed to identify the genes correlated with DEGs and TFs in our study. Thus, 
to identify the potential regulatory mechanism related to the disease status, we filtered the co-expressed gene 
pairs that were DEGs between case and control groups (121 genes), TFs based on RIF1 and RIF2 analysis (116 
TFs), correlated pairs greater than |0.95|, for further analysis. After filtering, we retrieved 33,650 and 34,285 
significantly correlated pairs in case and controls, respectively. These significantly correlated genes were used 
for the dynamic network analysis to visualize the most rewired nodes across the network from case and control.

Figure 1.  Schematic representation of the study design and analyses steps. Green boxes represent the software/
packages used; yellow boxes are analysis steps.
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Figure 2.  Volcano plot of gene-based differential expression analysis for asthmatics (case, N = 5) vs non-
asthmatics (controls, N = 5) (each dot corresponds to a gene). The y-axis represents the negative log (base 10) 
of p-values, while the x-axis corresponds to the log (base 2) of the fold change for the difference in expression 
in the asthmatic human ASM cells. Pink dots represented 121 differentially expressed genes (padj < 0.1). The 
genes on the left of the panel (0 to − 3 of log2 fold change) are downregulated, while the genes to the right of 
the panel (0 to 5 of log fold change) are upregulated. Eighty-three genes were upregulated, while 38 genes were 
downregulated in the case group. The volcano plot was constructed using EnhancedVolcano v1.8.0 (https:// doi. 
org/ 10. 18129/ B9. bioc. Enhan cedVo lcano) on  R97.

Table 1.  Differentially expressed genes identified (top 10) (upregulated/downregulated in asthmatics) from 
human airway smooth muscle cells. Differentially expressed genes were selected with padj < 0.1. The columns 
represent the Ensembl ID, Gene name, Status = Up/Downregulated, Gene type, Chromosome number, Gene 
start (bp), Gene end (bp), log2FC = log fold change, p-value, padj by Benjamini Hochberg criteria.

Ensembl ID Gene name Status Gene type Chr no. Gene start (bp) Gene end (bp)
log2
FC pvalue padj

ENSG00000114200 BCHE Up Protein coding 3 165,772,904 165,837,462 4.99 4.07E−15 6.27E−11

ENSG00000269821 KCNQ1OT1 Up lncRNA 11 2,608,328 2,699,994 1.56 2.96E−10 2.28E−06

ENSG00000104313 EYA1 Up Protein coding 8 71,197,433 71,592,025 2.38 9.84E−10 5.06E−06

ENSG00000167772 ANGPTL4 Up Protein coding 19 8,363,289 8,374,370 1.54 1.11E−08 4.27E−05

ENSG00000184226 PCDH9 Up Protein coding 13 66,302,834 67,230,445 2.35 3.79E−08 1.17E−04

ENSG00000197077 KIAA1671 Up Protein coding 22 24,952,730 25,197,448 3.86 1.81E−07 3.73E−04

ENSG00000076641 PAG1 Up Protein coding 8 80,967,810 81,112,068 1.15 4.64E−07 7.95E−04

ENSG00000165194 PCDH19 Up Protein coding X 100,291,644 100,410,273 3.95 8.25E−07 1.27E−03

ENSG00000156011 PSD3 Up Protein coding 8 18,527,303 19,084,730 0.93 1.52E−06 1.80E−03

ENSG00000158258 CLSTN2 Up Protein coding 3 139,935,185 140,577,397 3.14 1.76E−06 1.87E−03

ENSG00000123416 TUBA1B Down Protein coding 12 49,127,782 49,131,397  − 0.87 1.51E−07 3.73E−04

ENSG00000128606 LRRC17 Down Protein coding 7 102,913,000 102,945,111  − 1.53 1.94E−07 3.73E−04

ENSG00000161896 IP6K3 Down Protein coding 6 33,721,662 33,746,905  − 1.48 9.51E−07 1.33E−03

ENSG00000067082 KLF6 Down Protein coding 10 3,775,996 3,785,281  − 0.58 1.24E−06 1.59E−03

ENSG00000125968 ID1 Down Protein coding 20 31,605,283 31,606,515  − 2.16 4.96E−06 4.02E−03

ENSG00000136826 KLF4 Down Protein coding 9 107,484,852 107,490,482  − 1.00 1.60E−05 1.03E−02

ENSG00000183963 SMTN Down Protein coding 22 31,064,105 31,104,757  − 0.83 2.28E−05 1.26E−02

ENSG00000176014 TUBB6 Down protein coding 18 12,307,669 12,344,320  − 1.02 4.11E−05 1.76E−02

ENSG00000157766 ACAN Down Protein coding 15 88,803,436 88,875,354  − 3.23 4.83E−05 1.98E−02

ENSG00000143320 CRABP2 Down Protein coding 1 156,699,606 156,705,816  − 1.33 5.15E−05 1.98E−02

https://doi.org/10.18129/B9.bioc.EnhancedVolcano
https://doi.org/10.18129/B9.bioc.EnhancedVolcano
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To identify the case and control-specific connections, we analyzed each group’s networks separately using 
Cytoscape v3.8.0 (https:// cytos cape. org/). For the case, after filtering out for DEGs and TFs, we identified 11,923 
nodes and 33,650 edges, while 12,401 nodes and 34,825 edges for controls (Supplementary Table S4). Next, we 
determined the gene degree and selected the most connected genes. Genes with a high degree are hubs in the 
network and regulate important biological functions. We identified 236 hub genes in the case networks and 234 
hub genes in control networks (p-value < 0.05). The top hub genes for the case networks are SMAD7, ZNF180, 
ARNT, HIC1, TUBA1B, TUBA1C, TUBA1A associated with more than 237 genes in the case. The top hub genes 
for control networks are LRRC17, ZNF763, TUBB6, and CAPN15, associated with more than 209 genes in 
controls. When overlapping the hub genes between conditions, AFF3 and ZNF718 are specific hubs in the case 
network (Supplementary Table S4).

The central reference network for case and control networks was constructed with DyNet that comprised 
14,720 nodes and 67,742 edges (Fig. 4a, Supplementary Table S5). Based on differential connectivity (DK), we 
identified the most rewired genes between cases and controls. These networks followed a scale-free model with 
an  R2 range of 0.65 in the case while 0.79 in the controls. We calculated DK between case and control, followed 
by a z-score for the 14,720 genes. For the z-scores, we considered 97.5 percentile points for standard normal 
distribution and retrieved the genes with z-score ± 1.96 (p-value < 0.05). By contrasting the connectivity between 
the groups, we identified 199 differentially connected (DC) genes for the case, among which 102 are DEGs and 
97 are TFs. Among DC genes, 70 genes exhibited connectivity gain, whereas 129 genes lost connectivity due to 

Figure 3.  Heatmap and clustering analysis of differentially expressed genes (DEGs) and long non-coding RNAs 
(lncRNAs). The x-axis represents the 121 DEGs and lncRNAs; the y-axis represents asthmatic (case, N = 5), 
non-asthmatic (controls, N = 5). The case and control samples were grouped into two specific clusters, while the 
genes were grouped into two major cluster groups, including ten subgroups. The heatmap was constructed using 
pheatmap v1.0.12 (https:// CRAN.R- proje ct. org/ packa ge= pheat map) on  R97.

Figure 4.  (a) Networks comparison based on rewired nodes. Central reference union network of genes 
co-expressed were built by DyNet merging case (N = 5) and control (N = 5) networks. The network comprises 
14,720 nodes and 67,742 edges. Unique nodes are shown in green (control) and red (case). Shared nodes are 
shown in white. (b) Key regulatory transcription factor ZNF792 and its co-expressed genes. The regulatory 
transcription factor is given in the middle with red font in white node; green nodes represent the target genes 
in the control network, whereas red nodes represent the target genes in the case network. Blue edges represent a 
positive correlation, while black edges represent a negative correlation between the transcription factor and the 
target genes. Gene network was created using Cytoscape v3.8.0 (https:// cytos cape. org/).

https://cytoscape.org/
https://CRAN.R-project.org/package=pheatmap
https://cytoscape.org/


6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:14386  | https://doi.org/10.1038/s41598-021-93845-x

www.nature.com/scientificreports/

asthma (Supplementary Table S5). The top DEGs that gained connectivity in the case are TUBA1B, TUBA1C, 
TUBA1A, MAST4, TUBB6, whereas the top TFs with connectivity gain in the case are ZBTB14, ZNF461, AFF3, 
ZNF263, SMAD7, HOXB6. Notably, ZNF792 was earlier identified as regulatory TF based on extreme RIF scores 
exhibits connectivity loss in controls than in cases (Fig. 4b).

Differential co‑expression network analysis. We performed the differential gene co-expression analy-
sis using DGCA R-package to reveal the functional relationship between gene pairs across the case and control 
groups on 15,411 genes. We identified 118,741,755 correlation pairs, out of which 3418 correlated pairs were 
significant (PValDiff_adj < 0.05, see Supplementary Table S6). Among them, 102 genes were DEGs or TFs.

Among the top 10 upregulated DEGs, KIAA1671 was DCE with PSMG3-AS1, while CLSTN2 was DCE with 
BANF1 and PMEL. The top 10 downregulated DEGs, LRRC17, SMTN, and ACAN, were DCE with CRADD, 
VAC14, and EPOP, respectively. Interestingly, the co-expression of these genes was inversely correlated between 
case and control groups according to the correlation classes (see “Methods” section for details).

From the top hubs identified by Network Analyzer in the case group, TFs like SMAD7 and ARNT were DCE 
with WDCP and BTRC, respectively. TUBA1A (DEG) was DCE with RASAL2-AS1, SPON1, TF, AGAP9 with an 
inverse correlation between case and control groups. In control groups, the top hub genes LRRC17 (DEG) and 
CAPN15 (TF) were DCE with CRADD and ADPRHL1, respectively.

Functional overrepresentation analysis. To determine whether the biological functions or processes 
are over-represented by DEGs, TFs, and DC genes, we performed a network over-representation analysis. The 
top pathways identified were signaling like Hippo and TGF-β pathways, adherens and gap junction, cholesterol 
metabolism, ferroptosis, and lysine degradation aldosterone-regulated sodium reabsorption, and propanoate 
 metabolism30 (p-value < 0.05, see Fig. 5, Supplementary Table S7). The pathways involved with DCE genes were 

Figure 5.  Over-represented signaling pathways of differentially expressed genes, transcription factors, 
and differentially connected genes. The circle size for a specific GOTerm (pathway) varies with the order of 
significance (p-value) level. The biggest node represents the most significant pathway. The pathways were 
constructed using Cytoscape v3.8.0 (https:// cytos cape. org/) using the plugin ClueGO v2.5.4105.

https://cytoscape.org/
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included the Ras signaling pathway, phosphoinositide-3-kinase-Akt (PI3K-Akt) signaling pathway, mammalian 
target of rapamycin (mTOR) and mitogen-activated protein kinase (MAPK) signaling pathway, ferroptosis, cho-
lesterol metabolism, adherens junction, Hippo and TGF-β signaling pathway (Supplementary Table S7). As fer-
roptosis was among the over-represented pathways, we screened the DEGs and TFs (237 genes) to the regulators 
of ferroptosis (253 genes) reported from the FerrdB database. We identified SLC7A11, SLC2A12, ZEB1, ATF3, 
and HIC1 common between DEGs and TFs involved with asthma and ferroptosis.

mRNA expression of identified genes in human and mouse ASM. Based on the results from identi-
fied DEGs and pathway-focused genes, multiple genes were selected to quantify whether gene expression changes 
could be observed in vitro and whether similar expression patterns extend to in vivo activity using the mixed 
allergen (MA) induced mouse model of  asthma3,31. Consistent with the results mentioned above, GABPB1, 
PCDH19, SLC7A11, EP300, KCNQ10T1, and BCHE genes were identified as significantly upregulated in humans 
(p-value < 0.001) and mouse (p-value < 0.05) ASM cells (Fig. 6). Genes such as TUBA1A, TUBA1B, TUBA1C, 
TUBB6, LRRC17, SLC39A14 were identified as significantly downregulated in human (p-value < 0.001) and 
mouse (p-value < 0.05) ASM cells (Fig. 7). Furthermore, RT-qPCR data showed an increase in mRNA expression 
for ACTA2, CALD1, CNN1, MYH2 and TPM1 genes in asthmatic ASM, but it was not statistically significant 
compared to non-asthmatic ASM, except in TPM1. No difference in the expression of SMTN was identified 
between asthmatic and non-asthmatic ASM cells, while ACTG  was downregulated in the asthmatic ASM (Sup-
plementary Fig. S1). RNA samples extracted from the lung sections of PBS and MA exposed mice showed a 
significant increase in smooth muscle-specific marker expression (α-SMA) compared to the epithelial cells as 
a negative control. These data confirm the cells targeted and captured from LCM were precisely from smooth 
muscle and not from the epithelial layer. 

Discussion
ASM is well-known for its role in asthma exacerbations, characterized by bronchoconstriction and  remodeling7. 
Since genes are co-regulated, unraveling the gene expression patterns across the whole genome in a healthy 
and diseased condition could reveal the novel gene signatures for asthma. Several studies reported DGE to 
discern the pathogenesis of asthma in  children32,33 and  adults34,35 involving the transcriptome profiling of air-
way  epithelium36–40, bronchoalveolar lavage (BAL)  cells41, and ASM  cells14,17,18; however, no data is available 
on multiple gene–gene interactions that underlie the molecular mechanisms involved with gene expression 
regulation. Although DK of gene regulatory networks in asthma is reported in immortalized B cells following 
corticosteroid  treatment42, to our knowledge, there are no studies on human ASM cells. As a result, the extent 
of these differences between normal and diseased conditions affecting the coordinated function of genes and 
pathway regulation in asthma remains elusive. To overcome this limitation, we used gene co-expression and DK 
of gene networks to shed light on the biologically related functions underlying asthma.

Herein, we identified 121 DEGs and 15 lncRNAs in human ASM cells between case and control groups. Addi-
tionally, based on the RIF approach, we identified 116 TFs acting as putative DEGs regulators. TFs bind to tran-
scription factor binding sites (TFBS), thereby playing a role in transcription  regulation43. A better understanding 
of the TFs regulating gene expression will help us to understand the transcriptional regulation mechanism.

To provide an overview of gene expression relationships in both case and control groups, we prioritized genes 
from DGE and TF analyses to identify specific co-expression differences between the groups. This was done 
using DGCA and DK analyses to identify hub genes with significant biological roles. Additionally, we found a 
loss of connectivity in the ASM gene network from the case group. This suggests a network rewiring of major 
regulators that modulates target genes’ expression in response to the disease.

The over-representation analyses of DEGs, TFs, DC, and DCE genes identified pathways involved with her-
pes simplex infection, Hippo signaling pathway, TGF-β signaling pathway, adherens junction, gap junction, 
cholesterol metabolism, lysine degradation, ferroptosis, and aldosterone-regulated sodium reabsorption and 
propanoate metabolism.

LncRNAs function as modulators in asthma  pathophysiology44,45, particularly in ASM  cells46,47. In our study, 
we identified 15 DE lncRNAs along with differentially expressed genes in ASM cells. Among them, KCNQ10T1 
was among the top 10 DE lncRNA and more connected in controls (138) than in the case (97). Moreover, the 
RT-qPCR results exhibited an increase in the mRNA expression in the case as compared to the control group. 
LncRNA KCNQ10T1 was significantly different in the serum of asthmatic children with airway remodeling and 
those without  remodeling48. Moreover, KCNQ10T1 was reported to be one of the significant predictors of airway 
remodeling in children with bronchial  asthma48. GABPB1-AS1 (upregulated in case) was DE and DK with a con-
nectivity gain. The protein-coding gene (GABPB1) underlying GABPB1-AS1 also exhibited an increase in mRNA 
expression in asthmatic human ASM cells and MA exposed mouse ASM cells. GABPB1-AS1 regulates oxidative 
stress in erastin induced  ferroptosis49. Qi et al. reported that erastin upregulated the lncRNA GABPB1-AS1, 
which in turn downregulates GABPB1 protein (blocks its translation) and PRDX5 (peroxiredoxin-5 peroxidase), 
thereby suppressing antioxidant  capacity49. Notably, previous studies reported aberrations in oxidant: antioxidant 
balance can contribute to  asthma50. Overall, these studies suggest a relationship between ferroptosis and asthma, 
indicating GABPB1-AS1 as a potential lncRNA target to be further investigated.

We identified two upregulated lncRNAs, AC137932.1 and ARAP1-AS2, that are antisense to an ankyrin gene 
family with ANKRD11 and ARAP1 gene, respectively. Briefly, ankyrins are a group of adaptor proteins that link 
the integral submembranous actin/β-spectrin  cytoskeleton51. They have a pivotal role in the formation of protein 
complexes consisting of ion channels and transporters, cell adhesion molecules, signaling proteins, and cytoskel-
etal  elements51. Specifically, the interplay between the ANKRD11 gene with asthma is still not reported; however, 
ANKRD11 has a role in the proliferation and development of cortical neural  precursors52. The neurophenotypes 
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for asthma have been linked previously by brain circuits’ neural reactivity to be involved in processing emotional 
 information53. ARAP1 gene encodes for a protein that displays RHO-GAP (GTPase activating protein) and 
(PIP3)-dependent ARF-GAP activity that controls the trafficking and signaling of EGF-R (epidermal growth 
factor receptor)54. Additionally, Rho-kinase attenuates airway responsiveness, inflammation, remodeling, and 
oxidative stress induced by chronic  inflammation7,55.

A subset of homeobox genes, members of the HOX gene family, were identified as DE and DC in asthma. 
HOXB cluster genes comprising HOXB-AS2 and AC103702.1 (antisense to the intron of HOXB3 gene) are the 
upregulated lncRNA, DC with a connectivity gain in the case group in the present study. Herein, AC103702.1 
is DCE with AC010896.1 (+/−). HOXB3 is known to be important in lung  development56 and is an upstream 

Figure 6.  Differential mRNA expression of genes upregulated in human ASM and mouse ASM samples. 
The fold change for mRNA was evaluated in both groups. The genes were validated in human ASM samples 
collected from non-asthmatic (NA) and asthmatic (Asth) patients (N = 5 in each group) and mouse ASM 
samples collected with and without mixed allergen (MA) exposure (N = 3 in each group). Data represented 
as mean ± SEM in each group. *p-value < 0.05, **p-value < 0.001. The statistical analysis and the graphs were 
constructed using GraphPad Prism 9.0.0 (GraphPad, San Diego, CA) (https:// www. graph pad. com/ scien tific- 
softw are/ prism/).

https://www.graphpad.com/scientific-software/prism/
https://www.graphpad.com/scientific-software/prism/
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regulator of thyroid transcription factor-1 (TTF-1) expressed in developing thyroid, lung, and brain. Inhibition 
of TTF-1 during lung morphogenesis in vitro disrupts normal differentiation of lung epithelial  cells56. Apart from 
the lncRNAs discussed above, other lncRNAs DE in our study, such as SAP30L-AS1 and BX322234.1, showed 
increased connectivity for the case groups. ZNF337-AS1 was DCE with PPCDC (−/+), EID2 (+/−), and PIAS3 
(−/0) in our study. These findings suggest that lncRNAs have a potential role in asthma regulation and that the 
novel targets identified could be explored for asthma exacerbations.

Figure 7.  Differential mRNA expression of genes downregulated in human ASM and mouse ASM samples. 
The fold change for mRNA was evaluated in both groups. The genes were validated in human ASM samples 
collected from non-asthmatic (NA) and asthmatic (Asth) patients (N = 5 in each group) and mouse ASM 
samples collected with and without (MA) exposure (N = 3 in each group). Data represented as mean ± SEM in 
each group. *p-value < 0.05, **p-value < 0.001. The statistical analysis and the graphs were constructed using 
GraphPad Prism 9.0.0 (GraphPad, San Diego, CA) (https:// www. graph pad. com/ scien tific- softw are/ prism/).

https://www.graphpad.com/scientific-software/prism/
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The genes differentially expressed in asthmatic human ASM also over-represented for Herpes simplex virus 
infection pathway. Herpes simplex virus type 1 (double-stranded DNA virus) can cause acute or latent infections 
in humans. Impaired immune response in asthma increases the susceptibility to herpes infections. T-cell activa-
tion and skewed Th1/Th2 are critical to the initiation and maintenance of airway inflammation in patients with 
asthma. Moreover, an enhanced Th2 immune response and elaboration of cytokines are associated with  asthma57. 
The herpes simplex virus infection is predominantly associated with T-cell mediated  immunity58. Herpes patients 
have a low Th1 response and a high Th2 response compared to  control59. Thus, Th1 immune deficiency in asthma 
could increase their susceptibility to herpes simplex infections. Our study identified DE TFs such as ZNF180, 
ZNF763, ZNF792, ZNF718, and ZNF461 associated with asthmatic ASM cells and enriched for the herpes sim-
plex infection pathway. While ZNF180, ZNF718, and ZNF461 showed increased connectivity in the case group, 
ZNF763 and ZNF792 lost connectivity. Here, ZNF792 had the highest RIF1 score and was identified as the 
potential regulators of DEGs. Several TFs are known to be relevant to asthma, including glucocorticoid receptor 
(GR), nuclear factor of activated T-cells (NF-AT), cyclic-AMP response element-binding protein, peroxisome 
proliferator-activated receptor (PPAR), etc.60; however, to the best of our knowledge, the role of the zinc-finger 
family have still not been explored. To advance the understanding of asthma, their inhibition/activation at the 
expression level or at the protein/DNA binding level still requires investigation, specifically with human ASM.

The DEGs (EP300, ID1, ID3) and TFs (SMAD1, SMAD2, SMAD3, SMAD5, and SMAD7) expressed in human 
ASM cells were involved with the TGF-β signaling pathway. In our study, EP300, ID1, ID3, SMAD2, and SMAD5 
were DC with a loss of connectivity, whereas SMAD7 exhibited a network connectivity gain due to asthma. 
Among the genes DCE in our study, we identified ID3 with AC083862.2 (−/+), SMAD1 with AC012513.3 (−/+), 
and PLEKHN1 (0/−), and SMAD7 with WDCP (−/+), respectively. In a study reported by Gunawardhana et al., 
the expression of EP300 was not altered in asthmatic patients vs. healthy  controls61. On the contrary, EP300 was 
upregulated in our study. The fold change from mRNA expression through RT-qPCR validation also exhibited 
an upregulation of EP300 in the asthmatic group. The genes identified as mentioned above were involved with 
TGF-β signaling. TGF-β can induce cellular responses like differentiation and proliferation and have been impli-
cated in asthma  development62. TGF-β activates multiple pathways involving proteins, such as SMAD, leading 
to the transcription of several genes. The effect of the SMAD pathway is observed to have both stimulatory and 
inhibitory  effects62. As a stimulatory effect, SMAD proteins interact with TGF-β receptors through a conserved 
MAD-homology-2-domain62. TGF-β activates the SMAD pathway by phosphorylation of SMAD2/3 by a subse-
quent translocation into the nucleus. On the other hand, the inhibitory effects of SMAD involve SMAD7 blocks 
transcription of mRNA and inhibit the pathway, thereby preventing the phosphorylation of SMAD2/3 and 
further downstream  signaling62. The role of TGF-β/SMAD signaling is well associated with airway remodeling 
in  asthma63–66. The SMAD gene identified is also enriched in the Hippo signaling pathway in the present study. 
The hippo signaling pathway plays a crucial role in growth control, proliferation, and tumor suppression by 
coordinating the cellular processes through crosstalk with TGF-β67.

The genes regulating cytoskeleton were identified in human ASM regulating asthma. The cytoskeleton is 
composed of a variety of structural and contractile proteins responsible for maintaining cell morphology. The 
cytoskeleton exists in three main forms: microfilaments, microtubules, and intermediate  filaments68. Microtu-
bules form cytoplasmic networks regulating cellular shape, intracellular organization, axonal flow, and chro-
mosomal  segregation69. Tubulin is one of the major proteins of  microtubules70 that regulates smooth muscle 
cell migration and airway  remodeling71. In the present study, we identified tubulin family genes DE and related 
to asthma. We identified TUBA1A, TUBA1B, TUBA1C, TUBB4B, and TUBB6 downregulated in the case, while 
the genes exhibited a connectivity gain with the disease. Interestingly, TUBA1A was identified to be DCE with 
AGAP9 (−/+) and RASAL2-AS1 (+/−); SPON1 (−/+); and transferrin (TF) gene (−/+). TUBA1A was associated 
with glycolysis, calcium biding, and proteomic analysis in early asthmatic response in  rats72. Moreover, another 
study pointed out that the expression of α-tubulin is inhibited by NK1R (neurokinin-1 receptor) antagonists 
that suppress ASM cell migration in  rats73. In addition to the few studies of tubulin in asthma, the role of tubulin 
in the nervous system and neurodegenerative diseases such as Parkinson’s and Alzheimer’s are well  known74. 
An independent study reported that asthma was associated with an increased risk of developing dementia and 
Alzheimer’s  disease75. On validation of TUBA1A, TUBA1B, TUBA1C, and TUBB6 in human and mouse ASM 
through RT-qPCR, we identified a decrease in TUBA1A TUBA1B mRNA expression levels. Interestingly, in 
this study, tubulin is downregulated; however, the other microtubule-related genes up or down-regulated dur-
ing diseased conditions might play a major role during the ASM proliferation and migration process. Further 
validation of the targets and related pathways identified in the present study could be a possible link to decipher 
the role of tubulin in asthma exacerbations.

We identified SLC7A11 and SLC39A14 genes DE in ASM cells and over-represented for ferroptosis in the 
present study. Ferroptosis is programmed cell death characterized by an excessive accumulation of iron and 
lipid peroxides. Several studies have reported a close association of ferroptosis with the respiratory  disease76, 
 tuberculosis77, chronic obstructive pulmonary disease (COPD)78, and  asthma79. Both genes identified in this study 
have more connectivity in controls than in the case, which implies that they lose their connectivity in asthma. 
The relative fold change from mRNA expression showed similar expression patterns in SLC7A11 (increase) and 
SLC39A14 (decrease) in vivo and in vitro studies. In a previous study, SLC7A11 was identified as a ferroptosis-
related gene in airway epithelial cells that predicted asthma  exacerbations80. From the DGCA analysis, we identi-
fied ACSL3, ACSL5, FTL, GCLC, GCLM, MAP1LC3B2, MAP1LC3C, PCBP2, SLC11A2, STEAP3, TF, and TFRC 
DCE and over-represented for ferroptosis. Previous studies reported the role of glutamate-cysteine antiport 
system  Xcd− comprising of a catalytic subunit SLC7A11 in  ferroptosis81. System  Xc− mediates the exchange of 
cystine (converted to cysteine and imported in intracellular space), and glutamate (exported to extracellular 
space) is crucial for glutathione (GSH)  synthesis82. GSH protects cells from oxidative damage by reducing reac-
tive oxygen species (ROS). ROS, in turn, modulates mitochondrial structure and function, thereby promoting 
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oxidative stress, airway inflammation, and  pathogenesis83. Oxidative stress characterized by lipid peroxidation 
is believed to contribute to asthma  pathophysiology84 and also plays a crucial role in triggering  ferroptosis85. 
From the genes, DCE, ACSL3, and ACSL5 are expressed in mitochondrial outer membrane catalyzes fatty acids 
to form acyl-CoA85. Moreover, ACSL3-dependent MUFA (monounsaturated fatty acids) metabolism is a crucial 
regulator of ferroptosis cell  death86. While ACSL3 is associated with asthma  susceptibility87, its role in ferropto-
sis and asthma still needs to be investigated. Several other factors regulate ferroptosis, such as the antioxidant 
enzyme: GPX4 and the TF Nrf2. GPX4 is a regulator of ferroptosis by opposing lipid peroxidation, while Nrf2 
plays an important role in iron and lipid  metabolism76. The transcription targets of Nrf2 such as GCLC/GCLM 
(GSH catalysis and modulation dependent subunits), GSS (glutathione synthetase), and SLC7A11 were DCE 
in our study. Other DCE genes for asthma over-represented for ferroptosis included transferrin and STEAP3. 
Transferrin is a circulating glycoprotein that binds to the ferric iron mainly converted from dietary iron. Ferric 
iron is transformed to ferrous iron through STEAP3 (six transmembrane epithelial antigens of the prostate 3)76. 
Thus, all the proteins aforementioned for a gene-targeted regulation of iron can mediate ferroptosis by modulat-
ing the level of intracellular iron. While all these genes were identified as a DE and DCE in asthma, highlighting 
their intricate role in ferroptosis, however, the basic molecular mechanisms of ferroptosis in asthma remain in 
their infancy. The genes identified for ferroptosis in a diseased condition may contribute to increase or decrease 
in ASM mass in asthma-induced remodeling, which warrants further detailed studies.

Conclusions
The current study demonstrates differences in the ASM gene expression profiles associated with asthma. Fur-
thermore, we identified and validated putative major regulators driving the gene-expression and reported differ-
ences in the regulatory mechanisms involved with asthmatic ASM. Expression of the genes, regulatory TFs, and 
the underlying pathways identified in this study regulating human ASM transcriptome provide new targets for 
asthma management. This research’s originality lies in the multiple approaches used in determining gene–gene 
interactions during asthma. A detailed understanding of these genes, TFs, and pathways in asthmatic ASM cells/
tissues could lead to new therapies to prevent asthma exacerbations.

Methods
Data resource and phenotype collection. This study was conducted on an RNA-Seq dataset from 
human ASM cells (NCBI GEO GSE119578). The experimental design, sample collection, and library prepara-
tion for RNA-Seq are previously  reported88. For human samples, written informed consent was obtained from 
all subjects, and the study was approved by the Mayo Clinic Institutional Review Board. All methods were 
performed in accordance with relevant guidelines and regulations. In brief, human ASM cells were isolated 
at the Mayo clinic from non-asthmatic and asthmatic patients with the previously described  procedures6,89,90. 
Pathologically normal area of third-to-sixth-generation human bronchi from lung specimens was collected. The 
epithelium was removed, and the remaining ASM tissue was enzymatically dissociated as previously  described91. 
Cells were grown in DMEM/F12 media supplemented with 10% fetal bovine serum (FBS) and 1% antibiotic/
antimycotic (AbAm). After the cells reached 80% confluency, they were serum-starved with DMEM/F12 media 
(without FBS) and 1% AbAm for 48 h. RNA isolation was performed from cell lysates at Mayo clinic, as reported 
 elsewhere88. After RNA quality control, RNA libraries were prepared using 200 ng total RNA per the manufac-
turer’s instructions for TruSeq RNA Sample Prep Kit v2 (Illumina). Sequencing was carried out on Illumina 
HiSeq 2000 platform. The sequence generated were paired-end (51-bp reads) with ~ 30–45 million reads per 
sample.

RNA‑Seq, differential expression, and statistical analyses. The RNA-Seq data from human ASM 
(10 independent samples) was processed and analyzed using the Center for computationally assisted science and 
technology (CCAST) resources (https:// www. ndsu. edu/ it/ help/ ccast/) at NDSU. Data quality control (QC) was 
performed using FastQC v0.11.892 and MultiQC v1.993. The reads were mapped using STAR  aligner94 v2.7.5a 
using human genome reference (hg38) and gene annotation (Homo_sapiens.GRCh38.gtf) from the Ensembl 
database. The read quantification was done using -quantMode gene counts flag to obtain the raw counts per gene. 
Read counts were transformed to counts per million (CPM) using edgeR, and genes with low count (expression) 
with CPM < 0.5 in 50% of the samples were filtered out. Post-mapping QC was performed using MultiQC and 
 edgeR95. The differential gene expression (DGE) analysis and normalization of the filtered gene counts were 
done using  DESeq296. Due to the contribution of covariates to the total gene expression, the age and gender 
of the samples were considered for the design model of DESeq2. Differentially expressed genes (DEGs) were 
selected with padj ≤ 0.1. The genes with log-fold chain—LFC > 0 were considered upregulated, while LFC < 0 
were considered downregulated. The upregulated and downregulated genes were visualized using the volcano 
plot constructed using EnhancedVolcano v1.8.0 (https:// doi. org/ 10. 18129/ B9. bioc. Enhan cedVo lcano) on  R97 
The normalization for the filtered genes (n = 15,411) were performed by variance stabilizing transformation 
(VST) function in  DESeq296. Cluster analysis and heatmap of DEGs were generated using the ‘pheatmap’ pack-
age (v1.0.12) (https:// CRAN.R- proje ct. org/ packa ge= pheat map) in R. The asthmatic and non-asthmatic groups 
will be referred to as case and control groups in the manuscript.

Identification of key regulators. Regulatory impact factor (RIF) metrics were used to identify the puta-
tive TF differentially regulating gene expression profiles between the groups in human ASM cells. RIF analysis 
identified the regulators of differential expression in two biological conditions. While RIF1 identifies TFs that are 
consistently most differentially co-expressed with highly abundant and DEGs, RIF2 identifies those TFs with the 

https://www.ndsu.edu/it/help/ccast/
https://doi.org/10.18129/B9.bioc.EnhancedVolcano
https://CRAN.R-project.org/package=pheatmap
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most altered ability to predict the abundance of  DEGs29. TFs were downloaded from the human transcription 
factor database (Human TFDB v3.0)98 and contrasted to the list of DEGs identified, comparing case vs. control.

Co‑expression profile, filtering with DEG and TFs, and gene networks. To identify the gene co-
expressed by correlation analysis, PCIT (Partial correlation and information theory) algorithm was used for the 
normalized  data99. PCIT compares all possible triplets of genes by exploring the concepts of partial correlation 
and mutual information, thereby reporting the significantly correlated pair after screening all the genes in the 
 network99. Significant gene–gene correlations were considered based on the p-value < 0.05, r >|0.95|, and included 
DEGs and TFs. The case and control co-expression networks were constructed using PCIT. The networks were 
analyzed using the Network Analyzer  tool100 in Cytoscape v3.8.0, and the hub genes were identified using the 
degree measure considering the Mean + 2SD. The networks were analyzed for the degree of distributions. The 
degree measure was used to ascertain the highly connected genes (hubs) by considering the Mean + 2SD (stand-
ard deviation) of the degree identified from the Network analyzer tool. In the groups, the visualization of nodes 
and edge rewiring within the molecular interaction networks was done using a Cytoscape plug-in  DyNet101. 
DyNet allows for identifying and visualizing connectivity changes in response to cellular signals and highlights 
the most rewired nodes based on a central reference network constructed from case and control  groups101.

To identify the differentially connected (DC) genes in each group, each network’s connectivity (K) measures 
were standardized by taking a ratio of gene connectivity and maximum  connectivity102. The differential con-
nectivity (DK) measure was calculated as DKi = KCase(i)−KControl(i). The DK values were transformed into 
a z-score, and ± 1.96 SD was considered significant (p-value < 0.05). The networks were visualized in Cytoscape 
v3.8.0103 (https:// cytos cape. org/). For the differential co-expression analysis between the groups, R-package 
DGCA version 1.0.2 was  used104 on filtered and normalized gene counts (n = 15,411). With DGCA, the sam-
ple correlation coefficients variance in case and control groups were stabilized by the z-score transformation. 
For multiple hypothesis testing corrections, p-values were adjusted using the Benjamini–Hochberg method 
(padj ≤ 0.05). The gene-level pairs were classified as having a gain of correlation or loss of correlation, and based 
upon the threshold for correlation significance; the DK gene pairs were grouped into nine different correlation 
classes (+/+; +/−; +/0; −/+; −/0; −/−; 0/+; 0/0; 0/−). The classes show correlation as positive (+), negative (−), or 
not significant (0) for each gene and condition when contrasting the groups (case/control).

Pathway analysis and comparison with FerrdB. The pathway over-representation analysis for DEGs, 
TFs, DC, and DCE was done using ClueGO v2.5.4 (Cytoscape plug-in)105 (https:// cytos cape. org/). The annota-
tion of the Ensembl IDs for the respective genes was done using BiomaRt (R package)106,107 from the human 
Ensembl database, GRCh38.p13. The pathways over-represented in the selected modules were identified by 
grouping the redundant terms with kappa-score = 0.4. Pathways with a p-value < 0.05 were considered signifi-
cant. The identified DEGs and TFs were compared with FerrDb—a manually curated resource for regulators and 
markers of ferroptosis—to identify the common regulators between asthma and ferroptosis.

RT‑qPCR analysis for gene expression in ASM cells from human and mouse lung tissue. The 
significant genes up/downregulated and involved in the top pathways were validated in human and mouse ASM 
cells. Human ASM cells were washed with DPBS (Dulbecco’s phosphate buffer saline), trypsinized, and centri-
fuged. The total RNA was extracted using the Quick-RNA Miniprep Kit (Zymo Research, Irvine, CA) following 
the manufacturer’s protocol.

Mouse ASM cells were collected from the lung tissue sections of the vehicle (PBS), and mixed allergen (MA) 
exposed C57BL/6J mice following the previous  protocols108. In brief, murine lung tissue samples were collected 
from an ongoing pulmonary in vivo study, approved by the Institutional Animal Care and Use Committee 
(IACUC) at NDSU following the National Institute of Health (NIH) guide for the care and use of laboratory 
animals. Animals were anesthetized with isoflurane for 10 s and then treated intranasally with PBS or MA on 
alternate days for four weeks. The MA exposure regimen included equal amounts (10 µg each) of ovalbumin, 
extracts from Alternaria alternata, Aspergillus fumigatus, and Dermatophagoides farina (house dust mites). The 
mice were housed at constant temperature and 12 h light and dark cycles, provided with food and water ad libi-
tum. The lung tissue was collected from the mouse and fixed with paraformaldehyde for extraction of mouse 
ASM cells. The tissue blocks were embedded in paraffin wax, sectioned to 10 µM thickness, and processed 
as described  elsewhere108. The clean slides were subjected to laser microdissection (LCM) using a Zeiss Axio 
Imager Z1 PALM MicroBeam laser capture system (Zeiss, Thornwood, NY). After identifying airways from the 
lung section on the  slide108, the ASM tissues were collected into the cap of an RNAse free microtube containing 
a 0.75 ml single-cell PicoPure RNA extraction buffer. The cells were stored at − 80 °C or directly used for RNA 
isolation. The total RNA was extracted using PicoPure RNA Isolation Kit (Thermo Fisher Scientific, Waltham, 
MA, USA) following the manufacturer’s protocol.

RNA concentration and purity were assessed using Synergy HTX (Biotek, USA). Sample absorbance was 
measured at 260 nm and 280 nm, and the 260/280 ratio was used to assess the RNA purity. The RNA purity was 
considered adequate when the 260/280 ratio was ≥ 2.0. The total RNA extracted from human and mouse ASM 
was reverse transcribed using a OneScript Plus cDNA Synthesis Kit (Applied Biological Materials Inc, Richmond, 
BC, Canada). The cDNAs were subjected to RT-qPCR using BrightGreen 2× qPCR MasterMix reagents (Applied 
Biological Materials, Canada). The primer sequences used for the RT-qPCR analysis of cDNA prepared from 
human and mouse ASM are given in Supplementary Table S8. The fold change in mRNA expression was calcu-
lated using the ΔΔCt method by normalizing the cycle threshold value of the targeted gene of interest to house-
keeping genes s16 included in each  plate109. Furthermore, the human ASM from asthmatic and non-asthmatic 
groups were evaluated for smooth muscle-specific markers such as ACTA2, ACTG , MYH2, TPM1, CNN1, SMTN 

https://cytoscape.org/
https://cytoscape.org/
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and CALD1. To confirm the purity of smooth muscle samples collected from mouse airways by LCM, the fold 
change expression of smooth muscle-specific marker such as α-smooth muscle actin (α-SMA) was evaluated 
against the mouse epithelial cells (as negative control). The statistical analysis and the graphs were constructed 
using GraphPad Prism 9.0.0 (GraphPad, San Diego, CA) (https:// www. graph pad. com/ scien tific- softw are/ prism/), 
and the results are reported as mean ± SEM. Statistical analysis was performed using the Mann–Whitney test 
(non-parametric), and statistical significance was tested at a p-value < 0.05.

Data availability
The RNA-Seq data for human ASM (10 independent samples) were submitted to NCBI: GEO GSE119578.

Received: 29 March 2021; Accepted: 28 June 2021
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