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Automatic segmentation 
of uterine endometrial cancer 
on multi‑sequence MRI using 
a convolutional neural network
Yasuhisa Kurata1, Mizuho Nishio1,2*, Yusaku Moribata1,3, Aki Kido1, Yuki Himoto1, 
Satoshi Otani1, Koji Fujimoto4, Masahiro Yakami1,3, Sachiko Minamiguchi5, Masaki Mandai6 & 
Yuji Nakamoto1

Endometrial cancer (EC) is the most common gynecological tumor in developed countries, and 
preoperative risk stratification is essential for personalized medicine. There have been several 
radiomics studies for noninvasive risk stratification of EC using MRI. Although tumor segmentation 
is usually necessary for these studies, manual segmentation is not only labor-intensive but may also 
be subjective. Therefore, our study aimed to perform the automatic segmentation of EC on MRI 
with a convolutional neural network. The effect of the input image sequence and batch size on the 
segmentation performance was also investigated. Of 200 patients with EC, 180 patients were used 
for training the modified U-net model; 20 patients for testing the segmentation performance and the 
robustness of automatically extracted radiomics features. Using multi-sequence images and larger 
batch size was effective for improving segmentation accuracy. The mean Dice similarity coefficient, 
sensitivity, and positive predictive value of our model for the test set were 0.806, 0.816, and 0.834, 
respectively. The robustness of automatically extracted first-order and shape-based features was 
high (median ICC = 0.86 and 0.96, respectively). Other high-order features presented moderate-high 
robustness (median ICC = 0.57–0.93). Our model could automatically segment EC on MRI and extract 
radiomics features with high reliability.

Endometrial cancer (EC) is the most common gynecological malignant tumor in developed countries, and its 
incidence rate has been increasing over the past decades1. Surgery is the main treatment for patients with EC. 
Magnetic resonance imaging (MRI) plays an essential role in surgical planning because it can provide informa-
tion on the degree of myometrial invasion, presence of cervical stromal invasion, lymph node metastases, and 
extra-uterine spread2. While hysterectomy and bilateral salpingo-oophorectomy are the basic treatments for EC, 
pelvic and para-aortic lymphadenectomy are considered depending on the risk of recurrence3,4. There are several 
predictors of recurrence, including age, tumor grade, International Federation of Gynecology and Obstetrics 
(FIGO) stage, and lymphovascular space invasion1. However, many of these factors can be evaluated only after 
surgical treatment. Accurate preoperative risk stratification methods are needed to realize personalized treat-
ment according to the prognosis. There have been several studies in which the radiomics approach was used for 
preoperative noninvasive risk stratification of EC using MRI5–10. Radiomics aims to extract and analyze numer-
ous high‐dimensional quantitative features from medical images and is now widely used in tumor research11. 
Tumor segmentation is usually necessary when performing these studies. However, manual segmentation is 
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not only labor-intensive and time-consuming but may also be subjective. Development of accurate automated 
segmentation methods is highly desirable.

U-net is a fully convolutional neural network architecture originally designed for segmentation of biomedical 
images and has shown promising results in segmentation of medical images12. The advantage of using U-net is 
that it it not necessary to manually create imaging features for segmentation. U-net has been applied not only to 
the segmentation of organs such as the breast, prostate, and uterus, but also to various diseases, including acute 
cerebral infarction, aortic dissection, acute pulmonary embolism, hepatocellular carcinoma, prostate cancer, 
and uterine cervical cancer13–26. One recent report demonstrated automatic segmentation of EC on MRI with 
3D U-net27.However, the accuracy of segmentation has been variable and the robustness of radiomics features 
other than tumor volume has not been investigated.

The purpose of this research was to achieve automatic segmentation of EC on MRI with a convolutional 
neural network. We applied U-net and performed hyperparameter tuning for segmentation of EC and evaluated 
the effect of using multi-sequence images as input data. We also evaluated the robustness of the automatically 
extracted radiomics features.

Results
Clinical characteristics.  The patient characteristics are presented in Supplementary Table S1. There was no 
significant difference in age, histological grade, FIGO stage, or frequency of deep myometrial invasion between 
the training and test datasets.

Dice loss in our model and conventional U‑net for five‑fold cross‑validation.  The Dice losses in 
our models with input data for each MRI sequence are presented in Table 1. The model with multi-sequence 
images (T2-weighted image: T2WI, diffusion-weighted image: DWI, and apparent diffusion coefficient map: 
ADC map) as input data achieved the lowest Dice loss for both the training and validation sets. The Dice losses 
for the model with input data of multi-sequence images trained using different batch sizes are shown in Table 2. 
Given that the Dice loss improved by implementing larger batch sizes, our final model adopted a batch size of 
176 (the mean and standard deviation of Dice loss for the training set and the five-fold cross-validation set was 
0.159 ± 0.015 and 0.231 ± 0.033, respectively). The learning curve of our final model with five-fold cross-valida-
tion is presented in Supplementary Fig. S1-5.

The mean and standard deviation of Dice loss for the conventional U-net model with a batch size of 11, 22, 
and 44 was 0.581 ± 0.233, 0.293 ± 0.026, and 0.267 ± 0.027, respectively, for five-fold cross-validation sets, which 
was worse than the Dice loss for our modified U-net15. Batch sizes of 88 and 176 could not be implemented in 
the conventional U-net model because of a lack of GPU memory.

Evaluation of segmentation performance using the test dataset.  Table 3 shows the segmentation 
performance of our model using a batch size of 176 for the test datasets with each set of input data. The model 
with multi-sequence images as input data achieved the highest mean Dice similarity coefficient (DSC), sensitiv-
ity, and positive predictive value (PPV) (0.806, 0.816, and 0.834, respectively). There was no statistically signifi-
cant difference in DSC, sensitivity, or PPV between the model with multi-sequence images and the model with 
T2WI (DSC, p = 0.67; sensitivity, P  = 0.12; PPV, P  = 0.15). However, there was a statistically significant difference 
between the model with multi-sequence images and the model with DWI or ADC map (all P < 0.001). The speci-
ficity and NPV were almost 1 for all models. In addition to mean DSC, to compare with the previous report, the 
median and interquartile range of DSC were also calculated in our model with multi-sequence images: median, 
0.87; interquartile range, [0.80–0.90]27. Representative results for automatic segmentation with multi-sequence 
images are presented in Fig. 1.

Table 1.   Dice losses for the models with each MRI sequence as the input data for five-fold cross-validation. 
Data are presented as the mean and standard deviation of five cross-validation models. Train: train loss, 
Validation: validation loss, ADC: apparent diffusion coefficient map, DWI: diffusion-weighted image, 
T2WI: T2-weighted image.

T2WI DWI ADC Multi-sequence

Train 0.192 ± 0.005 0.213 ± 0.009 0.237 ± 0.012 0.159 ± 0.015

Validation 0.298 ± 0.042 0.346 ± 0.053 0.431 ± 0.048 0.231 ± 0.033

Table 2.   Dice losses for our model trained using different batch sizes with multi-sequence images. Data are 
presented as the mean and standard deviation. Train: train loss, Validation: validation loss.

Batch size 11 22 44 88 176 (final model)

Train 0.255 ± 0.005 0.194 ± 0.003 0.173 ± 0.009 0.162 ± 0.004 0.159 ± 0.015

Validation 0.592 ± 0.229 0.286 ± 0.034 0.251 ± 0.028 0.247 ± 0.027 0.231 ± 0.033
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Robustness of radiomics features.  The intraclass correlation coefficient (ICC) values of the radiomics 
features obtained by manual and automatic segmentation are presented in Fig. 2. First-order and shape-based 
features showed good–excellent reliability (ICC, 0.75–0.99) except for minimum, robust mean absolute devia-
tion, variance, and maximum 3D diameter (ICC, 0.67–0.74). Table 4 presents the median and interquartile range 
of ICC values per feature group. While textural features from gray level co-occurrence matrix (GLCM), gray 
level run length matrix (GLRLM), and neighboring gray tone difference matrix (NGTDM) showed moder-
ate reliability, features from gray level size zone matrix (GLSZM) and gray level dependence matrix (GLDM) 
showed good reliability.

Discussion
In this study, we performed automatic segmentation of EC on MRI with a convolutional neural network. Use 
of multi-sequence MR images as input data and larger batch sizes improved the accuracy of segmentation. Our 
final model achieved a mean DSC of 0.806 for the test dataset. Radiomics features obtained with our model 
demonstrated high reliability, especially for first-order and shape-based features.

To our knowledge, only one previous study has performed automatic segmentation of uterine EC27. The seg-
mentation performance of EC by our model outperformed the previous model (median DSC 0.87 vs. 0.84 and 
0.77 for two raters) with less variability; the likely reason for this is that the previous model used only contrast-
enhanced T1-weighted image (T1WI) for segmentation whereas our model used multi-sequence images with 
ensemble learning.  For the input data of the modified U-net, high accuracy was achieved using multi-sequence 
images, including T2WI, DWI, and ADC maps. Although EC usually shows high signal intensity on DWI because 
of its high cellularity, normal uterine endometrium also shows high signal intensity on DWI, and radiologists 
recognize the extent of EC in clinical practice by referring to various sequence images28. This could be the reason 
why the model with multi-sequence images showed higher accuracy than the other models. In a previous study 

Table 3.   Segmentation performance of our model for the test datasets with each magnetic resonance image 
sequence as the input data. Data are presented as the mean and standard deviation. ADC: apparent diffusion 
coefficient map, DSC: Dice similarity coefficient, DWI: diffusion-weighted image, Multi multi-sequence 
images (T2WI, DWI, and ADC map), NPV: negative predictive value, PPV : positive predictive value, 
T2WI: T2-weighted image.

DSC Sensitivity Specificity PPV NPV

T2WI 0.798 ± 0.250 0.797 ± 0.261 1.000 ± 0.000 0.809 ± 0.234 1.000 ± 0.000

DWI 0.679 ± 0.207 0.694 ± 0.245 0.999 ± 0.001 0.684 ± 0.175 0.999 ± 0.001

ADC 0.557 ± 0.330 0.570 ± 0.369 0.999 ± 0.001 0.586 ± 0.305 0.999 ± 0.001

Multi 0.806 ± 0.155 0.816 ± 0.212 0.999 ± 0.001 0.834 ± 0.086 1.000 ± 0.000

Figure 1.   Two representative cases of automatic segmentation. (Case 1: a–d, Case 2: e–h). (a, e): T2-weighted 
image. (b, f): Diffusion-weighted image (b = 1000 s/mm2). (c, g): Apparent diffusion coefficient map. (d, h): 
Results of automatic segmentation of endometrial cancer overlaid on a T2-weighted image. The tumor was 
almost perfectly segmented in case 1 (Dice similarity coefficient, 0.925). The tumor was well segmented in case 
2, despite the presence of hematometra (e:*) (Dice similarity coefficient, 0.808).
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Figure 2.   ICC values for radiomics features obtained by manual and automatic segmentation. (a) ICC values 
for first-order and shape-based features. (b) ICC values for features with high-order (GLCM, GLRLM, GLSZM, 
NGTDM, and GLDM-based) features. GLCM: gray-level co-occurrence matrix, GLDM: gray-level dependence 
matrix, GLRLM: gray-level run-length matrix, GLSZM: gray-level size zone matrix, ICC: intraclass correlation 
coefficient, NGTDM: neighboring gray tone difference matrix.
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of automatic segmentation of uterine cervical cancer on MRI, use of multi-sequence MR images (DWI with b = 0 
and 1000 s/mm2 and an ADC map for the triple channel) as input data was beneficial for tumor segmentation20. 
The model developed in that study achieved a DSC of 0.82 for cervical cancer in the test dataset. Our model 
fell slightly short of this result, likely because the uterine body contains more structures that can interfere with 
segmentation, such as normal endometrium and retained fluid compared with the uterine cervix.

Figure 2.   (continued)
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Our study also showed that a larger batch size contributed to improve segmentation performance. In general, 
it has been reported that a large batch size has an effect similar to that of using a small learning rate and is useful 
for accelerating learning29. However, there are very few reports on the relationship between segmentation accu-
racy and batch size. A previous report on segmentation of the uterus on MRI showed that a large batch size was 
useful for improving segmentation performance, which is consistent with our findings15. In this study, all MR 
image slices were used as input data with a view to clinical application. Given that only some of the slices contain 
tumor tissue, using a small batch size would increase the frequency of batches that do not or contain only very 
few slices of tumors as input data, making it difficult to train the model. We believe that this is the reason why 
segmentation performance was improved by using a large batch size. It is usually difficult to use a large batch 
size because image segmentation often requires a large amount of memory. One of the strengths of our research 
is that we could apply a batch size of 176 by using a graphic processing unit (GPU) with a large memory size of 
96 GB. Even with this large GPU memory, the conventional U-net model could not apply a batch size of more 
than 44 because it applies 64 filters in the first convolution process12, which might explain why the segmentation 
performance of the conventional U-net model was worse than that of our model.

Many of the radiomics features extracted by our U-net model demonstrated good reliability in terms of first-
order features, shape-based features, and features from GLSZM and GLDM. Automatically extracted radiomics 
features must be reliable for clinical application of these features as biomarkers. The robustness of radiomics 
features is reportedly affected by the type of tumor and its location as well as the software used for feature 
extraction30,31. Although no studies have examined the robustness of imaging features of EC, two reports have 
investigated uterine cervical cancer. In a study of the stability of radiomics features of uterine cervical cancer 
detected on T2WI using pyradiomics, it was found that the ICCs for features extracted by two independent 
radiologists were excellent (66.7% for first-order features, 100% for shape-based features, and 63.5% for features 
from the matrices)32. Another report on the robustness of radiomics features from the ADC map showed that 
the reproducibility of manually and automatically extracted features was low except for first-order features20. As 
mentioned earlier, it is difficult to make direct comparisons between the results of studies in cervical cancer with 
those in EC. However, the reliability of the radiomics features automatically extracted by our model was much 
higher than that reported previously, and for some features, the reliability was close to that extracted manually 
by radiologists.

There are some limitations to this study. First, it had a single-center retrospective design and used a single 
MR scanner vendor. A validation study using multicenter cases and multi-vendor MR scanners is needed to 
test the robustness and generalizability of our automatic segmentation model. Second, we did not use contrast-
enhanced (CE) T1WI for automatic segmentation. Although adding CE T1WI to the input data may further 
improve segmentation accuracy, our model showed high segmentation performance without CE T1WI for the 
labels created by board-certified gynecologic radiologists referring to multiple sequences of images including 
CE T1WI. Besides, in clinical practice, not all patients with EC can undergo CE MRI because of renal dysfunc-
tion or allergy to contrast media. Even for these patients, our model allows for automatic segmentation of EC.

In conclusion, this study showed that our U-net model could perform accurate segmentation of EC on MRI. 
First-order, shape-based, and some high-order radiomics features can be extracted automatically with high 
reliability. Our model would make it possible to prepare a large number of region of interest (ROI) for EC with 
less effort, which leads to efficient medical image analysis using the radiomics approach and/or deep learning 
methods for risk stratification of EC.

Methods
This single-center retrospective study was approved by Kyoto University Graduate School and Faculty of Medi-
cine, Ethics Committee, and the requirement for written informed consent was waived (R1458-2). All methods 
were performed in accordance with the relevant guidelines and regulations.

Patients.  Two hundred patients pathologically diagnosed as EC who underwent pretreatment MRI between 
January 2004 and March 2017 were included in this study. These patients had previously been included in an as 
yet unpublished study of texture analysis with manual segmentation that aimed to identify prognostic risk fac-
tors for EC. One hundred and eighty patients were randomly selected from the 200 patients as the training data-

Table 4.   Median and interquartile range for the ICC values per feature group. GLCM : gray-level 
co-occurrence matrix, GLRLM: gray-level run-length matrix, GLSZM: gray-level size zone matrix, 
GLDM: gray-level dependence matrix, ICC: intraclass correlation coefficient, NGTDM: neighboring gray tone 
difference matrix.

Feature group Median ICC Interquartile range

first-order features 0.86 0.75–0.93

shape-based features 0.96 0.88–0.97

GLCM 0.57 0.36–0.79

GLRLM 0.72 0.48–0.83

GLSZM 0.93 0.83–0.96

NGTDM 0.73 0.41–0.83

GLDM 0.87 0.71–0.98
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set for training the model parameters and the other 20 as the test dataset to evaluate the performance of the final 
model. One board-certified radiologist (S.O. having 9 years’ experience) searched the clinical and pathological 
records for clinical information, including patient age, pathological diagnosis of the tumor, FIGO stage, and 
presence of deep myometrial invasion. Endometrioid carcinoma G1/G2 was categorized as a low-grade tumor, 
and other histological subtypes, such as endometrioid carcinoma G3 or serous carcinoma, were categorized as 
high-grade tumors.

MRI protocol.  MRI studies were performed using a 1.5-T unit (Symphony or Avanto; Siemens Health Care, 
Erlangen, Germany) or a 3.0-T unit (Trio, Skyra; Siemens Health Care) with a phased-array coil. Before the 
examination, 20 mg of scopolamine butylbromide (Buscopan; Nippon Boehringer Ingelheim, Tokyo, Japan) was 
administered intramuscularly to reduce motion artifact due to bowel peristalsis unless contraindicated. Routine 
MR sequences for uterine EC included three orthogonal planes of T2WI, axial and sagittal T1WI with or with-
out fat suppression, axial or sagittal DWI, and axial or sagittal dynamic contrast-enhanced T1WI. The b-values 
applied for DWI had some variation: b = 0, 500, and 1000 s/mm2, and b = 0, 100, 500, and 1000 s/mm2. ADC 
values were calculated by fitting the signal intensities acquired from the different b-values to a mono-exponential 
model using the least-squares method. Dynamic CE T1WI was acquired at 20, 40, 60, 80, 100, 120, and 180 s 
after intravenous injection of the gadolinium contrast agent (Magnevist; Bayer Yakuhin Ltd, Osaka, Japan) at a 
dose of 0.2 mL/kg. The imaging parameters are presented in Supplementary Table S2.

Image annotation.  A board-certified gynecologic radiologist (Y.K. having 13  years’ experience) manu-
ally segmented the uterine ECs on each slice of the sagittal T2WI using a 3D Slicer (https://​www.​slicer.​org/) by 
referring to all the images of other sequences and pathological reports. The other board-certified gynecologic 
radiologist (Y.M. having 13 years’ experience) confirmed the validity of the ROI in all cases. These ROIs were the 
gold standard for tumor segmentation.

Image preprocessing.  The field of view (FOV) was aligned for cases with a difference in the FOV between 
T2WI and DWI. The MR images were then resized to 512 × 512 pixels; the MR signal intensities of the images 
were normalized based on the following Eq. (1):

where nSI is the normalized SI, mean_of_SI is the mean SI of the images, and SD_of_SI is the standard deviation 
(SD) of the SI of the images.

To evaluate the effect of a multi-sequence of MR images for improving segmentation accuracy, single-
sequence images (one of T2WI, DWI, and the ADC map), and multi-sequence images (T2WI-DWI-ADC map 
for triple channel) were used as input data. Dynamic contrast-enhanced T1WI was not used because the imaging 
direction was different for each patient.

(1)nSI =

(

SI −mean_of _SI
)

(

3× SD_of _SI
)

Figure 3.   Our U-net architecture for segmentation of uterine endometrial cancer. Conv: convolution, BN: batch 
normalization, LReLU: Leaky Rectified Linear Unit, DO : dropout.

https://www.slicer.org/
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Our U‑net architecture.  Our modified U-net architecture for segmentation of uterine EC is composed of 
five blocks, the detailed structure of which is presented in Fig. 3 and Supplementary Table S3. The Adam opti-
mizer was used to train the neural network with the Dice loss function as the cost function. The initial learning 
rate was set to 0.005 and decreased to 0.0005 halfway through the training process. The dropout probability was 
set to 0.9%. To evaluate the effect of batch size, Dice loss with batches of 11, 22, 44, 88, and 176 were calculated. 
Five-fold cross-validation was performed with four-fifths of the patients used for training and one-fifth used for 
validation. The model was trained for 30 epochs for each cross-validation set. To prevent overfitting to the train-
ing dataset, we applied mix-up (β = 0.1) and random image cropping and patching (β = 0.3) as data augmenta-
tion methods33–35. For comparison, a conventional U-net model was trained for segmentation with batch sizes 
of 11, 22, and 44. The architecture of the conventional U-net is the same as that in a previous study of uterine 
segmentation15. Batch sizes of 88 and 176 could not be implemented in the conventional U-net model because 
of a lack of GPU memory.

Our model was built using Keras (version 2.3.1) and Tensorflow (version 1.15.0) and trained on a Linux 
workstation (Ubuntu version 18.04.4) with two NVIDIA Quadro RTX8000 GPUs with 48 GB memory (NVIDIA, 
Santa Clara, CA, USA).

Evaluation of segmentation performance.  For segmentation of uterine EC in the test datasets, an 
ensemble model of the five models trained by each cross-validation dataset was used. That is, the area predicted 
as uterine EC by more than two of the five models was determined to be the tumor area. The overall workflow 
for predicting the final ROI of the EC is presented in Fig. 4. The area predicted as a tumor within a 10% margin 
of each image was discarded because the uterus and EC do not usually exist on the edge of the MR images. The 
segmentation accuracy for the test datasets was evaluated using the DSC, sensitivity, specificity, and PPV, and 
negative predictive value (NPV) for each patient. DSC, sensitivity, specificity, PPV, and NPV were defined were 
defined by the following Eqs. (2–6).

(2)DSC =
2|T ∩ P|

(|T| + |P|)

(3)Sensitivity =
|T ∩ P|

|T|

(4)Specificity = 1−
|P| − |T ∩ P|

|I| − |T|

(5)PPV =
|T ∩ P|

|P|

Figure 4.   Overall workflow for predicting the area of endometrial cancer. ROI: region of interest.
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where |T|, |P|, and |I| denote the number of voxels for the true manual segmentation, the predicted segmentation, 
and the number of voxels of the three-dimensional MRI images, respectively.

The DSC represents the similarity between two sets of data. A DSC of 0 indicates no overlap whereas a DSC 
of 1 indicates perfect overlap between the two maps36.

Extraction of radiomics features.  The radiomics features of EC were extracted using Pyradiomics (ver-
sion 3.0.1) software (https://​www.​radio​mics.​io/​index.​html) based on the volume-of-interest (VOI) from T2WI 
with manual and automatic segmentation by our U-net model. For discretization of pixel values, a fixed bin 
width of 0.0167 was adopted, which made the bin count around 120. The radiomics features calculated were 
first-order features (n = 18), shape-based features (n = 14), and features with GLCM (n = 24), GLRLM (n = 16), 
GLSZM (n = 16), NGTDM (n = 5), and GLDM (n = 14). A definition of each radiomics feature can be found 
online (https://​pyrad​iomics.​readt​hedocs.​io/​en/​latest/​featu​res.​html).

Statistical analysis.  Statistical analyses were performed using a commercially available software package 
(JMP version 12.2.0, SAS Institute Inc., Cary, NC, USA). The clinical characteristics of the training and test 
datasets were compared for age using the t-test. The distributions of histological grade and FIGO stage and the 
frequency of deep myometrial invasion were compared using a two-sided Fisher’s exact test. The DSC, sensitiv-
ity, and PPV of the test datasets with the different MRI sequences as input data were compared using the Wil-
coxon signed-rank test. The reproducibility of radiomics features of EC with VOIs of manual and automatic seg-
mentation was evaluated using the ICC, which was calculated using pingouin (version 0.3.8) software (https://​
pingo​uin-​stats.​org/). ICC values were interpreted as follows: < 0.5 poor, 0.5–0.75 moderate, 0.75–0.9 good, > 0.9 
excellent37. A P-value < 0.05 was considered statistically significant. All P-values were adjusted for multiple com-
parisons using the Holm method38.

Received: 19 March 2021; Accepted: 29 June 2021
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