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A novel geo‑hierarchical population 
mobility model for spatial 
spreading of resurgent epidemics
Alexandru Topîrceanu1* & Radu‑Emil Precup2

Computational models for large, resurgent epidemics are recognized as a crucial tool for predicting the 
spread of infectious diseases. It is widely agreed, that such models can be augmented with realistic 
multiscale population models and by incorporating human mobility patterns. Nevertheless, a large 
proportion of recent studies, aimed at better understanding global epidemics, like influenza, measles, 
H1N1, SARS, and COVID-19, underestimate the role of heterogeneous mixing in populations, 
characterized by strong social structures and geography. Motivated by the reduced tractability of 
studies employing homogeneous mixing, which make conclusions hard to deduce, we propose a 
new, very fine-grained model incorporating the spatial distribution of population into geographical 
settlements, with a hierarchical organization down to the level of households (inside which we assume 
homogeneous mixing). In addition, population is organized heterogeneously outside households, 
and we model the movement of individuals using travel distance and frequency parameters for inter- 
and intra-settlement movement. Discrete event simulation, employing an adapted SIR model with 
relapse, reproduces important qualitative characteristics of real epidemics, like high variation in size 
and temporal heterogeneity (e.g., waves), that are challenging to reproduce and to quantify with 
existing measures. Our results pinpoint an important aspect, that epidemic size is more sensitive to 
the increase in distance of travel, rather that the frequency of travel. Finally, we discuss implications 
for the control of epidemics by integrating human mobility restrictions, as well as progressive 
vaccination of individuals.

Understanding the dynamics of large, resurgent epidemics is an ongoing scientific effort aimed at controlling 
and preventing the spread of infectious diseases. Disease epidemiology, computational epidemics, and network 
science are some of the major scientific fields involved in this high impact social challenge. Notable research has 
been conducted over the past 30 years, answering important questions on the processes driving epidemics, and 
proposing strategies for prediction and control1–4. The heavy socio-economical burden of epidemics has been 
demonstrated repeatedly during crises like SARS5, Ebola6 or recent COVID-197. To this end, we need to be able 
to predict long-term epidemic evolution, and the impact of governmental interventions, like isolation, travel 
restrictions, and vaccination/immunization of the population8–12.

In light of these challenges, we find recent studies that are predominantly augmenting mass-action models 
into tools suitable for analyzing large scale epidemics8,12–16. However, in most cases, we notice that their under-
lying epidemic models (e.g., SI, SIS, SIR, SEIR, SIRS) adopt homogeneous mixing of the population (i.e., all 
individuals are fully connected inside single scale compartments or stochastic blocks)15–19. Also underpinned by 
homogeneous mixing models, we find many flattening the curve-type solutions that try to reduce the reproduction 
number R0 ; on the other hand, R0 is found to have little influence on the final size of large-scale epidemics20, as 
well as being hard to estimate in a real-world context21. The over-simplification of social organization lacks the 
complexity of global scale population organization22, which is dictated by geographical, historical, demographic 
and economic factors. Consequently, numerical simulation of such simplified models can lead to over- or under-
estimations in terms of epidemic size10,16,23 or duration8,12,15,17.

Conversely, we find some important studies which developed more robust and realistic models for epidemic 
dynamics and contagion, for heterogeneous population organization and human mobility. Without a doubt, the 
structure of networks is found to be paramount in explaining infectious spreading patterns4,22 seen in empiri-
cal data for transmissible diseases such as SARS24, influenza16,21, measles25, or HIV1. Community structure is a 
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known key factor influencing the speed of epidemics. Chen et al.26 show that overlapping in communities leads 
to increased infection prevalence and a higher spread velocity in the early stages of emerging infections; Salathé 
et al.4 show that the dynamics of epidemics is influenced by the structure of communities, which, in turn, has 
implications on immunization strategies for large epidemics; Shang et al.27 show that overlapping communities 
and a higher network average degree accelerate spreading; Stegehuis et al.28 show that the structure of communi-
ties has a significant influence on the behavior of percolation on networks, as community structure can stimulate 
or suppress spreading, based on the mesoscopic set of communities.

Further incorporating human mobility and contact patterns increases the realism of an epidemic model. We 
note the work of Liu et al.21 which shows that the reproduction number R0 has a much higher variability than 
expected, due to the heterogeneity of contact networks. Fueled by a data driven approach, the authors propose a 
multiplex representation of the population. Mistry et al.22 provide accurate age-stratified contact matrices for a 
large number of countries further motivating the need for a heterogeneous approach in disease modeling. Sat-
tenspiel et al.29 extend a SIR model with five fixed patterns of mobility, but use otherwise large compartments 
for modeling the population structure. Watts et al.20 propose a fully synthetic hierarchical block model, aimed at 
reproducing multiple epidemic waves, but without integrating realistic distances between communities, or any 
correlation to real-world human settlement organization. Additionally, Salathé et al.30 analyze contact networks 
in the USA and confirm that heterogeneity is essential on the larger scale, but it is reliable enough to assume 
homogeneous contact inside small communities (like high schools). This conclusion reinforces our choice for 
partitioning the population into very fine-grained communities (to the level of households), and further simpli-
fication of the small communities’ topology, from a social network, to a stochastic block model31.

We also note the recent work of Calvetti et al.32 which adapt a network SEIR model using a single scale lat-
tice of geographical blocks for modeling spatial mobility of the population. By contrast, our approach models a 
multiscale population with much higher granularity. Finally we note our previous work33, which is a first attempt 
at exploring geo-spatially organized populations. However33, is limited to studying the impact of country density 
on epidemic spreading on a single scale population model.

The motivation of this study is to describe a robust epidemic modeling framework which simultaneously 
incorporates accurate population modeling and human mobility, both of which represent ongoing challenges 
due to their theoretical complexity as well as limitation in available data for validation. Thus, we propose the 
novel geo-hierarchical population mobility model (GHPM) which lies at the crossroads of population organiza-
tion and mobility, both of which are key aspects to consider when targeting realistic large-scale resurgent epi-
demic outbreaks. We propose the novel idea of distributing a population into spatially organized communities 
(i.e., human settlements), which are then organized into a hierarchy of administrative divisions (i.e., district, 
neighborhood, street, block, household). Thus, the population is partitioned with very high granularity all the 
way down to household-/family-level, containing just a few individuals, but where the transmission risks are 
highest34. Embedded into our population model, we further propose a novel mobility algorithm based on the 
geographical distance between settlements and their size, which determines the complexity of the underlying 
hierarchical structure. Finally, targeting the reliable reproduction of resurgent epidemics, we analyze the complex 
interplay between the population mobility model of GHPM and outbreak dynamics by adopting a modified SIR 
model with patient relapse. Altogether, the resulting framework is analyzed using detailed computer simulations.

In contrast to other computational models like GLEaMviz35, RAPIDD Ebola forecasting36, or37, our GHPM 
model is, to the best of our knowledge, the first framework to combine a geo-spatial and a hierarchical model 
to structure population, alongside an epidemic model with relapse. Using available empirical data on influenza 
and COVID-19, we show how GHPM reproduces similar epidemic dynamics (e.g., size, waves). The main focus 
of this paper is to determine how the population organization, travel distance and travel frequency affect the 
spread of diseases on large scales (country-level), and how restriction and immunization strategies can be applied 
efficiently to control epidemics.

Results
Characteristics of large epidemics.  Real-world large, resurgent epidemics are known to be shaped by 
repeated waves of non-deterministic amplitude, and an overall limited epidemic size φ (it is safe to assume 
φ < 0.1 considering epidemics over the last decades38,39). To this end, we investigate the epidemic sizes of vari-
ous outbreaks over heterogeneous geographical areas. Since many infectious diseases are repetitive, seasonal 
(e.g., influenza, pertussis), and others appear and are then permanently eradicated (e.g., H1N1, smallpox), our 
approach, throughout the rest of the study, is to use the yearly epidemic size φy as a measure of the repeating out-
break waves. Therefore, we further provide a statistical overview of seasonal, eradicated and ongoing epidemics 
worldwide, as such: seasonal influenza in Germany (2014), influenza in California (winter season 2016/2017), 
global H1N1 cases (2009), measles in Indonesia (2016), Pertussis in California (2010), and data on COVID-19, 
with estimates on global epidemic sizes for 2020.

The distributions of the yearly epidemic sizes φy are given in Fig. 1 [COVID-19 in panel (f)], showing pre-
dominantly small-sized epidemics [ N(φy) is highest for smaller outbreak sizes, like φy < 0.02 in panel (f), for 
COVID-19]. The power-law fits for the flatter area in each distribution [e.g., 0.02 < φ < 0.06 in panel (f)] range 
within γ = 0.55− 1.05 , well outside the representative power-law exponent 2 < γ < 3 ; this means that larger 
sized epidemics are not exceptional situations. Nevertheless, the upper yearly real-world threshold for epidemic 
sizes seems to be small39, e.g., φ < 4× 10−4 for influenza in California, or φ < 0.1 for COVID-19. Even though 
COVID-19 is an ongoing pandemic, with final size and dynamics not yet known, the statistical analysis shows 
that the regional epidemic size distribution is consistent with historical data on other outbreaks.

We observe that, in case of large and/or long-lasting epidemics, we find heterogeneity and multi-modality 
in outbreak size over a heterogeneous geographical area (i.e, world’s countries, regions in Indonesia, counties in 
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California, Germany). Since regional diversity (e.g., demographics, climate, mobility, NPIs) is highly relevant 
in determining seasonality and resurgence of epidemics40 we are encouraged to further develop a multiscale 
population structure, based on real-world geographic data.

The geo‑hierarchical population mobility model (GHPM).  Population structuring.  Despite of the 
political, historical and geographical factors influencing the boundaries of countries and states, human popula-
tions have always flocked together into settlements41. As such, our proposed GHPM model starts from a target-
ed, real-world geographical area A (e.g., a continent, a country, a state), quantified by a set S of (real) settlements, 
which represent the basis of human organization and cooperation. In contrast to the abstract representation of 
network communities, each settlement si ∈ S is modeled according to real-world data, using its geographical 
position si(xi , yi) (i.e., longitude, latitude) and estimated size �∗(si) (i.e., number of individuals).

Next, we create a multi-level hierarchical structure under each settlement based on its estimated population 
�∗(si) . This hierarchy of administrative divisions is summarized in Table 1, with the lowest level correspond-
ing to households, each containing a family of average size hsize42 (more details in “Methods”). The number of 
households nh for a settlement is estimated as nh = �∗(si)/hsize , where hsize is given by a distribution (see SI.1). 
From households upward, in the administrative hierarchy of each settlement, we define blocks, whose number nb 
is given by the number of households as nb = (nh)

β , followed by streets ( ns = (nb)
β ), neighborhoods ( nn = (ns)

β ), 
districts ( nd = (nn)

β ), and finally the root of the hierarchy represented by the settlement. The impact of choos-
ing different branching factors β is detailed in SI.2. Also, note that the number of hierarchical levels added to 
each settlement depends on its estimated size �∗(si) as defined in Table 1. Thus, we differentiate between the 
complexity of population organization in villages, towns, cities and metropolises (with 2–5 levels accordingly).

Once the hierarchy of administrative divisions is created, each household hj in si is randomly populated with 
individuals based on hsize . The final size of a household is represented as �(hj) and the final population of each 

Figure 1.   Yearly epidemic size φy distributions normalized by the population of each administrative region 
for: influenza in counties of Germany (a), influenza in counties of California (b), global H1N1 (c), measles in 
Indonesia (d), pertussis in California (e) and global COVID-19 cases (f). Representative modes are detected, 
in all examples, for small outbreaks (e.g., φy < 0.02 in f) followed by a relatively uniform distribution of larger 
epidemic sizes (e.g., 0.02 < φy < 0.06 in f). The insets summarize the cumulative frequency distributions CFD, 
quantifying the amount of epidemics sized ≤ φy , on log-log axes. Fitting a power-law over the flatter regions 
(orange line) results in exponents γ = 0.55− 1.05.

Table 1.   Summary of the possible hierarchical administrative divisions characterizing a settlement si , given 
its estimated real-world population �∗(si) . Each division models a distinct hierarchical level in the settlement; 
based on its size, a settlement is modeled with 2–5 hierarchical levels (village–metropolis).

Administrative division Applies to Population Inclusion criteria Amount/si Level

Settlement – – yes, given size �∗(si) 1 6

District Metropolis Highest if �∗(si) ≥ 1M nd = (nn)
β 5

Neighborhood ≥ city if �∗(si) ≥ 100K nn = (ns)
β 4

Street ≥ town ↑ if �∗(si) ≥ 10K ns = (nb)
β 3

Block ≥ village any, �∗(si) > 0 nb = (nh)
β 2

Household All settlements Lowest any, �∗(si) > 0 nh = �∗(si)/hsize 1
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parent division is calculated as the sum of the population of the households in the parent’s subtree. As such, the 
final population �(si) (without the ∗ symbol) of the settlement becomes �(si) =

∑

�(hj) ; likewise, the total 
population of A becomes � =

∑

�(si) . We also introduce the notations Di , for the set of all divisions inside any 
settlement si ∈ S (note that |Di| = nh + nb + ns + nn + nd ), and Hi , for the set of all households in any si ∈ S 
(note that |Hi| = nh , Hi ⊂ Di ). This concludes the definition of the geo-hierarchical population structure, which 
is depicted in Fig. 2, using three settlements from the United Kingdom as an example. For more details on the 
experimental setup of GHPM refer to the “Methods” section.

Individual mobility.  The mobility algorithm is described by a stochastic mobility function, based on the previ-
ously obtained geo-hierarchical population structure. The algorithm is applied to every individual nk , from all 
settlements si ∈ S , for every iteration of the simulation time t. An individual can adopt one of three different 
movement scenarios: 

S1	 Travel to another settlement sj ∈ S with probability P1 , in a randomly chosen household hj of that settlement. 
Furthermore, for a random timeout of 1–10 iterations (e.g., days), the individual is part of hj , after which, 
the individual is returned to his original household. We use this simple timeout mechanism to implement 
the idea of business/leisure travel for a random, limited duration.

S2	 Otherwise, remain in the same settlement si with probability P2 , and move to another division divj ∈ Di (a 
household, or any upper level division inside the settlement). Furthermore, the individual is part of divj for 
1 iteration (e.g., day), after which, the individual is returned to his original household. We use this simple 
timeout mechanism to implement the idea of short local trips to work, shopping etc.

S3	 Otherwise, remain home with probability P3 . The individual does not move out of his household.

The mechanisms of inter-settlement travel (scenario 1) and intra-settlement travel (scenario 2) are based on 
the same principle—a probability proportional to the population of the target settlement/division, and indirect 
proportional to the distance traveled. As such, the absolute inter-settlement travel probability p∗inter(si , sj) is:

Figure 2.   Conceptual representation of the hierarchical population structure of three settlements in the UK 
with real-world position and population. On the left side, all possible administrative divisions are enumerated; 
in the central panel, the hierarchical levels of each settlement are defined (orange nodes, based on the 
population �(si) ), down to the level of households which contain a small, random number (see “Methods”) 
of individuals (green nodes). The red arrows suggest three different mobility scenarios: (London) nodes move 
from one household to another with travel distance � = 1 ; (Edinburgh) nodes moves from a household to the 
neighborhood level with travel distance � = 3 ; (Hambleden) nodes move from one household to a random 
household in London, with travel distance � = 58 km.
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where � is the geographical Euclidean distance between the two settlements (in km, based on latitude and lon-
gitude), lg is the log base 10 of the population of the settlement to travel to, 0 < � ≤ 1 is a tunable travel distance 
parameter, and 0 < � ≤ 1 is a tunable travel frequency parameter. The effects of these two parameters are detailed 
in the forthcoming experimental results sections and the Discussion. The actual probability pinter(si , sj) of travel 
between two settlements is obtained through normalization of p∗inter(si , sj) as:

Based on Eq. (2), if an individual leaves its home settlement si , he will be associated to a randomly chosen house-
hold hj in the target settlement sj . If the individual does not leave the settlement (based on Eq. 2), we compute 
a similar intra-settlement probability p∗intra(hi , divj) of mobility between a household hi ∈ Hi and any other 
administrative division divj ∈ Di (e.g., household, block, street etc.) from within si as:

where, similar to Eq. (1), we use the distance � , population � , the travel frequency parameter � , and the travel 
distance parameter � . Inside a settlement, � is the maximum distance to the lowest common ancestor of the two 
divisions. See Fig. 2 with examples � = 1 (London) and � = 3 (Edinburgh). When divj is another household, 
then �(divj) is equivalent with the size of the household �(hj) ; for divj being an upper level division, �(divj) is 
the sum of sizes of all households under that division. The actual intra-settlement probability pintra(hi , divj) of 
travel between a household and another division is obtained through normalization of p∗intra(hi , divj) as:

Based on Eqs.  (1)–(4), any individual will choose one of the three mobility scenarios with the follow-
ing probabilities: P1 = pinter(si , sj) for scenario 1, P2 = (1− pinter(si , sj)) · pintra(hi , divj) for scenario 2, and 
P3 = (1− pinter(si , sj)) · (1− pintra(hi , divj)) for scenario 3. Adding up the three probabilities P1 + P2 + P3 = 1.

As a final observation, we consider that while an individual is “away” from home (scenarios 1, 2), he is 
exempt from any further travel until he returns to his original household. Also, the starting point of travel for 
any individual is its original household.

Epidemic transmission.  We intend to use the GHPM model to replicate resurgent epidemics, like influenza 
or COVID-19 (see Fig. 1), so that we adopt a SIR epidemic model with relapse43, also know as a SIRI model44. 
Hence, we make the following assumptions:

•	 Each individual can be in one of three mutually exclusive states (susceptible S, infected I, or recovered R), 
where the fraction of the population in each state, at any discrete moment in time t, is denoted as S(t), I(t), and 
R(t), respectively. At every time step, an infected coming in contact with a susceptible individual, can transfer 
the disease with a probability � . Subsequently, an infected individual can recover with a probability µ , after 
which he remains recovered, but only for a specific period (see “GHPM experimental setup” for details on 
the reproduction number estimation). After this timeout period, the individual becomes susceptible again.

•	 Homogeneous population mixing is sufficiently accurate at the small granularity of households30,34, as well 
as for short duration (1 day) in higher administrative divisions (e.g., block, neighborhood). Moreover, we 
consider that epidemic contagion only occurs between infected and susceptible individuals found in the same 
administrative division at the same time t. Given R0 > 1 as a necessary condition to trigger an epidemic, we 
choose R0 = 3 ; nevertheless, this does not guarantee that an outbreak will occur every single simulation.

•	 Only one random individual (seed) is infected at t = 0 . Once triggered, an epidemic can develop inside the 
household of the seed using homogeneous mixing with the described SIR model. Further spatial spreading 
depends entirely on the described mobility algorithm.

Estimating epidemic dynamics.  We run the GHPM model in various scenarios, defined by different 
parameter settings, to better understand the potential of recent epidemic outbreaks to exhibit heterogeneous 
and resurgent behavior.

In Fig. 3 we investigate the potential of our GHPM model’s heterogeneity in estimating epidemic dynamics. 
As such, we vary the travel distance parameter � (while keeping all other parameters fixed). Figure 3d depicts 
a bimodal distribution of the yearly epidemic size φy , given simple homogeneous population mixing, modeled 
through one single-scale settlement ( � = 533, 160 individuals). Alternatively, Fig. 3e,f depict two epidemic 
size distributions achieved by GHPM with its specific hierarchical structure and mobility (same population � , 
R0 = 3 , simulation time t = 2000 iterations (days), � = 0.1 , respectively � = 0.35 ). Regardless of the epidemic 
sizes, a visible mode is detected near φy = 0 , followed by a relatively flat distribution. Figure 3b,c shows two 

(1)p∗inter(si , sj) =

{

� · e
−

�(si ,sj)

� · lg�(sj) , if si �= sj , ∀i, j : 1 ≤ i, j ≤ |S|
1, if si = sj

(2)pinter(si , sj) = p∗inter(si , sj)/

|S|
∑

∀k=1

p∗inter(si , sk) with

|S|
∑

∀k=1

pinter(si, sk) = 1

(3)p∗intra(hi , divj) =

{

� · e
−

�(hi ,divj)

� · lg�(divj) , if hi �= divj , ∀i : 1 ≤ i ≤ |Hi| and ∀j : 1 ≤ j ≤ |Di|

1, if hi = divj

(4)pintra(hi , divj) = p∗intra(hi , divj)/

|Di |
∑

∀k=1

p∗intra(hi , divk) with

|di|
∑

∀k=1

pintra(hi, divk) = 1
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representative simulated epidemics generated with GHPM for the corresponding travel distance parameters 
� = 0.1 , and � = 0.35 . Figure 3a depicts the same time series information corresponding to the homogeneously 
mixing model in Fig. 3d.

Two main observations can be summarized from Fig. 3. First, the homogeneous model in panel (a) repro-
duces an over-simplified spike in the number of daily cases without any resurgence, while panels (b-c) display 
different shapes and sizes φy , as well as resurgence. Even if the epidemic looks like it repeatedly dies out in panel 
(b), it manages to flare up again in new waves. Second, the homogeneous model in panel (a) is only capable of 
reproducing a bimodal epidemic size distribution. Nevertheless, real data (see Fig. 1) confirms the variability 
and resurgence reproduced by our GHPM heterogeneous model.

These results also have implications in the context of epidemic control. Even though the two scenarios 
depicted in Fig. 3b,c (with corresponding distributions in Fig. 3e,f) have a similar parameter setting, the dif-
ference in travel distance � results in a large variation of epidemic size. As � increases, the expected epidemic 
size φ increases and the distribution tends to become more bimodal. Conversely, for very small � , the epidemic 
size distribution tends to have one single mode near 0. Thus, extremes of the travel distance parameter � lead to 
entirely local or entirely global outbreaks, and GHPM can be compared with a homogeneous one. However, when 
� is neither too small or too large (like in Fig. 3b,c), we obtain the most faithful reproduction of real epidemic 
dynamics (Fig. 1c,d), and the impact of a fixed R0 is negligible.

Figure 3.   Aggregated results proving the resurgent behavior of epidemics in our simulation experiments. 
(a–c) Representative time series of new daily cases for (a) homogeneously mixing population, and (b,c), 
heterogeneously structured population using GHPM. In (a), most of the population is quickly infected 
( φy = 95% ), as a typical outbreak surges rapidly only once and then drops back to zero. By contrast, in (b,c), 
the two epidemics exhibits visible resurgence, and infect very different (and smaller) proportions of individuals 
( φy = 2.9% , and φy = 14.7% ). (d–f) Corresponding epidemic size distributions for all three depicted scenarios 
in (a–c). We ran 2000 simulations each, on a population model of Germany with 533,160 individuals and 
simulation time t = 2000 days. (d) Strictly bimodal epidemic size φy distribution on a homogeneously mixing 
population (all individuals placed in one single-scale settlement). (e,f) Population is structured according 
to GHPM, and the two setups differ in the travel distance parameter � (0.1 and 0.35). Both (e) and (f) 
depict distributions of similar size with modes near φy = 0 , and an approximately uniform distribution for 
0 < φy < 0.2 . From a qualitative standpoint, both distributions are comparable to real epidemic data in Fig. 1. 
The insets summarzie the cumulative frequency distributions CFD. Fitting a power-law over the flatter regions 
(orange line) results in exponents γ = 0.79− 0.89 for the GHPM model.
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The impact of travel distance versus travel frequency.  Figure 4a summarizes the impact of increas-
ing the travel distance parameter � on the total epidemic size φ . In accordance to Eqs. (1) and (3), � influences 
the range over which individuals are likely to travel, both outside and inside settlements. Namely, a higher � 
increases the probability of any individual to travel to a more distant settlement (or division) from its original 
household, because it directly reduces the weight of � in Eqs. (1) and (3).

Figure 4b depicts φ as a function of the travel frequency parameter � . In addition, we choose to introduce 
�h as the average number of individuals transiting (leaving) a household, which is a more intuitive measure 
than � alone. Unlike � , which is an input parameter in the model, the value of �h is measured during simula-
tion, and normalized by the number of households. The inset of Fig. 4b shows the linear relationship ( � , �n ). 
In accordance to Eqs. (1) and (3), � affects the weight of each probability of any individual to travel outside its 
home settlement (or household).

In case of Figure 4a, we observe a clear phase transition from local to global epidemic as � increases. Intui-
tively, when the two travel parameters are close to 0, infected individuals are more likely to remain in their origi-
nal household (or settlement); as such, the resulting epidemic size φ is delimited to the local scale of hsize . As long 
as the size of a modeled local scale is much smaller than the size of the entire population, truly large epidemics 
cannot occur with � ,�,�h → 0 . On the other hand, When � > 0.01 and �h > 0.01 , large scale outbreaks can 
occur, regardless of the modeled population size.

When either � or �h converge towards extremes (0 and 1) GHPM can be assimilated to a homogeneously 
population model, where the set of susceptible individuals coincides with the size of a household hsize and 
� , correspondingly (stochastic dynamics appear at the household level, or at the global scale). Nevertheless, 
neither of these limits (0 and 1) are realistic representations of real-world mobility, which is a mixture of local 
and non-local patterns. As such, we further focus on the intermediate values of travel parameters where shifts 
in φ are visible. The phase transition in Fig. 4a is best fitted by a 3rd degree polynomial, whereas the less abrupt 
increase in φ triggered by �h is best modeled by a linear fit. This suggests that small changes in � have a much 
greater impact on the size of the epidemic φ compared to similar changes in �h . Similarly, by considering the 
linear relationship between ( � , �h ), depicted in the inset of Fig. 4b, we conclude that the epidemic size φ is more 
sensitive to increases in � than increases in �.

The analysis of travel parameters in the GHPM model leads to an insightful conclusion with possible effective 
policy implications on the ongoing COVID-19 pandemic and future outbreaks. We found that restricting the 
distance, rather than the frequency of travel – during an outbreak—is the more adequate approach to minimize 
the eventual impact of an epidemic.

Embedding mobility restrictions and immunization.  Finally, we compare the effectiveness of mobil-
ity restrictions versus mass immunization. The first, is implemented by long distance travel restrictions, a 
measure already adopted world-wide, throughout 2020, during the COVID-19 pandemic, and with notable 
results45,46. In GHPM, this restriction is obtained by reducing the travel distance parameter � , as discussed in the 
previous section. The second, is implemented in GHPM by adding a progressive linear vaccination policy. More 
precisely, we pick random, not currently infected individuals, and transfer them to a permanent recovered state 
R∗ . The vaccination policy is not started at t = 0 , but only after t = 365 days in our 5-year long simulation frame-

Figure 4.   Total epidemic size φ averaged over 2000 simulations, (a) as a function of the travel distance 
parameter � , respectively (b) as a function of the travel frequency, normalized at household level �h . (a) 
Epidemic size φ exhibits a clear phase transition starting with minimal increases in � , which, in turn, enables 
non-local spreading. (Inset) Linear relationship between � and the daily travel distance (in km), averaged over 
all individuals in the GHPM model for Germany (sized roughly 600 × 750 km). (b) Epidemic growth shows no 
visible phase transition in response to increases in �h . (Inset) Linear relationship between � and �h , averaged 
over all households. The blue regions indicate 95% CI.
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work (this approach mirrors the current COVID-19 situation better). Afterwards, a random set of individuals 
are selected every single iteration as the number of immune individuals grows progressively.

Figure 5a depicts the impact of two mobility restriction policies of reducing travel to 30% (orange line), 
respectively to just 10% (red line) of the original, unrestricted travel. We note that, for increasing � > 0.2 , even 
very strict measures do not guarantee a proportional reduction in epidemic size φ.

Figure 5b summarizes the impact of two immunization policies of vaccinating individuals at a rate of 60% 
per year (5%/month; green line), respectively 90% per year (7.5%/month; red line), compared to no vaccination 
at all (gray line). Here we observe that, as the travel distance parameter � increases, even an aggressive vac-
cination policy is unable to guarantee a proportional reduction in epidemic size φ . Of course, this is, in part, a 
consequence of our choice to implement the vaccination policy with a 1 year delay in our simulations. Further 
experimenting with different vaccination delays, or vaccination rates is outside the scope of this paper but can 
make an interesting follow-up research topic.

Discussion
The introduction of our multiscale GHPM model enables us to reveal several meaningful characteristics of real-
world epidemic outbreaks that are, otherwise, challenging to describe with homogeneous mixing models which 
adopt a single scale15–19. For instance, most epidemic spreading models describe any outbreak though only two 
outcomes: (1) an epidemic trigger condition is not fulfilled and the disease subsides in a local sub-population, or 
(2) the condition is fulfilled, and the disease manages to spread globally to a large scale comparable to the entire 
population47. The epidemic sizes distribution always becomes bimodal, as the first mode correlates to unsuccess-
ful, local outbreaks, and the second mode correlates to successful, global scale outbreaks (see Fig. 3a,d). Different, 
network science approaches have also been used in computational epidemics, like a forest-fire topology48, and 
social networks with two49 and multiple dimensions50. However, even relatively complicated network models 
lead to the same bimodal distributions.

The motivation of this study is to bridge realistic, hierarchical population structuring, with individual mobility 
patterns and infectious dynamics with patient relapse into a reliable simulation framework, targeting the better 
prediction and control of epidemic dynamics. As such, we propose a very fine-grained population structuring 
and mobility influenced by spatial and hierarchical constraints. To the best of our knowledge, our approach is 
novel, and we provide qualitative comparisons to homogeneous population mixing through means of epidemic 
size distributions. Furthermore, our empirical data restates the important temporal heterogeneity of many large 
epidemics that has yet to receive full attention in the modeling state of the art. This heterogeneity is exemplified 
in our real data on influenza and COVID-19 evolution (Fig. 1), and reproduced by our GHPM model (Fig. 3).

A predominant body of the disease epidemiology state of the art focuses on R0 as the central topic of 
research8,12,23,51. While this number has an inherent value for compartmental models with homogeneous mix-
ing, R0 could also be estimated for a more complex deterministic multiscale model. Nevertheless, estimating or 
redefining R0 , would not improve any relationship to the final epidemic size in stochastic multiscale models20, 
like our GHPM. The large, non-deterministic variations in epidemic size (Fig. 3e,f), and the resurgent charac-
teristic (Fig. 3b,c) do not result from initial conditions like R0 = �/µ , but rather from “black swan”52 events, 
during which an infected individual travels from a compromised household (or settlement) to new uninfected 
settlements. In this way, the fluctuating yearly epidemic size φy is mostly decided by the increasing travel distance 
and travel frequency to susceptible populations.

Figure 5.   Total epidemic size φ , averaged over 2000 simulations, as a function of the travel distance parameter 
� in two complementary scenarios. (a) Epidemic size in response to a mobility reduction down to 30% (orange), 
respectively 10% (red). (b) Epidemic size in response to adopting a linear immunization policy of vaccinating 
60% (green), respectively 90% (blue) of individuals per year of simulation (i.e., 365 iterations). Colored regions 
indicate 95% CI.
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In addition, we show that, apart from rare, long distance travel events, the population structure is a decisive 
factor in influencing the speed and impact of epidemic outbreaks. For example, the recent COVID-19 epidemic 
has a very varied evolution across countries (suggested by the distribution in Fig. 1b), ranging from less than 
1–10% prevalence in 2020. These variations can also be attributed to the intensity, delay, and strength of imple-
menting restrictions23. Even though non-pharmaceutical interventions (NPIs) are a relevant form of active 
control on epidemic duration and size9, our observations pinpoint that the GHPM population organization can 
achieve stochastic dynamics in epidemic size as large and heterogeneous as empirically observed fluctuations.

The focus of our simulation experiments was to determine how population organization, travel distance and 
travel frequency affect the spread of disease. In this sense, we show that travel restrictions, like reducing � , and 
� (or equivalently �h ) in our model (distance and frequency), can determine a significant change in the result-
ing epidemic size φy , comparable to stronger social intervention strategies like vaccination or total quarantine. 
Specifically, we find a phase transition from local to global epidemic around � > 0.1 and �h > 1 . When the 
two parameters are close to 0, infected individuals are more likely to remain in their original household, and the 
resulting epidemic is delimited to the local scale ( hsize ≪ � ). Overall, we conclude that minor modifications in 
� have a higher impact on the size of the epidemic φy compared to similar modifications in �h.

One of the main take-away messages of this study is that we found travel distance to be more significant 
in increasing epidemic size than travel frequency. Additionally, our results pinpoint that, even an aggressive 
immunization policy (e.g., vaccination of 60-90% non-infected individuals per year), is unable to guarantee an 
immediate proportional reduction in epidemic size, given a delay of one year to start the vaccination campaign. 
To this end, vaccination (at a moderately realistic pace) does not yield lower epidemic sizes than reduced travel 
distances.

To conclude, major recent outbreaks like Ebola, SARS or COVID-19 repeatedly confront public health author-
ities with the uncertainty of—how big will it be this time? Unfortunately, current state of the art computational 
epidemiology can hardly offer accurate answers. Even the most complicated models of infectious spreading 
require an estimation of the relevant susceptible population. It is much easier to do retrospective studies in 
which, after an epidemic is observed, the specific parameters are approximated. However, such an approach is 
often limited because it has reduced relevance for future outbreaks. For instance, the global 1918 Spanish flu 
pandemic did not stop the 2003 SARS or 2020 COVID-19 pandemics. Even if the planet was less populated and 
less connected a century ago, the 1918 flu made considerably more victims compared to the potentially more 
infectious diseases of the XXI century. With the statistics of SARS pointing towards a quick mitigation with rela-
tively low global impact, COVID-19 has had a very different evolution53. In the current pandemic context, the 
population susceptible to the SARS-CoV-2 virus is roughly the entire population of the planet. Should we then 
estimate scenarios with outbreaks concentrated around large populated hubs, or include billions of susceptible 
individuals spread across the entire planet? Perhaps the ultimate question is simply formulated as—what is the 
epidemic size distribution for a given infectious pathogen?

Our GHPM model tries to address these questions, to the best possible extent, by structuring population as a 
geographically spaced hierarchical set of sub-populations, modeled down to the level of households. The major 
advantage over other single scale, multiscale, or network models is that it can be extended to very large scales 
(e.g., continental or global) without implying homogeneous populations. This way, a modeled epidemic can be 
seen as multiple smaller epidemics occurring at different times, in different sub-populations. In this context, most 
of the infectious spreading happens locally, and global spreading is determined by rare distant travel. Because the 
epidemic size distribution is remarkably susceptible to the population structure, we suggest that epidemic control 
can be improved through adequate strategies applied to the boundaries inherently delimiting large, multiscale 
populations. We believe that future studies can adopt and extend our concept of geo-hierarchical population 
mobility to study progressively more realistic epidemic models of infectious spreading.

Methods
Geo‑spatial population data.  GHPM supports a pseudo-realistic organization of the population on 
which to run an epidemic outbreak simulation. In this sense, the settlements number |S|—and implicitly the 
total population of the experiment �—are defined by a chosen geographical area A, most commonly limited 
to a country. In this sense, the number, position and size of settlements are defined according to data extracted 
from the Global Rural-Urban Mapping Project (GRUMP v1), revision 01 (March 2017) curated by the Center for 
International Earth Science Information Network (CIESIN), Columbia University54. GRUMP is an undergoing 
large-scale project, and is still missing some data, to a variable extend, for some countries. For the purpose of 
this paper we run all experiments on a model of Germany, with with 53.31M inhabitants (as defined by GRUMP) 
spread over 1132 settlements, which we consider a mid-sized representative example.

Inside each settlement, GHPM uses a simplified synthetic, but intuitive hierarchical organization of inhabit-
ants using 2–5 levels of administrative units. We chose the synthetic alternative (inside settlements) because of the 
limitation in available data defining the organization of each settlement. Nevertheless, with more available data in 
the future, GHPM can be modified to offer a more precise mapping of each settlement’s population. Conversely, 
GHPM can be used without any real data, if one so chooses, by creating a synthetic set of settlements, defined 
by positions and populations according to any distribution of choice.

GHPM experimental setup.  In order to significantly accelerate the large number of GHPM experiments, 
we chose to scale down the modeled population by 100 fold. As such, the final simulation population used 
throughout the experiments is 533,160 individuals (i.e., 1% of uniformly scaled down population of Germany 
from the GRUMP dataset).
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In general, the size of each unique household hi may be chosen as a uniformly distributed integer number 
between 1–4 individuals (i.e., average hsize = 2.5 ) based on UN data for developed countries42. In particular, we 
use a custom distribution of household sizes according to data available in 2019 for Germany (Federal Statistical 
Office—Statistisches Bundesamt), as detailed in SI.1.

A branching factor β can be used to determine the number of divisions in a settlement, based on the number 
of households. In this sense, a static parameter of β = 0.5− 0.7 makes a good approximation of the hierarchical 
density of administrative units. In this paper we use β = 0.6 . Overall, it makes practical sense to use 1 > β > 0.5 
(i.e., larger than square root) in order to obtain a more dense hierarchy of upper level divisions. A sensitivity 
analysis for β is provided in SI.2.

All simulations run for t = 2000 iterations (days). If we consider the correspondence 1 iteration = 1 day, 
then the simulation duration translates to 2000/365 ≈ 5.48 years. Since the target of our study are resurgent 
epidemics (with relapse), the final epidemic duration and final size cannot be expressed in absolute values (they 
run indefinitely in most cases). Our approach, throughout the paper, is to use the yearly epidemic size φy as a 
measure of the repeating outbreak waves. Intuitively, we average the total epidemic size φ over the simulation 
period, i.e., φy = φ/5.48 . Furthermore, the impact of each parameter in the GHPM model is discussed in SI.3.

The timeout period for any recovered individual is uniformly chosen between of 3–6 months (current esti-
mates of COVID-19 immunity of 3 months55, 4–5 months56, 6 months57). The adopted infection rate is � = 0.06 , 
and the recovery rate is µ = 0.02 . While a theoretical reproduction number R0 is based on the µ and � , in 
practice22, we estimate R0 from the household size distribution, and obtain R0 = 0.983 . Recent studies suggest 
an R0 = 3.30± 1.4 for COVID-1951.

Data availability
COVID-19 data used in this study are supplied by the European Centre for Disease Prevention and Control 
(https://​www.​ecdc.​europa.​eu/​en/​covid-​19/​data). Weekly influenza data are supplied the US Outpatient Influ-
enza-like Illness Surveillance Network (ILINet) (https://​gis.​cdc.​gov/​grasp/​fluvi​ew/​flupo​rtald​ashbo​ard.​html), by 
Google Trends (https://​www.​google.​com/​publi​cdata/​explo​re?​ds=​z3bsq​ef7ki​44ac_) . Measles cases in Indonesia 
are supplied by the International Federation of Red Cross and Red Crescent Societies (IFRC) (https://​data.​humda​
ta.​org/m/​datas​et/​indon​esia-​measl​es-​outbr​eaks-​2015-​2017?​force_​layout=​light). H1N1 data are provided by the 
WHO via Kaggle (https://​www.​kaggle.​com/​de5d5​fe61f​caa6a​d7a66/​pande​mic-​2009-​h1n1-​swine-​flu-​influ​enza-
a-​datas​et). Pertussis data are provided by the California Department of Public Health (CDPH) via Health.gov 
(https://​healt​hdata.​gov/​State/​Vacci​ne-​Preve​ntable-​Disea​se-​Cases-​by-​County-​and-​Ye/​58x3-​zrxa).
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