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HLA‑DR cancer cells expression 
correlates with T cell infiltration 
and is enriched in lung 
adenocarcinoma with indolent 
behavior
Maria‑Fernanda Senosain1,2,3*, Yong Zou2,3, Tatiana Novitskaya7, Georgii Vasiukov2,7, 
Aneri B. Balar2,3, Dianna J. Rowe2,3, Deon B. Doxie4,5, Jonathan M. Lehman6, 
Rosana Eisenberg7, Fabien Maldonado2, Andries Zijlstra7, Sergey V. Novitskiy7, 
Jonathan M. Irish4,5,7 & Pierre P. Massion2,3,8,9

Lung adenocarcinoma (ADC) is a heterogeneous group of tumors associated with different survival 
rates, even when detected at an early stage. Here, we aim to investigate whether CyTOF identifies 
cellular and molecular predictors of tumor behavior. We developed and validated a CyTOF panel of 
34 antibodies in four ADC cell lines and PBMC. We tested our panel in a set of 10 ADCs, classified into 
long- (LPS) (n = 4) and short-predicted survival (SPS) (n = 6) based on radiomics features. We identified 
cellular subpopulations of epithelial cancer cells (ECC) and their microenvironment and validated our 
results by multiplex immunofluorescence (mIF) applied to a tissue microarray (TMA) of LPS and SPS 
ADCs. The antibody panel captured the phenotypical differences in ADC cell lines and PBMC. LPS 
ADCs had a higher proportion of immune cells. ECC clusters (ECCc) were identified and uncovered two 
ADC groups. ECCc with high HLA-DR expression were correlated with CD4+ and CD8+ T cells, with 
LPS samples being enriched for those clusters. We confirmed a positive correlation between HLA-DR 
expression on ECC and T cell number by mIF staining on TMA slides. Spatial analysis demonstrated 
shorter distances from T cells to the nearest ECC in LPS. Our results demonstrate a distinctive cellular 
profile of ECC and their microenvironment in ADC. We showed that HLA-DR expression in ECC is 
correlated with T cell infiltration, and that a set of ADCs with high abundance of HLA-DR+ ECCc and T 
cells is enriched in LPS samples. This suggests new insights into the role of antigen presenting tumor 
cells in tumorigenesis.

Recently, the National Lung Screening Trial (NLST) reported a 20% relative mortality risk reduction using 
low-dose computed tomography (CT) over chest X-ray screening1. However, lung tumors detected through CT 
screening range from indolent to aggressive. Aggressive lung cancers have doubling times of 50 to 150 days, yet 
CT screening has been shown to detect slow growing tumors with doubling times of 400 days or more2. Lung 
cancer screening bears the inherent risk of overdiagnosis in up to 18% of tumors3. Recent efforts in radiomics 
have been reported to predict this phenomenon, however its biological determinants remain unknown4–6.

Lung adenocarcinoma (ADC) is a highly heterogeneous disease. Assuming that subpopulations may be 
responsible for a particular behavior, these may be rare and difficult to detect at an early stage with standard 
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bulk analyses7–9. Until recently, the molecular profiling of tumors has been based on an average phenotype of 
hundreds of thousands of cells, including neoplastic cells and cells of the tumor microenvironment (TME). 
Although this approach has proven to be useful in many applications, there is a significant loss of information, 
particularly affecting the detection of rare cell subsets that could be responsible for cancer initiation, plasticity 
and recurrence. Emerging single-cell technologies can overcome such limitation, providing high resolution infor-
mation essential for a better understanding of the tumor cellular composition10. Among those, mass cytometry 
is a rapidly evolving technology capable of measuring the expression of ∼ 40 proteins on individual cells using 
antibodies labeled with heavy metal isotopes11. To date, some studies have investigated ADC from a single-cell 
perspective12–17, however the molecular determinants of early ADC behavior as for why some tumors progress 
faster than others remain unknown.

Here, we hypothesized that single-cell proteomic analysis of early stage adenocarcinoma of the lung will 
provide new insights into the cellular and molecular determinants of indolent and aggressive tumors which in 
turn may offer novel and personalized avenues for intervention. We developed a comprehensive mass cytometry 
antibody panel that will allow us to investigate ADC behavior, which includes markers for cellular lineage, tumor 
cell markers and signaling pathways. To this end, we have validated our panel using ADC cell lines and PBMC 
and we present the analysis of a set of ten early stage primary ADCs of the lung with indolent and aggressive 
behaviors showing some valuable insights on immunogenicity of the tumors.

Results
ADC mass cytometry antibody panel captures the cellular diversity between ADC cell lines and 
PBMC.  To validate our mass cytometry panel, we used a combination of ADC cell lines that harbor different 
mutations and therefore have different protein expression patterns (Table E1). We also included PBMC from a 
healthy donor in the mix to mimic the immune cells that can be found in a tumor. All cells were pooled in the 
same proportion, stained and run through the CyTOF machine as a single sample. Additionally, cells were run 
separately to confirm our findings. Protein expression by cell line was consistent across replicates (Figs. E1–E7). 
Dimensionality reduction algorithm UMAP18 allowed us to visualize the multiple parameters measured in a two 
dimensional map (Fig. 1A,B). Our panel captured phenotypic differences among the cell lines and PBMC in the 
parameter space, visualized as independent islands in the UMAP plot (Fig. 1A). Epithelial markers EpCAM, 
pan-cytokeratin and cytokeratin 7 were positive in ADC cell lines, but not always expressed on the same cells 
(Fig. 1B). Receptor tyrosine kinases EGFR and MET were highly expressed in all ADC cell lines as expected. Cell 
line H3122 was positive for TTF1 as previously reported19, and cell lines PC9 and H23 which harbor inactivat-
ing TP53 mutations expressed high levels of the latter (Table E1). A549 expressed high levels of CD24. Human 
PBMC were all CD45 positive and divided into three major islands: CD3+ CD4+ (T helper cells), CD3+ CD8+ 
(cytotoxic T cells), and CD3− CD11b+ cells (myeloid cells). Additionally, basal kinase activity as represented by 
phosphorylation of ERK, S6, STAT5 and, in lesser degree, AKT was detected mostly in ADC cell lines, reflecting 
the constitutive activation of these pathways (Fig. 1C).

To test if our clustering strategy was successful in identifying the different cell types in the mix, we determined 
the optimal number of clusters and studied their composition. To determine the optimal number of clusters k to 
target with k-means clustering, we used the ‘elbow’ criterion, for which the total within-cluster sum of squares 
was calculated for a range of values of k20. Clustering was performed with k = 8. The resulting clusters repre-
sented with high accuracy the different cell types present in the mix (Fig. 2). Cluster 2 was 94.6% composed by 
H23 cells, cluster 3 was 97.4% composed by A549 cells; cluster 5 was 86% composed by H3122 cells and cluster 
7 was 90% composed of PC9 cells. For the immune clusters, clusters 4, 6 and 8 were 100% composed by PBMC. 
Based on their protein expression, these could be annotated as CD11b+ monocytes, CD8+ T cells and CD4+ T 
cells, respectively. Finally, cluster 1 is a mix of cells dominated by A549 and H3122 cells, driven by a high pan-
cytokeratin and cytokeratin 7 expression. Altogether, these results show that our mass cytometry antibody panel 
can successfully identify different cancer subsets as well as some immune populations.

Mass cytometry analysis identifies main cell types in ADCs and captures differences between 
tumors with long and short predicted survival.  Lung ADCs human samples characterized by dif-
ferent predicted behavior classified into long- (LPS) (n = 4) and short-predicted survival (SPS) (n = 6) were 
stained with our antibody panel (Table 1, Fig. E8). We identified the major cell types (ECC, endothelial, mesen-
chymal and immune cells) based on the expression of protein markers (Fig. 3B). EpCAM+/pan-cytokeratin+/
cytokeratin 7+ cells were annotated as ECC; CD31+/CD45− cells were annotated as endothelial cells; vimentin+ 
/CD31−/ CD45− and negative for epithelial markers cells were annotated as mesenchymal cells. All CD45+ 
cells and negative for epithelial markers were annotated as immune cells. The latter were further classified into 
T helper cells (CD3+/CD4+/CD8−), cytotoxic T cells (CD3+/CD8+/CD4−), myeloid cells (CD11b+/CD3−) 
and the remainder CD45+ cells were annotated as “Other immune”. While the number of cells acquired varied 
between samples, we included all cells collected for each tumor in the analysis and used the cell type relative 
abundances (i.e. percentages) for comparisons.

Figure 3A is a representation of an equal sampling of annotated cell types of the 10 tumors using dimen-
sionality reduction algorithm UMAP18. Cell types separated based on their marker expression (Fig. 3A, Cell 
identity). Additionally, events (i.e. cells) did not cluster by sample but were mixed among the different islands in 
the plot (Fig. 3A, Patient ID). We further investigated the distribution of these cell types across the 10 tumors by 
performing hierarchical clustering on the correlation matrix based on the subpopulations relative abundances 
(Fig. 3C). Samples clustered in two main groups, one enriched in T cells and myeloid cells and one with lower 
to no abundance of those cell types and higher abundance of mesenchymal cells on average. The first group of 
samples was composed by 3 LPS samples (7984, 11522, 8356) and one SPS sample (12924). The other group of 
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samples was mainly composed of SPS samples (13622, 12994, 13197, 13436, 12929) and one LPS sample (13376) 
(Table E4). Additionally, we found a statistically significant positive correlation between endothelial cells and 
immune cells in the ADC samples (Figs. 3D, E9). When LPS and SPS tumor samples were compared, we found 
that LPS had a higher median percentage of endothelial cells and immune subtypes, whereas SPS samples had 
a higher median percentage of fibroblasts/mesenchymal cells (Fig. E10).

We compared LPS vs SPS protein expression by cell types (Figs. E10–E16). We found a tendency towards a 
higher expression of HLA-DR and HLA-ABC in endothelial cells from LPS tumors (Fig. E11). In epithelial and 

Figure 1.   Mass cytometry panel and unsupervised computational analysis capture cellular diversity in ADC 
cell lines and PBMC. (A) Density (above) and cell identity (below) UMAP representations show separation of 
the cellular populations based on single-cell protein expression. (B) UMAP plots correspond to the same cells 
from (A) showing single cell expression of the labeled protein. (C) Heatmap shows median protein expression of 
arcsinh transformed values (cofactor = 5) for each protein on each cell population. Colors on the left represent 
the cellular populations and match those represented in (A).
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Figure 2.   Clustering analysis of ADC cell lines and PBMC. (A) UMAP plot is the same as in Fig. 1 but 
colors represent 8 clusters obtained with k-means. (B) Heatmap shows median protein expression of arcsinh 
transformed values (cofactor = 5) for each protein on each cluster. (C) Stacked barplots represent cluster 
composition (percentage per cell type). Colors match those represented in (A) (bottom).

Table 1.   Mass cytometry antibody panel for lung adenocarcinoma. a Customized conjugated antibodies.

Antigen Isotope Level Clone Source Catalog #

EpCAM 141-Pr Surface 9C4 Fluidigm 3141006B

c-caspase3 142-Nd Intracellular D3E9 Fluidigm 3142004A

TP53a 143-Nd Intracellular DO-7 Biolegend 645802

HLA-ABC 144-Nd Surface W6/32 Fluidigm 3144017B

CD31 145-Nd Surface WM59 Fluidigm 3145004B

Thioredoxin 146-Nd Intracellular 2G11/TRX Fluidigm 3146016B

b-CAT​ 147-Sm Intracellular D10A8 Fluidigm 3147005A

HER2 148Nd Surface 29D8 Fluidigm 3148011A

p-STAT6 149-Sm Intracellular 18/P-Stat6 Fluidigm 3149004A

p-STAT5 150-Nd Intracellular Y694 Fluidigm 3150005A

TTF1a 151-Eu Intracellular D2E8 CST 12373

p-AKT 152-Sm Intracellular D9E Fluidigm 3152005A

ki67a 153-Eu Intracellular ki67 Biolegend 350523

CD45 154-Sm Surface HI30 Fluidigm 3154001B

CD56/NCAM 155-Gd Surface B159 Fluidigm 3155008B

Vimentin 156-Gd Intracellular RV202 Fluidigm 3156023A

p-STAT3 158-Gd Intracellular Y705 Fluidigm 3158005A

CD4a 159-Tb Surface RPA T4 Biolegend 300502

MDM2a 160-Gd Intracellular Polyclonal Abcam ab38618

Cytokeratina 161-Dy Intracellular C-11 Abcam ab7753

METa 162-Dy Surface L6E7 CST 8741

TP63a 163-Dy Intracellular W15093A Biolegend 687202

CK7 164-Dy Intracellular RCK105 Fluidigm 3164020A

EGFRa 165-Ho Surface AY13 Biolegend 352902

CD44 166-Er Surface BJ18 Fluidigm 3166001B

p-ERK 167-Er Intracellular D13.14.4E Fluidigm 3167005A

CD8 168-Er Surface RPA-T8 Fluidigm 3168002B

CD24 169-Tm Surface ML5 Fluidigm 3169004B

CD3e 170-Yb Surface SP34-2 Fluidigm 3170007B

CD11ba 171-Yb Surface ICRF44 Biolegend 301337

p-S6 172-Yb Intracellular N7-548 Fluidigm 3172008A

HLA-DR 174-Yb Surface L243 Fluidigm 3172008A

CD274/PDL1 175-Lu Surface 29E.2A3 Fluidigm 3175017B

Histone H3 176-Yb Intracellular D1H2 Fluidigm 3176016A
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mesenchymal cells there was higher HLA-DR expression in LPS compared to SPS tumors, with the latter cell 
type showing a significant difference (p = 0.038) (Figs. E12, 13). The immune cells as a whole also showed a ten-
dency towards higher HLA-DR expression in LPS tumors (Fig. E14). CD8+ T cells showed a significantly higher 
expression of HLA-ABC in LPS tumors (p = 0.032) (Fig. E15). CD4+ T cells showed a tendency towards higher 
expression of activation marker CD44 in LPS tumors (Fig. E16). Finally, myeloid cells presented a tendency 
towards higher expression of HLA-ABC and HLA-DR in LPS tumors (Fig. E17). To confirm that the HLA-DR 
higher expression in most cell types of LPS tumors was not due to an artifact of the antibody, we assessed the 
expression of this protein in our batch control cell lines A549 and Ramos (Fig. E18). Results were consistent 
across batches, with A549 showing minimal expression of HLA-DR and Ramos showing high expression of the 
protein in question as expected.

Based on these results, we conclude that our mass cytometry antibody panel enables the identification of 
major cell types in ADCs, allowing for comparison across tumors of different predicted behavior. We found 
that our set of samples divided in two main groups based on their cellular composition, one enriched on T cells 
(LPS predominant) and one depleted on T cells (SPS predominant). Additionally, we found a tendency towards 
a higher HLA-DR expression in LPS samples, suggesting an immunogenic profile on these tumors.

Unsupervised analysis of ECC reveals HLA‑DR+ subsets associated with T cell infiltra-
tion.  Because distinct subpopulations of malignant cells have been associated with disease outcome9, we 
tested whether our antibody panel detects different subsets of ECC and whether LPS or SPS tumors are par-
ticularly enriched for any subset. We computationally extracted the ECC of each tumor from the pool of cells 
(Fig. 3). We used k = 10 to achieve more granularity and dig deeper into the differences of the ECC. Figure 4A 
is an equal-sampling representation of the 10 ECCc of the 10 ADC samples using dimensionality reduction 
algorithm UMAP18. ECCc separated based on their protein expression (Fig. 4A,B, Cluster ID) and cells did not 
grouped by sample but were mixed among the different islands in the plot (Fig. 4A, Patient ID). We then assessed 
the sample ECCc composition across the 10 tumors by hierarchical clustering on the correlation matrix based 

Figure 3.   Mass cytometry antibody panel distinguishes epithelial and non-epithelial cell types in 10 early 
ADCs. (A) UMAP plots of a random sample of 4000 cells per patient colored by Density, Cell identity, Patient 
ID and CANARY prediction. Seven cell types were identified based on k-means clustering and marker 
expression profiles. Patient CANARY risk stratification is represented as a light blue for long-predicted survival 
(LPS) and dark blue for and short-predicted survival (SPS). (B) UMAP plots correspond to the same cells from 
(A) showing single cell expression of selected labeled protein. (C) Stacked barplots with cell type percentage 
per patient. Colors match those in (A) Cell identity plot. Dendrogram was calculated from a patient-patient 
Spearman correlation matrix. (D) Spearman correlation analysis of the relative abundance of immune cells vs. 
endothelial cells.
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on the cluster relative abundances as described above (Fig. 4C). A first set of samples with very similar profile 
composed by 3 LPS samples (7984, 11522, 8356) and one SPS sample (12924) were enriched in clusters 7, 8 and 
9, which have a high expression of HLA-DR, TTF1, beta-catenin, and all three epithelial markers EpCAM, pan 
cytokeratin and cytokeratin 7. This group of ADCs is composed by the same patients that clustered together in 
Fig. 3C as well. Another set of ADCs composed by 3 SPS samples (13436, 13197, 12994) and one LPS sample 
(13376) were enriched in clusters 1, 3 and 6, which are HLA-DR and TTF1 negative. Within this group, SPS 
samples 13197 and 12994 were also enriched in cluster 4, which is also HLA-DR and TTF1 negative and has high 
vimentin expression. A last set of 2 SPS samples (13622, 12929) were enriched in clusters 5 and 10, which pre-
sent high expression of vimentin, MDM2 and p-STAT3, and are negative for HLA-DR, TTF1 and beta-catenin. 
When we assessed the correlation of these epithelial clusters with the other cell types in the TME, we found that 
3 clusters were significantly correlated with some immune subsets (Figs. 4D, E19). Epithelial cancer clusters 7, 8 
and 9 were significantly correlated with CD4+ (r = 0.96, p < 2.2e−16; r = 0.9, p < 0.001; r = 0.78, p = 0.012) and 
CD8+ T cells (r = 0.95, p < 2.2e−16; r = 0.89, p = 0.0014; r = 0.76, p = 0.016). Interestingly, these specific clusters 
as described above, are characterized by high HLA-DR, TTF1 and beta-catenin, among which the former has 
been associated with an immunogenic profile and favorable prognosis in several cancers21,22.

Thus, our results show that this mass cytometry antibody panel allows the detection of subpopulations of 
malignant epithelial cells. Based on the cellular subsets described here, we found a high degree of intra- and 
inter-tumor heterogeneity. Furthermore, a significant positive correlation of HLA-DR+ ECCc with T cell infil-
tration and the enrichment of HLA-DR+ ECCc predominantly in LPS tumors suggests the occurrence of an 
immunogenic process that may be associated with a more favorable outcome.

Validation with mIF suggests immunogenic profile in LSP tumors and RNA‑Seq‑based cell 
type enrichment analysis of independent cohort supports findings.  To validate our mass cytome-
try results and to gain insights into the spatial distribution of cellular interactions, we used mIF staining of TMA 
sections of lung ADC. We generated a TMA from lung tissue blocks from patients with LPS and SPS lung ADC, 

Figure 4.   Unsupervised analysis of ECC reveals intra- and inter-tumor heterogeneity. (A) UMAP plots of a 
random sample of 2000 ECC per patient colored by Density, Cell identity, Patient ID and CANARY prediction. 
Ten clusters were obtained based on k-means clustering. Patient CANARY risk stratification is represented as a 
light blue for long-predicted survival (LPS) and dark blue for and short-predicted survival (SPS). (B) Heatmap 
shows median protein expression of arcsinh transformed values (cofactor = 5) for each protein on each 
ECCc. (C) Stacked barplots with ECCc percentage per patient. Colors match those in (A). Dendrogram was 
calculated from a patient-patient Spearman correlation matrix. (D) Spearman correlation analysis of the relative 
abundance of ECCc 7, 8 and 9 vs CD4+ and CD8+ T cells, respectively.
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using two tissue cores per patient. Cases were selected to match samples analyzed by CyTOF and every tissue 
core was evaluated by a pathologist to ensure tissue quality (no areas of necrosis, predominant stroma or large 
vessels. With the exception of one patient sample (ID 7984) which stained cores were excluded due to a signifi-
cant loss of material during staining, all CyTOF samples were included in this analysis along with some extra to 
increase statistical power. Fluorescent staining was performed for PanCK, CD45, CD3, HLA-DR, DAPI. Slides 
were scanned and images were extracted. Cell nuclei were segmented using deep learning algorithm (cellpose.
org)23 and were further processed in KNIME analytical platform where cell segmentation, feature extraction 
and cell classification were performed24. Using a combination of binary markers we annotated the following cell 
types: “ECC/Tumor cells” (PanCK+CD45−CD3−), “T-cells” (CD3+CD45+PanCK−), “Immune (none-T) cells” 
(CD45+CD3−PanCK−), “Other cells” (CD45−CD3−PanCK−). Quantitative data from single cell features (such 
as X, Y coordinates, HLA-DR expression and etc.) was used for correlation and spatial analysis (Fig. 5A–C). We 
computed the correlation between HLA-DR expression on tumor cells and T cell number by Spearman’s rank-
order correlation test. For this, in neighborhoods of 100 μm diameter for each (processing) tumor cell, HLA-DR 
median signal intensity on neighboring tumor cells and number of T cells were calculated and used as inputs 
for correlation analysis. We found a significant positive correlation of HLA-DR expression in tumor cells and T 
cell number (r = 0.25, p = 2.2e−5), confirming our previous findings (Figs. 4D, 5B). Next, spatial analysis was 
performed in KNIME by calculation of distances from each T cell to nearest 1st and 2nd tumor cell. T cells in 
LPS tumors showed a shorter distance to the first tumor cell compared to SPS tumors (Figs. 5C, E20), demon-
strating that LPS tumors are more immunogenic than SPS tumors. These results support our CyTOF findings 
and further demonstrate by spatial analysis that LPS tumor cells are in closer proximity with T cells compared to 
SPS tumors, suggesting that the HLA-DR and T cell infiltration play an important role in the indolent behavior 
of these tumors.

Finally, acknowledging the limited sample size of our study we decided to further validate our results using 
the lung ADC cohort from The Cancer Genome Atlas Research Network (TCGA). In a recent study, Ma and 
colleagues used the same cohort and found that the top pathways associated with better prognosis were enriched 
for immune cell signaling-related pathways, and that MHC-II genes were among the common genes shared 
by these pathways25. When performing survival analysis they found that up-regulation of MCH-II genes was 
significantly associated with an improved overall survival rate. Taking these results into account, we decided to 
take a step further and performed cell type enrichment analysis on the same RNA-Seq data using xCell, a gene 
signatures-based method robustly trained and validated that identifies immune and stroma cell types26. When 
comparing samples with high vs low expression of MHC-II-related genes we found that those with high expres-
sion had significantly higher enrichment scores for multiple T cell subtypes such as CD4+ memory T cells and 
CD8+ T cells (Fig. 5D, Table E6). Altogether, these results provide an additional validation to our findings and 
highlighting the potential role of HLA-DR in tumor behavior and prognosis of lung ADC.

Discussion
Predicting behavior of early detected ADC presents a major challenge to patients and their providers. In this 
study, we presented the development and validation of a mass cytometry antibody panel that aims to further our 
understanding of the biological determinants of early lung ADC behavior and thus improve the discrimination 
between indolent and aggressive tumors. First, we tested our panel in ADC cell lines and PBMC and showed 
that dimensionality reduction and unsupervised clustering algorithms performed optimally. We were able to 
accurately capture the cellular diversity between and within different cell types. Second, when we tested our 
panel on ten primary ADC we saw that the relative abundance of endothelial cells is positively correlated with 
immune cell infiltration. ADCs with LPS had a higher proportion of endothelial and immune cells, whereas a 
group of ADCs predicted to have SPS had higher proportion of mesenchymal cells. Third, when considering the 
ECC compartment, samples showed high inter- and intra-tumor heterogeneity and HLA-DR+ subpopulations 
were positively correlated with T cell infiltration. Specifically, a group of four samples that clustered together by 
cell type abundance in Fig. 3C which presented a high percentage of CD8+ and CD4+ T cells and myeloid cells, 
also clustered together based on their ECCc profile (Fig. 4) which was enriched in HLA-DR+ cells. Three of 
these samples were LPS tumors classified as stage IA or 0 cancers with small nodule size based on their CT scans 
(Table E4), and their histology is mostly lepidic which is associated with a favorable prognosis27. Conversely, the 
one LPS sample that deviated from this profile is a stage IB cancer, presents a bigger nodule size compared to the 
other LPS samples and has a predominant lepidic pattern but it also has a micropapillary component which is 
typically associated with a worse prognosis27. Finally, we validated our CyTOF findings by immunofluorescence 
and spatial analysis, in which we confirmed that the T cell abundance was positively correlated with HLA-DR 
expression in pan-cytokeratin+ cells and that T cells in LPS samples were closer to the first tumor cell in the 
space compared to SPS samples (Fig. 5).

The hypothesis that intra-tumor heterogeneity is associated with disease progression is not novel per se28. 
However, most studies in ADCs are based on bulk tissue analysis, which provides an average phenotype affecting 
the detection of rare subsets and overlooking the contribution of the TME. Single-cell technologies can overcome 
such limitation, providing high resolution information. Recently, the development and improvement of tissue 
dissociation protocols have made possible the application of single cell analysis to solid tumors29. A recent study 
using mass cytometry investigated the TME of ADC focusing on the innate immune component13. The authors 
focused on comparing blood to normal and cancer tissues, for which the latter had a higher T cell content and 
they identified changes in tumor infiltrating myeloid cell subpopulations that could impair anti-tumor T cell 
immunity. Association with clinical outcome was not reported, however. Another study used single-cell RNA Seq 
and obtained a deep profile of lung cancer samples, most of which were lung ADC patients, focusing on the TME 
and highlighting its heterogeneity and importance in tumor development16. Additional analysis of TCGA data 
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showed that the abundances of some subpopulations and their correlation with patient survival differ between 
ADC and squamous cell carcinoma and that they were influenced by clinical characteristics such as stage. An 
important component of the immune response in tumor biology is played by the interaction of the major his-
tocompatibility complex molecules class I and II. MHC-I has been widely studied in cancer and there are some 
pivotal publications dedicated to lung ADC specifically30,31. In contrast, the role of MHC-II or HLA-DR in lung 
ADC is less well understood. HLA-DR is constitutively expressed in antigen presenting cells but its expression 
can be induced in other tissues under, such as tumor cells, under inflammatory conditions22. Their main role 
is antigen presentation to CD4+ T cells, which when activated support CD8+ T cell activation and generation 
of memory T cells. Furthermore, tumor specific HLA-DR expression is associated with favorable outcomes in 

Figure 5.   Validation by mIF on matching samples and cell enrichment analysis on RNA-Seq data from TCGA 
(A) Experiment design. TMA was generated from lung tissue blocks from patients with LPS and SPS lung 
adenocarcinoma. Two tissue cores were used to represent one patient. Fluorescent staining was performed 
for PanCK, CD45, CD3, HLA-DR, DAPI. Slides were scanned and images were extracted. Cell nuclei were 
segmented using deep learning algorithm (cellpose.org) and were further processed in KNIME analytical 
platform. Cell classification using combination of binary markers yielded following cell classes: “ECC/Tumor 
cells” (PanCK+CD45−CD3−), “T-cells” (CD3+CD45+PanCK−), “Immune (none-T) cells” (CD45+CD3−
PanCK−), “Other cells” (CD45−CD3−PanCK−). (B) Correlation between HLA-DR expression on Tumor cells 
and T cell number was determined by Spearman’s rank-order correlation test. For this, in neighborhoods of 100 
micrometers diameter for each (processing) Tumor cell, HLA-DR median fluorescence intensity in Tumor cells 
and average number of neighboring T cells per sample were calculated and used as inputs. (C) Spatial analysis 
was performed in KNIME by calculation of distances from each T cell to nearest 1st and 2nd Tumor cell. (D) 
Cell enrichment analysis on lung ADC RNA-Seq data from TCGA using xCell, comparing enrichment of CD4+ 
memory T cells and CD8+ T cells between patients with high (n = 120) vs. low (n = 120) gene expression of 
HLA-DRA and HLA-DRB1. Significance was assessed by Mann–Whitney U test (***p value < 0.001).
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cancer patients22. In a recent study, Johnson and colleagues addressed the effect of HLA-DR expression in cancer 
cells on T cell recruitment and anti-PD1 therapy response using non-small cell lung cancer murine models32. 
They found that HLA-DR expression in cancer cells correlated with response to anti-PD1 therapy and showed by 
mechanistic experiments that overexpression of CIITA, a master regulator of the MHC-II pathway, in anti-PD1 
resistant cells resulted in HLA-DR expression and increased T cell infiltration, whereas loss of CIITA in anti-
PD1 responsive cells resulted in reduced HLA-DR expression and decreased T cell infiltration. In our data we 
found a strong association between HLA-DR expression in ECC and T cell abundance, mainly in LPS tumors. In 
addition, we found by spatial analysis an increased proximity of T cells to tumor cells in LPS tumors, suggesting 
that an immunogenic process could be responsible for the indolent behavior. How HLA-DR expressing ECC and 
closely related T cell infiltration in space contribute to the behavior of early lung ADC remains to be studied.

Our results prove mass cytometry as a suitable tool to dissect ADC biology at the single cell level and to inves-
tigate the interplay between the TME and the epithelial compartment21,33,34. Our work also has limitations. In this 
preliminary study, we are including a limited number of tumors per group (LPS, SPS) and we present these results 
as a proof of concept for the use of mass cytometry as a relatively novel application in ADC research. Results will 
be further validated in a larger cohort which is part of an ongoing study. Additionally, with this analysis we are 
limited to a fixed number of proteins compared to single cell RNA Seq in which thousands of transcripts can be 
analyzed. Yet, the latter carries the uncertainty that missing data could be non-expressed genes or non-detected 
genes, and for that mass cytometry data is more reliable. Additionally, protein expression of tumors presents high 
variability, and normal lung tissue control is not always available. We are also limited by the amount of tissue 
that we could collect and by the overrepresentation of SPS ADCs as we are biased towards larger lesions. As for 
clinical limitations, the aggressiveness and indolence of ADCs are confounded by the heterogeneous treatments 
patients undergo and we do not know the true natural history of early ADC. Finally, is important to consider 
that CANARY is not a perfect tool, and that other predictors should be consider in the future.

The difficulty in predicting behavior of early detected ADC presents a major challenge to patients and their 
providers. These preliminary results of mass cytometry in early lung ADC suggest a distinct cellular profile among 
LPS vs SPS tumors, implying an important role for T cell infiltration linked to HLA-DR expression. Future work 
will refine these results, integrate data from other platforms (i.e. radiomics, transcriptomics, genomics, etc.) and 
determine whether the combination of ECC subpopulations with specific subpopulations of cells in the TME 
predicts tumor behavior. We postulate that ultimately this work will allow us to better predict tumor behavior 
and integrate this evidence to improve current management of early lung ADCs.

Methods
Cell lines and cell culture.  Human lung adenocarcinoma cell lines A549, PC9, H23 and Human Burkitt’s 
lymphoma cell line Ramos were obtained from ATCC. H3122 was provided by Dr. Christine Lovly (Vanderbilt 
University)19. Cells were grown in RPMI 1640 medium containing 10% heat-inactivated FBS (Life Technologies, 
cat# 16140071) and 1X Pen/Strep at 37 °C, 100% humidity, and 5% CO2. All cells used were in a low passage 
number (<5). These cell lines harbor different genetic alterations (Table E1).

Human specimens.  PBMCs were obtained from a healthy donor under an Internal Review Board (IRB) 
approved protocol 030763 and tumor tissues samples were collected from patients undergoing lung resection 
surgery following an IRB approved protocol 000616 at the Vanderbilt University Medical Center. Informed con-
sent was obtained from all subjects. Samples were obtained from 10 lung adenocarcinoma patients, from which 
5 were males and 6 were females. The ages from this patients ranged from 58 to 88 with a median of 72. See 
Table E2 for more details.

Sample collection and processing.  All tissue samples were processed within one hour of surgery. Lung 
tissues were minced, digested with Collagenase and DNase I for 1 h at 37 °C. Single-cell suspension was fil-
tered (70 μm and 40 μm) and cryopreserved for long-term storage as previously described29. Cell viability was 
assessed before cryopreservation and after thawing. Dead cells were computationally removed as detailed in 
“Mass cytometry data analysis” section.

Patient risk stratification.  We analyzed the chest CT scans of the patients using a Computer-Aided Nod-
ule Assessment and Risk Yield (CANARY) software to differentiate and stratify risk of lung adenocarcinomas35. 
CANARY analysis was performed on the CT images taken within 3 months prior surgery for all patients involved 
in this study. Semi-automated nodule segmentation using CANARY software detects nine classes of nodule 
characteristics based on voxel histogram features within the CT images which in turn helps in risk stratification 
of the nodule. These features are coded as Violet (V), Indigo (I), Blue (B), Green (G), Yellow (Y), Orange (O), 
Red (R), Cyan (C), and Pink (P). The V, I, R, O class represents solid density voxel. Classes B, C, G represent 
ground-glass opacity and P and Y classes indicate lepidic and invasive growth. The overall prediction of histo-
pathological tissue invasion helps in a risk stratification of the lesions into Good (G) and Poor (P) risk groups, 
which we refer in the main paper as LPS and SPS, respectively. Samples were classified as shown in Table E2.

Mass cytometry antibody panel.  We have developed a comprehensive antibody panel that comprises 
a total of 34 antibodies, including markers for cellular lineage (immune cells, epithelial cells, endothelial cells, 
mesenchymal cells), cancer markers and signaling pathways. Metal-conjugated antibodies were purchased from 
Fluidigm and customized conjugations were performed using Maxpar Multi-Metal labeling Kits (Fluidigm) with 
purified antibodies from different sources (see Table 1).
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Mass cytometry sample preparation and data acquisition.  Cryopreserved samples were thawed 
and stained with our antibody panel (Table 1) as previously described29. Cell lines were detached from culture 
flasks using TrypLE Express (Gibco) and processed following the same protocol. For intracellular staining, cells 
were permeabilized with methanol. To prevent cell loss, an additional fixation step was added to the proto-
col after the washing steps of the intracellular staining. We controlled for batch effect using EQ Four Element 
Calibration Beads (DVS Sciences/Fluidigm). Prior sample acquisition, cells were resuspended in 1× calibration 
beads in deionized water to reach a concentration of 5 × 105 cells/ml. Cells were filtered using FACS tubes with 
filter caps (Corning Falcon) and collected using a standard/narrow bore on a Helios CyTOF system at the Mass 
Cytometry Center of Excellence at Vanderbilt University. The number of events acquired is specified in Table E3.

Cell lines.  To validate our antibody panel we used four ADC cell lines (Table E1) and PBMCs from a healthy 
donor. In one experiment, we pooled and stained the 4 cell lines and PBMCs in the same proportions (0.5 mil-
lion cells per group) and we repeat this experiment. In other experiment, we stained and run the different cell 
groups separately (1 million cells per group). All cells were stained with the same panel (Table 1) and we used 
Histone H3 expression to identify nucleated intact cells.

Human samples.  Patient samples were stained and processed in the same fashion as cell lines. Batches are 
described in Table E3. For every batch, a control was stained and run on the same day. This control was a mixture 
of A549 and Ramos cells, 1 million cells of each.

Mass cytometry data analysis.  Data preprocessing.  Collected events from both validation experiments 
with cell lines and human samples were processed in the same fashion. Prior to analysis, all mass cytometry FCS 
files were normalized using the premessa R package (https://​github.​com/​Parke​rICI/​preme​ssa, version 0.2.4), an 
R implementation of the MATLAB bead normalization software36. Normalized data was initially analyzed in 
Cytobank37. Noise reduction parameters were as follows: cells with Histone H3 < 10 were considered dead and 
excluded, only cells with an event length 10–70 were considered singlets and included.

Cell lines.  For data shown in Figs. 1, 2 we used the data acquired for each cell line individually, performed ran-
dom equal subsampling (15,000 events per sample), and concatenated the files. UMAP plots shown in Figs. 1, 2 
were generated in R using all markers of Table 1, except for Histone H3. We used k-means for clustering analysis 
and applied the same markers. To determine the optimal number of clusters k to target, we used the ’elbow’ 
criterion, for which the total within-cluster sum of squares was calculated for a range of values of k20. Clustering 
was performed with k = 8.

Human samples.  To determine cellular identity, we performed k-means using markers that identify main cel-
lular populations (EpCAM, CD31, CD45, vimentin, cytokeratin and cytokeratin7). We targeted for a large num-
ber of clusters (k = 10) to allow for more granularity and prevent rare cell populations from being engulfed into 
dominant clusters. These were annotated based on protein expression and clusters with similar characteristics 
were merged. Final cell types were annotated as epithelial cancer cells, endothelial cells, mesenchymal cells and 
immune cells. Epithelial cancer cells were defined as EpCAM+/cytokeratin+/cytokeratin7+, endothelial cells 
as CD45−/CD31+, mesenchymal cells as vimentin+/CD45−/CD31−/EpCAM−/cytokeratin−/cytokeratin7− 
and immune cells as CD45+. We performed a second clustering round for immune cells only (k = 10) using 
immune cell markers CD8, CD24, CD3, CD11b, CD56 and HLA-DR. Cluster were annotated into myeloid cells 
(CD45+/CD3−/CD11b+), cytotoxic T cells (CD45+/CD3+/CD8+), helper T cells (CD45+/CD3+/CD4+) and 
other immune as the remaining CD45+ cells. Figure 3A is a representation of the annotated cell types of the 
10 tumors using the same markers from the two clustering rounds to generate the UMAP plots, for which we 
obtained a random sample without replacement for a total of 4000 events per sample. Epithelial cancer cells from 
each entire sample were subseted and clustered using k-means (k = 10) and the following markers: EpCAM, 
c-casp3, TP53, HLA-DR, HLA-ABC, CD31, thioredoxin, beta-catenin, HER2, p-STAT3, p-STAT5, p-STAT6, 
TTF1, p-AKT, Ki67, CD56, vimentin, MDM2, cytokeratin, MET, TP63, CK7, EGFR, CD44, p-ERK, CD24, p-S6, 
PDL1. Figure 4A is a representation of the clusters of the 10 tumors using the same markers from the previous 
clustering to generate the UMAP plots, with random sampling without replacement for for a total of 2000 events 
per sample.

Multiplex immunofluorescence validation of CyTOF data.  Tissue microarray.  TMA was generated 
from lung tissue blocks from patients with LPS and SPS lung adenocarcinoma. Two tissue cores were used to 
represent one patient. First, specific cases were selected to match samples, analyzed by CytOF, next, every core 
was evaluated by pathologist to ensure tissue quality (no massive areas with necrosis, stroma, large vessels; no 
processing artefacts).

Staining.  TMA paraffin blocks were cut into 5 μm sections. Hematoxylin Eosin staining was used for visual 
evaluation of morphology to ensure comparable tissue samples were used for analysis. Multiplexed Immuno-
fluorescent (mxIF) stain was performed with following antibodies: anti-PanCK, Clone AE1/AE3 (Invitrogen); 
anti-CD45, Clone HI30 (Biolegend); anti-CD3 (Agilent Inc., Dako); anti-HLADR, Clone SPM288 (Novus Bio-
logicals LLC.). Multistep mxIF staining was perform, where after blocking, in a first step tissue was incubated 
with mouse anti-CD45 antibodies, followed by Fab fragment anti-mouse-Cy3 (Jackson ImmunoResearch). Tis-
sue was washed well to remove unbound antibodies, blocked with mouse IgG and incubated with directly conju-

https://github.com/ParkerICI/premessa
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gated mouse PanCK-FITC, HLADR-Cy7 and rabbit anti-CD3 antibodies. Next, after washing, CD3 was detected 
in additional step with anti-rabbit-Cy5 (Thermo Fisher Scientific) antibodies. Nuclei were stained with DAPI 
(Thermo Fisher Scientific). Slides were coverslip with prolong gold (Invitrogen) and dried overnight. Whole 
slide imaging was performed on Aperio Versa 200 (Leica) scanner.

Single cell analysis.  To perform single cell analysis of multiplexed fluorescent stained images, image analysis 
pipeline was built in KNIME (Knime.com) analytical platform (KNIME 4.1.2 with integrated image processing 
and analysis extensions)24,38. DAPI-stained images were used to generate nuclear masks using deep learning 
algorithm23. Cell segmentation was generated by circular outgrow of nuclear masks. Single cell features were 
extracted by aligning nuclear or cell masks to specific fluorescent stain images. Geometrical, statistical, and 
texture features were extracted for each segmented cell. For cell classifications, training set of positive and nega-
tive cells was annotated. These annotations along with extracted from each specific stain features, were used for 
machine learning where XG boost AI models were generated for each marker. These models were applied to whole 
data set and resulting probabilities with p ≥ 0.9 cutoff were used for initial binary cell classification: “PanCK+ or 
PanCK−” “CD45+ or CD45−” “CD3+ or CD3−”. Cell classification using combination of binary markers yielded 
following cell classes: “Epithelial/Tumor cells” (PanCK+CD45−CD3−), “T-cells” (CD3+CD45+PanCK−), 
“Immune (none-T) cells” (CD45+CD3−PanCK−), “Other cells” (CD45−CD3−PanCK−). Quantitative data from 
single cell features (such as X, Y coordinates, HLA-DR expression and etc.) was used for correlation and spatial 
analysis. Continuous scale of fluorescent signal was used to quantify HLA-DR expression on tumor cells. For 
this, signal intensities normalized to DAPI (sums fluorescent signals) were used. Total cell number and specific 
class cell number per image were quantified and percent calculations were made. Correlation between HLA-
DR expression on Tumor cells and T cell number was determined by Spearman’s rank-order correlation test. 
In neighborhoods of 100 μm diameter for each (processing) Tumor cell, HLA-DR median signal intensity on 
neighboring Tumor cells and number of T cells were calculated in Python and used as inputs for correlation 
analysis. Spatial analysis was performed in KNIME by calculation of distances from each T cell to nearest 1st and 
2nd Tumor cell using similarity search node.

TCGA lung ADC data set.  Fragments Per Kilobase of transcript per Million (FPKM) normalized read 
counts of RNA-Seq from lung ADC patients and matching clinical data were downloaded from National Cancer 
Institute Genomic Data Commons Data Portal (https://​portal.​gdc.​cancer.​gov/​proje​cts/​TCGA-​LUAD).

Cell type enrichment analysis with xCell.  Using TCGA data, we selected patients with disease stage 
between I and III. After applying log transformation ( log2(FPKM + 1) ) we computed the quantiles of expres-
sion of MHC-II related genes. Patients were labeled as “low” if the expression of the gene in question was below 
the first quantile (25%) and “high” if it was higher than the third quantile (75%). Cell type enrichment analysis 
results for TCGA data were downloaded from the xCell website (https://​xcell.​ucsf.​edu/) and patient groups were 
compared.

Statistical analysis.  For correlation analysis we used Spearman’s rank correlation test and adjusted p-values 
for multiple hypothesis using the Benjamini and Hochberg method39. Comparison of categorical variables was 
performed using the Mann–Whitney U test. Survival curves were generated using the Kaplan–Meier method, 
and statistically significant differences were analyzed with the log rank test. All statistical tests were two-sided 
and p values less than 0.05 were considered statistically significant.

Data availability
Further information and requests for resources and data should be directed to and will be provided by the cor-
responding author. All methods were carried out in accordance with relevant guidelines and regulations.
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