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Estimation of unsteady 
hydromagnetic Williamson 
fluid flow in a radiative surface 
through numerical and artificial 
neural network modeling
Anum Shafiq1, Andaç Batur Çolak2, Tabassum Naz Sindhu3, Qasem M. Al‑Mdallal4* & 
T. Abdeljawad5

In current investigation, a novel implementation of intelligent numerical computing solver based on 
multi‑layer perceptron (MLP) feed‑forward back‑propagation artificial neural networks (ANN) with 
the Levenberg–Marquard algorithm is provided to interpret heat generation/absorption and radiation 
phenomenon in unsteady electrically conducting Williamson liquid flow along porous stretching 
surface. Heat phenomenon is investigated by taking convective boundary condition along with 
both velocity and thermal slip phenomena. The original nonlinear coupled PDEs representing the 
fluidic model are transformed to an analogous nonlinear ODEs system via incorporating appropriate 
transformations. A data set for proposed MLP‑ANN is generated for various scenarios of fluidic model 
by variation of involved pertinent parameters via Galerkin weighted residual method (GWRM). In order 
to predict the (MLP) values, a multi‑layer perceptron (MLP) artificial neural network (ANN) has been 
developed. There are 10 neurons in hidden layer of feed forward (FF) back propagation (BP) network 
model. The predictive performance of ANN model has been analyzed by comparing the results 
obtained from the ANN model using Levenberg‑Marquard algorithm as the training algorithm with 
the target values. When the obtained Mean Square Error (MSE), Coefficient of Determination (R) and 
error rate values have been analyzed, it has been concluded that the ANN model can predict SFC and 
NN values with high accuracy. According to the findings of current analysis, ANN approach is accurate, 
effective and conveniently applicable for simulating the slip flow of Williamson fluid towards the 
stretching plate with heat generation/absorption. The obtained results showed that ANNs are an ideal 
tool that can be used to predict Skin Friction Coefficients and Nusselt Number values.

Nomenclature
T̂  Fluid’s temperature
T̂w  Wall’s temperature
K̃  Fluid’s thermal conductivity
Ec  Eckert number
σ̃ ∗  Stefan–Boltzmann constant
v̂, û,  Velocity components
Pr  Prandtl number
α  thermal slip number
M2

1  Magnetic parameter
R1  Radiation parameter
We  Weissenberg number
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Ŵ̃  Time constant
Ũw  Variable stretching velocity
c̃p  Specific heat
Q1  Heat generation parameter
Bi  Biot number
T̂∞  Ambient fluid’s temperature
γ1  Velocity slip number
E1  Local electric number
A1  Suction/injection coefficient
S1  Unsteadiness parameter
R̃(x)  Residual function

Greek symbols
q̃∗r   Radiative heat flux
ρ̃∗
0  Fluid density

σ̌ ∗  Stefan–Boltzmann constant
ν  Kinematic viscosity
̟  Angel of inclination
ǩ1  Mean absorption coefficient
ρ̃∗
0  Density of fluid

Abbreviations
MLP  Multi-layer perceptron
ANN  Artificial neural network
GWRM  Galerkin weighted residual method
GLF  Gauss–Laguerre formula
FF  Feed forward
BP  Back propagation
MSE  Mean square error
FFBP  Feed-forward back-propagation

The importance of non-Newtonian substances in variety of mechanical, chemical processes and implementations 
in engineering is quite evident. The uses of these substances are significant in medicines, surfactants, petroleum 
engineering, blood and many other. However thoroughly analyzing the subgroups of non-Newtonian liquids, 
Williamson liquid is also categorized into these substances owing to classical characteristics of shear thinning/
thickening. Having these distinct motivations in mind, several researchers adopt this model with different flow 
aspects and  configurations1–7.

Thermal radiation performs a pivotal part in engineering and physics particularly in high temperature process 
and space technology. Most of these uses contain gas turbines, the polymer manufacturing industry, nuclear 
power plants and different propulsion systems for rocket, spacecraft, aircraft and satellite. Hashim et al.8 con-
centrated on radiation impacts on Williamson liquid owing to an expanding/contracting cylinder containing 
nanomaterials.  In9, the impact of non-linear radiation on time dependent flow of a Williamson liquid via heat 
source/sink was explored. The MHD boundary layer (BL), chemical reacting and heat generating Nano-fluidic 
flow towards a moving radiative wedge examined  in10. Hayat et al.11 explored the hydromagnetic boundary layer 
flow of Williamson liquid under the influence of Ohmic dissipation and radiation. For more details one can read 
the suggested  reference12–17.

Magnetic fields exist anywhere in nature, so magnetohydrodynamic (MHD) mechanisms must arise when 
liquid conduction is accessible. It also has several engineering uses like aeronautics field, stellar/planetary magne-
tospheres, cosmic fluid dynamics, solar physics, MHD generators, chemical engineering, electronics, construction 
of turbines, MHD accelerators and many more. Whenever a magnetic field is added to an electrically conduct-
ing moving liquid, both electric and magnetic fields are induced. These fields communicate among each other, 
generating a body force identified as the Lorentz force, that slows down fluid movement. Recently numerous 
 sleuths18–24 investigated on MHD by different fluid flows. In several practical uses, like non-mechanical MHD 
micropumps, the analysis of Magnetohydrodynamic slip flow demonstrated favourable performance. Reza-E-
Rabbi et al.25 detailed the heat and mass transfer analysis of Casson nanofluid flow passing through a stretching 
layer with magnetohydrodynamic (MHD), thermal radiation, and chemical reaction effects. Boundary layer 
approximations formed the main equations, namely the momentum, energy and diffusion equilibrium equations 
with respect to time. The effect of various physical parameters on the momentum and thermal boundary layers 
is discussed and graphically illustrated together with the concentration profiles. Arifuzzaman et al.26 analyzed 
the heat and mass transfer properties of the natural convective hydromagnetic flow of the fluid with fourth order 
radiation originating from the vertical porous plate. The impression of heat generation by nonlinear sequential 
chemical reaction and thermal diffusion is also taken into account. The combined fundamental equations are 
transformed into a dimensionless arrangement by explicitly applying the finite difference scheme. As a result of 
the study, it was stated that the velocity fields started to decrease as the temperature of the fluid increased, but 
the opposite situation emerged for the temperature fields. Arifuzzaman et al.27 analyzed the appearance of nano-
sized particles and the hydrodynamic flow behavior of Casson and Maxwell fluids with multiphase radiation. 
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First, the time-dependent governing equations are solved computationally using finite difference discretization 
methods, and then convergence analysis is performed with the stabilization of the numerical approach. Finally, 
impressions of various relevant parameters are schematically depicted along with tabular analysis over diversified 
flow fields. The thermal and bulk properties found are significantly improved mostly in the case of Maxwell fluid. 
For numerical validation, some comparisons with previous studies were also shown and satisfactory agreement 
was observed. A partial slip would be utilized for stationary as well as moving boundary whenever a particulate 
liquid has been employed e.g. suspensions, emulsions, polymer solutions and foams. Several investigators have 
studied the significance of slip velocity influence in various flow types,  including28–31. The hydromagnetic BL slip 
flow of a Maxwell nanoliquid over an exponentially expanding surface under convective boundary condition 
was examined by Reddy et al.32. The consequences of multiple slips on the flow of magneto-Carreau liquid over 
the wedge with chemically reactive species were studied by Khan and  Hashim33 and the increase in shear stress 
and fluid velocity was investigated by increasing the magnetic parameter whereas decreasing the temperature 
and concentration fields.

To the best of researchers’ information, no studies has yet been made to examine the electro-hydrodynamic 
slip flow of Williamson fluid towards a permeable stretched surface with heat generation/absorption via ANN 
model. The literature summary demonstrates that in providing solutions to nonlinear issues, the ANN models 
have been very effective. Thus, the novelty of current study centered on usefulness of ANN procedure for bound-
ary layer slip flow (BLSF) of Williamson fluid flow towards a stretching sheet by taking convective boundary 
condition and heat absorption/generation. The influences of related parameters on features of flow and heat 
transport are evaluated in this analysis and numerical outcomes are given in connection with the outcomes of 
ANN procedure.

Present study has structured as given: Section 2 includes mathematical problem formulation. Galerkin 
weighted residual method (GWRM) is given in Section 3. Section 4 includes the significance of ANN technique 
and BPA (Back Propagation algorithm). Section 5 deals with the result and discussion and Section 6 ends up 
with final findings .

Problem development
Two dimensional incompressible unsteady electrically conducting BLF of Williamson liquid towards a porous 
stretched surface under velocity as well as thermal slip condition is considered. The x-axis is considered towards 
extending surface in direction of movement whereas y-axis is taking perpendicular as shown in Fig. 1a. The 
current fluidic system also incorporates viscous dissipation, heat source/sink and radiation effects. The flow 
area is displayed by considering uniform transverse magnetic B̄ and electric Ē fields and known as the electri-
cally conducting fluid. Remember that magnetic field is poorer than electric field and magnetic field follows 
¯J =σ

(

Ē + V̄ × B̄
)

 Ohm’s law, where J̄ represnts Joule current, σ represents electrical conductivity and V̄ rep-
resents fluid velocity. The related flow equations while obtaining BL approximations takes the following form

(1)
∂û

∂ x̂
+ ∂ v̂

∂ ŷ
=0,

(2)
∂û

∂t
+ v̂

∂ û

∂ ŷ
+ û

∂ û

∂ x̂
=ν

∂2û

∂ ŷ2
+ 2νŴ̃

∂ û

∂ ŷ

∂2û

∂ ŷ2
+ σ̃

ρ̃∗
0

sin2 (̟)
(

Ẽ0B̃0 − B̃20û
)

,

Figure 1.  Physical configuration of the flow model.
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Here velocity components û and v ̂are in x̂ and ŷ directions respectively, fluid density is ρ̃∗
0 , thermal conductiv-

ity is K̃ , fluid temperature is T̂ , specific heat is c̃p , kinematic viscosity is ν , time constant is Ŵ̃ , angel of inclination 
is ̟  and radiative heat flux is q̃∗r  . By using the approximation of Rosseland, we have

in which σ̌ ∗ defines Stefan-Boltzmann constant and ǩ1 defines mean absorption coefficient. Employing Taylor’s 
series approximation, T̂4 ∼= 4T̂3

∞T̂ − 3T̂4
∞ , where ambient temperature is T̂∞ and Eq. (3) becomes

with

and Ṽw̃ is

This defines the mass transport on the surface including suction/injection 
(

Ṽw̃ > 0/Ṽw̃ < 0
)

 . Furthermore, 
Ũw

(

x̂, t
)

 is variable stretching velocity and T̂w

(

x̂, t
)

 is variable wall temperature are as follows

where rate constants are a1 and c1 with a1 > 0 and c1 ≥ 0 (i.e. c1t < 1 ). Appropriate transformation are consid-
ered as

with

Eq. (1) is identically satisfied and Eqs. (2), (5) and (6) becomes

(3)
ρ̃∗
0 c̃p

(

∂T̂

∂t
+ û

∂T̂

∂ x̂
+ v̂

∂T̂

∂ ŷ

)

=K̃
∂2T̂

∂ ŷ2
+ µ̃∗

0

(

∂ û

∂ ŷ

)2

+ µ̃∗
0Ŵ̃

(

∂ û

∂ ŷ

)3

+ σ̃ sin2 (̟)
(

ûB̃0 − Ẽ0
)2

− ∂ q̃∗r
∂ ŷ

+ Q̃0

(

T̂ − T̂∞
)

,

(4)q̃∗r = −4σ̌ ∗

3ǩ1

∂T̂4

∂ ŷ
,

(5)
ρ̃∗
0 c̃p

(

∂T̂

∂t
+ v̂

∂T̂

∂ ŷ
+ û

∂T̂

∂ x̂

)

=
(

16σ̌ ∗T̂3
∞

3k̃1
+ K̃

)

∂2T̂

∂ ŷ2
+ µ0

(

∂ û

∂ ŷ

)2

+ µ0Ŵ

(

∂ û

∂ ŷ

)3

+ σ̃ sin2 (̟)
(

ûB̃0 − Ẽ0
)2 + Q̃0

(

T̂ − T̂∞
)

.

(6)

û
�

x̂, 0
�

=L1



µ0







∂ û
�

x̂, 0
�

∂ ŷ
+ Ŵ

�

∂ û
�

x̂, 0
�
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+ Ũw ,

v̂
�

x̂, 0
�

=Ṽw = − ν0

(1− c1t)
1/2

, −k̃f
∂T̂(x̂, 0)

∂ ŷ
= h̃f

�

T̂w − T̂
�

+ L2
∂T̂(x̂, 0)

∂ ŷ
,

û
�

x̂, ŷ → ∞
�

→ 0, T̂
�

x̂, ŷ → ∞
�

→ T̂∞ ,

(7)Ṽw̃ = − ν0

(1− c1t)
1/2

.

(8)Ũw

(

x̂, t
)

= a1x̂

1− c1t
, T̂w

(

x̂, t
)

= T̂∞ + T̂0
a1x̂

2ν(1− c1t)
2
,

(9)ξ =

√

Ũw

x̂ν
y, ψ =

√

νx̂ŨwF(ξ), θ(ξ) =
T̂ − T̂∞

T̂w − T̂∞
,

(10)û = ∂ψ

∂ ŷ
, v̂ = −∂ψ

∂ x̂
.

(11)F ′′′ − F ′2 + FF ′′ − S1

{

F ′ + 1

2
ξF ′′

}

+ 2We F
′′F ′′′ +M2

1 sin
2 (̟)

{

E1 − F ′
}

= 0,

(12)

(

1+ 4

3
R1

)

θ ′′ + Pr Ec F
′′2 − Pr

[

F ′ θ − θ ′ F + S1

2

{

ξ θ ′ + 4 θ
}

]

+We Pr Ec F
′′3 +M2

1 Pr Ec sin2 (̟)
[

F ′ − E1
]2 + Pr Q1θ = 0,

(13)
F (0) =A1, F

′(0) = 1+ γ1

[

F ′′(0)+We

{

F ′′(0)
}2

]

, F ′(ξ → ∞) → 0,

θ ′(0) =− Bi[1− θ(0)]

1+ α
, θ(ξ → ∞) → 0,
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where We = ŴŨw

√

a1
ν(1−c1t)

 represents Weissenberg number, M2
1 = σ B̃20(1−c1t)

ρ̃∗0 a1
 represents magnetic number, 

E1 = Ẽ0(1−c1t)

B̃0a1 x̂
 represents local electric number, A1 = ν0√

aν
 represents suction/injuction parameter, S1 = c1

a1
 rep-

resents unsteadiness parameter, γ1 = µ0L1
√

a1
ν(1−c1t)

 represents velocity slip number, R1 = 4σ̌ ∗T̂3
∞

k∗K̃
 represents 

radiation parameter, Pr = µ0 c̃p

K̃
 represents Prandtl number, α = L2

k̃f
 represents the thermal slip number, 

Bi =
h̃f

k̃f

√

νx̂
Ũw

 defines Biot number, Q1 = Q̃0(1−c1t)
ρ̃∗0 c̃pa1

 defines the heat generation/ absorption parameter and 

Ec = Ũ2
w

c̃p

(

T̂w−T̂∞
) represents the Eckert number.

Expression of skin friction coefficient is

Expression of local Nusselt number (LNN) is

Galerkin weighted residual method (GWRM)
GWRM is an effective method for calculating solutions of nonlinear BVP (boundary value problems). It com-
prises the following main steps: (1) In differential equations, the unknown dependent functions are initially 
considered to be linear combinations of form or trial functions containing unknown coefficients. (2) Such sup-
posed solutions are incorporated into equations that contains residuals. (3) The errors are forced to be as small 
utilizing certain weight functions, therefore found unknown coefficients. The key characteristics that make this 
procedure (GWRM) appealing are (a) The ease of handling BVPs relating semi-infinite range. (b) It has high 
precision, performance and quick convergence. (c) the associated range within 0 and ∞ is directly minimized. 
Therefore, we utilized GWRM to find the solution of governing differential system (11–12) with (13). GWRM 
procedures to seek an approximate solution as follows

here unknown dependent variable is χ(x) , independent function is F(x) in domain D̃0 and differential operator 
is L̃ . An approximate solution

is defined in fashion that it ensures the specified boundary conditions. Replacing Eq. (17) into Eq. (16) emanated 
in R̃(x).R̃(x) (residual function) is reduced as little as possible in D̃0 by putting the integral of product of χk(x) 
(weight functions) and R̃(x) over whole D̃0 equal to zero for k ≥ 0, n.

Gauss–Laguerre formula is employed to integrate every equations in (18) to achieve set of algebraic systems since 
boundary condition varies from zero to infinity. The ak values are gained via solving the consequent algebraic 
systems.

Gauss–Laguerre formula (GLF). GLF is employed as given  below34:

here Bk coefficients have been specified  as35

and xk are the zeros of nth Laguerre polynomial

(14)C̃F = τw

ρ∗Ũ2
w

=

[

µ0

{

∂ û
∂ ŷ

+ Ŵ

(

∂ û
∂ ŷ

)2
}]

ŷ = 0

ρ∗Ũ2
w

,

Re
1
2

x̂ C̃F =
[

F ′′(0)+We F ′′2(0)
]

.

(15)
Nux̂ = x̂ qw

K̃
(

T̂w − T̂∞
) = −

x̂
(

16σ ∗T̃3
∞

3k1
+ K̃

)

∂T̃
∂ ŷ

∣

∣

∣

ŷ = 0

K̃
(

T̂w − T̂∞
) ,

Re−1/2
x Nux̂ = −

(

1+ 4

3
R1

)

θ ′(0).

(16)F(x)+ L̃(χ(x)) = 0 in D̃0,

(17)χ(x) = χ0 +
n

∑

k=1

akχk(x),

(18)
∫

D
R̃(x)χk(x)dx = 0, k = 0, 1, ..., n.

(19)
∫ ∞

0
e−xF(x)dx ≈

n
∑

k=1

BkF(xk),

(20)Bk =
1

L̃′n(xk)

∫ ∞

0

e−xL̃n(x)

x − xk
dx = (n!)2

xk
(

L̃′n(xk)
)2

,
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For n = 10, Table 1 displays xk values and relating Bk values.

Application of GWRM’s to current problem. Using GWRM, the assumed solutions of F(ξ) and θ(ξ) are 
considered as given  below34

Selecting Ñ = 15, substituted Eq. (22) into Eq. (13), to atain

The boundary conditions at infinity in Eq. (13) are automatically satisfied. Putting Eq. (22) into Eqs. (11) and 
(12) occurred in R̃F(ai , ξ) and R̃θ (ai , bk , ξ) for i = 0, 1, · · · , 15, k = 1, 2, · · · , 15. First, minimize residual by taking 
integral of product of residual and weight functions e−

iξ
3  and e−

kξ
3  , for k = 1, 2, . . . , Ñ − 1, i = 0, 1, . . . , Ñ − 2 

to zero, i.e.

together with Eqs. (23–25) produce 2Ñ + 1 nonlinear algebraic systems with 2Ñ + 1 unknown coefficients (ai , bk) 
and then solved via MATHEMATICA to get ai and bk.

Neural network modeling
Due to the difficulties of experimental studies, long time and cost, many researchers have worked on numerical 
modeling and derivation of mathematical correlations. Misidentification and modeling of experimental and 
theoretical data may cause errors in the results obtained from the simulation study. In addition, there are vari-
ous difficulties in modeling nonlinear and non-linear mathematical functions with traditional  tools36. Artificial 
neural networks (ANN), which were developed on the basis of the biological working principle of the human 
brain, have been one of mathematical measures that are frequently utilized by  investigators37. ANNs started to 
be used in the middle of the twentieth century. They have a wide range of applications due to their fastness, 
flexibility, learning algorithms, and tolerance to  errors38,39. Thanks to these important advantages, ANNs have 
recently become tools that are frequently used in various fields such as medicine and business as well as many 
different engineering  applications40–44. One of the most frequently used models among ANN models is MLP 
network model, that has a feed-forward back-propagation (FFBP)  structure45,46. An MLP network has an input 
layer where input parameters are defined, at least one hidden and one output layer, where predictive values are 
gained. The hidden layer contains processing elements called neurons, and each layer is connected to the other 
with a transfer function. Optimizing the data to be used in training of ANN is one of the important parameters 
affecting the prediction accuracy of ANN. For this reason, the data used in ANN models should be grouped and 
optimized  ideally47. In this study, two different ANN models have been designed in order to predict SFC and 
NN. The data set used in both ANN models is divided into three parts, which are frequently preferred by the 

(21)L̃n = ex
dn

dxn

[

e−xxn
]

.

(22)F(ξ) =
Ñ
∑

i=0

ai e
− iξ

3 , θ(ξ) =
Ñ
∑

k=1

bk e
− kξ

3 .

(23)
− A+ a0 + a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9 + a10 + a11

+a12 + a13 + a14 + a15 = 0,

(24)

− 1− a1

3
− 2a2

3
− a3 −

4a4

3
− 5a5

3
− 2a6 −

7a7

3
− 8a8

3
− 3a9 −

10a10

3

− 11a11

3
− 4a12 −

13a13

3
− 14a14

3
− 5a15−

γ1

[(

a1

9
+ 4a2

9
+ a3 +

16a4

9
+ 25a5

9
+ 4a6 +

49a7

9
+ 64a8

9
+ 9a9

+100a10

9
+ 121a11

9
+ 16a12 +

169a13

9
+ 196a14

9
+ 25a15

)

+We

(

a1

9
+ 4a2

9
+ a3 +

16a4

9
+ 25a5

9
+ 4a6 +

49a7

9
+ 64a8

9
+ 9a9

+100a10

9
+ 121a11

9
+ 16a12 +

169a13

9
+ 196a14

9
+ 25a15

)2
)

= 0,

(25)

− b1

3
− 2b2

3
− b3 −

4b4

3
− 5b5

3
− 2b6 −

7b7

3
− 8b8

3
− 3b9 −

10b10

3

− 11b11

3
− 4b12 −

13b13

3
− 14b14

3
− 5b15 +

Bi

1+ α
{1− b1 − b2 − b3

−b4 − b5 − b6 − b7 − b8 − b9 − b10 − b11 − b12 − b13 − b14 − b15} = 0.

(26)
∫ ∞

0
R̃F(ai , ξ) e

− iξ
3 dξ = 0,

∫ ∞

0
R̃θ (ai , bk , ξ) e

− kξ
3 dξ = 0,
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researchers. 70% of the data have been used for training, 15% for validation and 15% for  testing48. In the input 
layer of the ANN model designed for SFC prediction, We , A,  S1, M1, E1 and γ1 values have been defined as input 
parameters, and the skin friction coefficient value has been predicted at output layer. In MLP network model, 
which has been designed with a total of 28 data sets, 20 of data have been used for the training phase, 4 for the 
validation phase and 4 for the test phase. In ANN model developed for prediction of NN; M1, E1, R1, Pr , Ec , Q1, 
Bi and α values are defined as input parameters and Nusselt Number is predicted at output layer. In ANN model 
using a total of 33 data sets, 25 of data have been used for training, 5 for validation, and 5 for testing. There is no 
exact methodology for determining the number of neurons to be used in  ANNs49. For this reason, both ANN 
models have been developed with different neuron numbers and their performances have been analyzed. By 
evaluating the obtained results, 10 neurons have been used in the hidden layers of both ANN models. The basic 
structures of the ANN models developed are shown in Fig. 2a,b.

In the developed ANN models, the Levenberg–Marquardt algorithm, which is one of the powerful algorithms 
widely preferred in the literature, has been used as the training  algorithm50. In the hidden layer of ANN models, 
Tan-Sig function is used as the transfer function and Purelin functions in the output  layer51. The transfer func-
tions utilized is provided as:

Mean Square Error (MSE), Coefficient of Determination (R) parameters have been used for performance analysis 
of the developed MLP network model. In addition, the error rates between values attained from ANN model and 
the target values have also been calculated and analyzed. The equations used in the calculation of performance 
parameters are given  below52:

(27)f̃ (x) = 1

1+ e−x
,

(28)purelin(x) =x,

(29)MSE = 1

N

N
∑

i=1

(

Xexp (i) − XANN(i)

)2
,

(30)R =

√

√

√

√1−
∑N

i=1

(

Xexp (i) − XANN(i)

)2

∑N
i=1

(

Xexp (i)

)2
,

Figure 2.  The basic structures of the ANN models (a) SFCs (b) NN.
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Results and discussion
The GWRM method has been utilized to compute numerical simulation of temperature and velocity fields 
within boundary layer for various values of related physical parameters. We explore structural features of all 
associated dimensionless parameters on velocity F ′(ξ) and temperature θ(ξ) fields, that are portrayed through 
Figs. 5, 6, 7, 8, 9, 10, 11, 12, 13 14 and 15. For the leading variables, we gave default values as: A = 0.4 = M1 ; 
S1 = 0.3 = R1; Q1 = We = 0.5 = Ec = E1; Pr = 1; γ1 = α = 0.2 = Bi; during the entire computations unless 
otherwise mentioned. The map of R̃F(ai , ξ) and R̃θ (ai , bk , ξ) are displayed in Fig. 3. It is noted that residuals in 
the range (0−∞) are reduced. Further, to see the reliability of the approach employed, a simulation study is 
presented. This is obtained by analyzing graphical findings of dimensionless velocity and temperature by incor-
porating spectral collocation method (SCM) and Galerkin weighted residual method (GWRM) (see Fig. 4a,b). 
In each of the cases, an outstanding agreement is found.

The dimensionless velocity profiles F ′(ξ) for numerous values of magnetic number M1 are demonstrated in 
Fig. 5. The numerical values are mapped for two separate scenarios of inclination parameter ̟  i.e., non-inclined 
MHD (̟ = π/2) and inclined MHD (̟ = π/5) . It is observed in Fig. 5 that velocity profiles inside the bound-
ary layer declines for higher values of M1 for both situations. This statement is scientifically justified since the 
existence of a transverse magnetic field in an electrically conducting liquid gives rise to a Lorentz force (resistive 
force), that slows down the movement of liquid inside the area of BL. We also observe that, after a certain distance 
from the solid surface, the measured effects are very noticeable. Additionally, we notice that for the inclination 
scenario the velocity profile is lower than the non-inclination scenario. The influences of Weissenberg parameter 
We on fluid velocity F ′(ξ) is provided in Fig. 6 for two separate scenarios of inclination parameter ̟  i.e., non-
inclined MHD (̟ = π/2) and inclined MHD (̟ = π/7) . It is remarkably noticed that the velocity fields are 
lessening by enhancing values of We for both scenarios. The Weissenberg number We provides ratio of relaxation 

(31)Error Rate(%) =
[

Xexp − XANN

Xexp

]

× 100.

Figure 3.  Minimized redidual error 
(

R̃F , R̃θ
)

.

Figure 4.  Comparison of the velocity and temperature profiles attained via SCM and GWRM.
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to specific process times. Growing We causes a reduction in specific process time that consequence will lead a 
decline in velocity component and BL thickness. Further, we noticed that velocity field is remarkably higher in 
inclined MHD case than non-inclined MHD. The finding in Fig. 7 describes that velocity profile is declining 
functions of unsteadiness variable in BL for both scenarios of inclination parameter ̟  i.e., non-inclined MHD 
(̟ = π/2) and inclined MHD (̟ = π/3) . This is owing to the belief that as unsteadiness factor S1 grows, the 
velocity of stretched surface also reduces that further causes the conversion of less amount of heat and mass 
from the plate to the fluid in the boundary layer region. Figure 8 is sketched to view the distribution of fluid 
velocity for several values of suction parameter (A > 0) for two separate scenarios of inclination parameter ̟ 
i.e., non-inclined MHD (̟ = π/2) and inclined MHD (̟ = π/3) . It can be noted that when the values of the 
suction parameter rises, the velocity field and associated boundary layer thickness are lessened for both cases. 
This is bases the fact that suction or blowing is the way of controlling the boundary layer. The suction method 
involves extracting decelerated liquid particles from the boundary layer until they are given the opportunity to 
cause separation. Moreover, we noticed that velocity field is higher in inclined MHD case than non-inclined 
MHD. Figure 9 demonstrates the velocity field F ′(ξ) for different values of injection (A < 0) for both scenarios 
of inclination parameter ̟ i.e., non-inclined MHD (̟ = π/2) and inclined MHD (̟ = π/3) . This figure 
illustrates that velocity grow with an improvement in injection parameter for both cases. Furthermore, we noted 
that velocity field is declines in case of non-inclined MHD (̟ = π/2) than inclined MHD (̟ = π/3) . The influ-
ence of electric parameter E1 on fluid velocity field F ′(ξ) is showed in Fig. 10 for both scenarios of inclination 
parameter ̟  i.e., non-inclined MHD (̟ = π/2) and inclined MHD (̟ = π/4) . We scrutinized that the related 
boundary layer grows at a slightly lower rate near the wall for greater values of electrical parameter E1 , whereas 

Figure 5.  Variation of M1 on F ′(ξ) for both with and without inclanation.

Figure 6.  Variation of We on F ′(ξ) for both with and without inclanation.
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it tends to increase more dramatically away from the stretching surface for both situations. This study indicates 
that moving the streamlines away from the extended boundary is the consequence of electrical parameters. It 
is due to the Lorentz force that causes reduction in the frictional resistance. In addition, we found that velocity 
field is significantly higher in case of inclined MHD than non-inclined MHD for electrical parameter E1 . For 
several values of velocity slip parameter γ1, the variability of velocity field is mapped in Fig. 11 for both case of 
inclination parameter ̟  i.e., non-inclined MHD (̟ = π/2) and inclined MHD (̟ = π/4) . Figure 11 clearly 
demonstrates that velocity curves drop significantly as value of velocity slip number rises for both cases when 
̟ = π/2 and ̟ = π/4 . This is owing to the belief that slip velocity grows as slip parameter rises and liquid 
velocity declines as the pulling of stretching wall can only be partially transmitted to the fluid under the slip 
condition. Figures 12 and 13 are plotted to observed the variability of temperature field θ(ξ) for different values 
of the suction/injection parameter (A > 0,A < 0) , respectively for both non-inclined MHD (̟ = π/2) and 
inclined MHD (̟ = π/4) . From said figures, it can be noted that enhancement in suction parameter (A > 0) 
causes the reduction in temperature and associated boundary layer thickness whereas opposite behaviour is 
noted for the injection (A < 0) parameter when ̟ = π/2 and ̟ = π/4 . Furthermore, in case of non-inclinied 
MHD, temperature field is remarkably higher. The finding in Fig. 14 indicates that the temperature profile θ(ξ) 
is enhanced by the rise in thermal radiation R1 for both scenarios of inclination parameter ̟  i.e., non-inclined 
MHD (̟ = π/2) and inclined MHD (̟ = π/4) and also for electric parameter when E1 = 0.1, 0.2 . This is based 
on the fact that the increment in radiation parameter gives more heat to liquid which permitting the rise in tem-
perature and thermal boundary layer thickness. Now, we elaborate the influence of electric parameter E1 on the 

Figure 7.  Variation of S1 on F ′(ξ) for both with and without inclanation.

Figure 8.  Variation of A > 0 on F ′(ξ) for both with and without inclanation.
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temperature field as it has also a strong physical significance on the fluid temperature. Figure 14 also demonstrates 
that there is high temperature and associated boundary layer thickness for increment in electric parameter E1 . 
Additionally, it is found that for both radiation and electric parameters the temperature field upsurges for the 
case of inclined MHD (̟ = π/4). Figure 15 show the variability of temperature field for several values of heat 
source parameter Q1, Biot number Bi and thermal slip parameter α for both scenarios of inclination parameter 
̟ i.e., non-inclined MHD (̟ = π/2) and inclined MHD (̟ = π/4) . It is noted that the temperature field rises 
with an increament of the heat source. Also similar trend is happening for higher values of Biot and thermal slip 
parameter α for both situations.

The values of SFC and NN for different values of related parameters are presented in Tables 3 and 4 for both 
inclined and non-inclined MHD by taking ̟ = π/6,π/2 respectively. It can be observed that SFC reduces with 
increment in Weissenberg number, unsteady number, velocity slip parameter, and suctions parameter (A > 0) 
while the opposite pattern is observed for local electric parameter, magnetic number and injection variable 
(A < 0) for both cases. It is examined that NN reduces with an increase in the magnetic parameter, Prandtl vari-
able, thermal slip number and heat absorption parameter (Q1 < 0) , whereas it grows with an increase in electric 
number, radiation number, Eckert parameter, Biot number and heat generation number (Q1 > 0) for both cases. 
The outcomes attained from the numerical modeling and ANN model are in quite strong agreement with the 
numerical outputs. The suggested ANN model is therefore effective for unsteady hydromagnetic Williamson 
liquid flow along the radiative surface via heat absorption/generation and convective boundary condition, based 
on results of the current study.

Figure 9.  Variation of A < 0 on F ′(ξ) for both with and without inclanation.

Figure 10.  Variation of E1 on F ′(ξ) for both with and without inclanation.
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The training performances of both ANN models developed in Fig. 16 are shown. It is clear from the graphs 
that the MSE values, which have high values at the beginning of the training process, decrease with the advancing 
epochs. The ANN model, which has been developed to predict the Skin Friction Coefficients value, reached the 
best point by reaching the lowest MSE value in the 4th epoch. The ANN model developed to predict the Nusselt 
Number reached the lowest MSE value in the 7th epoch. This situation indicates that the training phase of ANN 
models has been completed with high performance. Figure 17 shows the data obtained from the training phase of 
ANN models. While there are target values on the x-axis of the graphs, there are ANN predictions on the y-axis. 
When the location of the data points obtained from the data used in the training phase of both developed models 
is examined, it is seen that they are located on the equality line drawn in blue. The R value for the ANN model 
developed for the Skin Friction Coefficients prediction is 0.99928 and the R value for the ANN model developed 
for the prediction of the Nusselt Number is calculated as 0.99999. These values show that the training phase of 
both ANN models has been ideally completed. Figure 18 shows the performance of the validation stage of both 
ANN models. When the graph is examined, it is seen that the data points obtained from the validation stage 
are close to the equality line drawn in green. However, R values for the models have been calculated as 0.99015 
and 0.96602, respectively. The data obtained confirm that the validation stage of both ANN models has been 
completed with low error rates. In Fig. 19, the test stages of both ANN models is shown. It should be noted that 
the data points obtained from the test stages in the graphics are located close to the equality line drawn in red. R 
values of ANN models have been obtained as 0.98102 and 0.95998, respectively. These results clearly show that the 
test stages of ANN models have been completed with high accuracy. Figure 20 shows the MSE values obtained for 

Figure 11.  Variation of γ1 on F ′(ξ) for both with and without inclanation.

Figure 12.  Variation of A > 0 on θ(ξ) for both with and without inclanation.
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Figure 13.  Variation of A < 0 on θ(ξ) for both with and without inclanation.

Figure 14.  Variation of R1 on θ(ξ) for both with and without inclanation.

Figure 15.  Variation of Bi on θ(ξ) for both with and without inclanation.
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each data point of the ANN models developed. While there are data points on the x-axis of the charts, there are 
MSE values on the y-axis. It should be noted that the values obtained by the calculated MSE values are quite low. 
The low values reached by the MSE values are another indication that both ANN models are ideally developed. 
In analyzing the performance of ANNs, it is important to analyze the error rates between predicted values and 
target values. For this purpose, error rates have been calculated and analyzed for each data point. In Fig. 21 the 
error rates of both ANN models are shown for each data point. When the graphics are examined, it is seen that 
the error rates of both models are low. When the error rates are evaluated, it is seen that the developed ANN 
models can predict Skin Friction Coefficients and Nusselt Numbers with acceptable error rates. Figure 22 shows 
the comparison of the prediction data obtained from both ANN models with the numerical data which are the 
target values. While there are target data on the x-axes of the graphs, there are ANN predictions on the x-axes. 

Figure 16.  Performance of the ANN (a) Skin Friction Coefficients (b) Nusselt Number.

Figure 17.  Training data (a) Skin Friction Coefficients (b) Nusselt Number.
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When the graphs are examined, it is seen that the data points obtained from both ANN models are located on 
the equality line. This state of the data points confirms that both ANN models are developed to be able to predict 
with high accuracy. Numerical values of performance parameters of both ANN models are given in Table 2.

Final remarks
In current study we successfully utilized the ANN approach for prediction of electro-hydrodynamic BLSF of Wil-
liamson fluid towards a permeable stretched surface under heat generation/absorption and convective boundary 
condition. The data attained from the training, validation and testing stages of the proposed ANN model have 
been analyzed with numerical techniques and proved to have excellent prediction accuracy. The presented ANN 
model is reliable, effective and time saving as it requires less effort and provides quick results than numerical 
techniques. Furthermore, it is inferred that the developed ANN model may be regarded as an appropriate and 

Figure 18.  Validation data (a) Skin Friction Coefficients (b) Nusselt Number.

Figure 19.  Test data (a)Skin Friction Coefficients (b) Nusselt Number.
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effective approach for solving the heat transfer aspects with Newtonian/non-Newtonian fluid flow challenges. 
The main key points of this study as follows:

• The velocity profile is lessened for increment in both magnetic and Wessinberg numbers.
• Temperature field rises with an increament of the heat source while similar trend is noted for higher values 

of Biot and thermal slip parameter.
• Skin friction coefficient reduces with increasing values of Weissenberg parameter, unsteady parameter for 

both inclined and non-inclined MHD cases.
• For the ANN model developed to predict the Skin Friction Coefficients values, the MSE value is 1.93× 10−3 , 

the R value is 0.99540 and the average error rate is 0.57%.
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Figure 20.  MSE values (a) Skin Friction Coefficients (b) Nusselt Number.
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• For the ANN model developed to predict the Nusselt Number, the MSE value has been calculated as 
3.40× 10−3 , the R value as 0.93413 and the average error rate as −0.10%.

• These results showed that the developed ANN models have been developed in such a way that they can 
calculate Skin Friction Coefficients and Nusselt Number values with very low error rates and high accuracy.

• The results obtained from the study revealed that ANNs are one of the ideal tools that can be used to predict 
the Skin Friction Coefficients and Nusselt Number values.
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Figure 22.  Numerical values vs ANN Prediction (a) Skin Friction Coefficients (b) Nusselt Number.

Table 1.  Arguments xk and corresponding coefficients Ak.

xk Bk

0.137793 0.308441116

0.729455 0.401119929

1.80834 0.218068288

3.40143 0.062087456

5.5525 0.009501517

8.33015 0.000753008

11.8438 0.000028259

16.2793 4.24931× 10−7

21.9966 1.83956× 10−9

29.9207 9.91183× 10−13

Table 2.  Numerical values of performance parameters of ANN models.

Skin Friction Coefficients Nusselt Number

MSE R MoD MSE R MoD

Train 1.27× 10−04 0.99928 0.27 2.95× 10−07 0.99999 0.09

Validation 2.61× 10−03 0.99015 1.82 9.85× 10−04 0.96602 −1.06

Test 3.07× 10−03 0.98102 0.86 9.22× 10−03 0.95998 0.02

All 1.93× 10−03 0.99540 0.57 3.40× 10−03 0.93413 −0.10
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