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Feature importance correlation 
from machine learning indicates 
functional relationships 
between proteins and similar 
compound binding characteristics
Raquel Rodríguez‑Pérez1,2 & Jürgen Bajorath1*

Machine learning is widely applied in drug discovery research to predict molecular properties and aid in 
the identification of active compounds. Herein, we introduce a new approach that uses model‑internal 
information from compound activity predictions to uncover relationships between target proteins. On 
the basis of a large‑scale analysis generating and comparing machine learning models for more than 
200 proteins, feature importance correlation analysis is shown to detect similar compound binding 
characteristics. Furthermore, rather unexpectedly, the analysis also reveals functional relationships 
between proteins that are independent of active compounds and binding characteristics. Feature 
importance correlation analysis does not depend on specific representations, algorithms, or metrics 
and is generally applicable as long as predictive models can be derived. Moreover, the approach 
does not require or involve explainable or interpretable machine learning, but only access to feature 
weights or importance values. On the basis of our findings, the approach represents a new facet of 
machine learning in drug discovery with potential for practical applications.

In medicinal chemistry and drug design, machine learning (ML) has long been applied to predict molecular 
properties of compounds, especially biological  activity1,2. ML models can be developed to qualitatively or quanti-
tatively predict compound activity against given biological targets. For early compound prioritization, classifica-
tion models derived to distinguish between specifically active and inactive compounds are preferentially  used3,4. 
In a given chemical reference space defined by selected molecular representations (descriptors), such models 
are trained to correlate chemical/structural patterns with biological activity and predict new active compounds. 
Furthermore, in compound optimization, regression models are often used to predict numerical compound 
potency  values4,5. In this case, feature patterns of active compounds are correlated with potency values of known 
compounds to enable quantitative predictions. In general, ML classification or regression models can be derived 
to predict any other physicochemical or biological compound properties.

The qualitative and quantitative ML prediction strategies outlined above apply regardless of the algorithms 
that are used and their computational complexity. Given the rising popularity of deep neural network archi-
tectures in many scientific fields including medicinal chemistry and drug  design6–8, there is an intense debate 
concerning explainable and interpretable  ML9–11. In the practice of medicinal chemistry, the acceptance of “black 
box” ML predictions is typically low. Simply put, chemists are reluctant to synthesize and test compounds result-
ing from predictions they do not understand; rightly so. Of course, the confidence in black box predictions is 
not only low in medicinal chemistry and drug design, but also in many other fields, which in part results from 
the use of models that are too complex for the prediction tasks at  hand10. Regardless, various efforts have been 
made to aid in explaining ML  predictions11 including feature weighting and  mapping12,13. These techniques aim 
to identify structural features that determine predictions. Mapping such features onto test compounds helps to 
analyze the results from a chemical perspective. Accordingly, estimation of feature weights or importance values 
is applicable to better understand non-transparent ML model components that drive predictions.
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However, while feature weighting has thus far been used to aid in model interpretation, albeit only in a 
limited number of studies, it can also be adapted to provide the basis for an approach that is completely distinct 
from model explanations, as reported herein. We have reasoned that feature importance distributions might be 
determined as a model-agnostic and model-internal computational signature of data set properties, without any 
requirements to interpret predictions. To these ends, we have further extended the feature weighting approach 
and introduce feature importance correlation analysis to reveal similar data set signatures. In our proof-of-con-
cept study, the methodology was applied to compound activity prediction models where high feature importance 
correlation served as an indicator of similar compound binding characteristics of proteins as well as functional 
relationships. To our knowledge, feature importance correlation analysis represents a novel concept in ML and 
computer-aided drug discovery. In the following, the results of our proof-of-concept investigation are presented.

Results
Analysis strategy. To investigate feature importance correlation between models for compound activity 
prediction on a large scale, we prioritized target proteins from different classes. In each case, at least 60 com-
pounds from different chemical series with confirmed activity against a given protein and available high-quality 
activity data were required for training and testing (positive instances) and the resulting predictions had to 
reach reasonable to high accuracy (see “Methods”). As negative training and test instances, compounds without 
known biological activity from medicinal chemistry vendors were randomly selected. For feature importance 
correlation analysis, the negative class should ideally provide a consistent inactive reference state for all activity 
predictions. For the widely distributed targets with high-confidence activity data studied here, such experimen-
tally confirmed consistently inactive compounds are unavailable, at least in the public domain. Therefore, the 
negative (inactive) class was represented by a consistently used random sample of compounds without biological 
annotations (see “Methods”). All active and inactive compounds were represented using a topological finger-
print calculated from molecular structure. To ensure generality of feature importance correlation and establish 
proof-of-concept, it was important that a chosen molecular representation did not include target information, 
pharmacophore patterns, or features prioritized for ligand binding.

For classification, the random forest (RF) algorithm was applied as a widely used standard in the field, due 
to its suitability for high-throughput modeling and the absence of non-transparent optimization procedures. 
Feature importance was assessed adapting the Gini impurity criterion (see “Methods”), which is well-suited to 
quantify the quality of node splits along decision tree structures (and also inexpensive to calculate). Feature 
importance correlation was determined using Pearson and Spearman correlation coefficients (see “Methods”), 
which account for linear correlation between two data distributions and rank correlation, respectively. For our 
proof-of-concept study, the ML system and calculation set-up was made as transparent and straightforward as 
possible, preferably applying established standards in the field.

Classification performance. A total of 218 qualifying proteins were selected covering a wide range of 
pharmaceutical targets, as summarized in Supplementary Table  S1. Target protein selection was determined 
by requiring sufficient numbers of active compounds for meaningful ML while applying stringent activity data 
confidence and selection criteria (see “Methods”). For each of the corresponding compound activity classes, a 
RF model was generated. The model was required to reach at least a compound recall of 65%, Matthew’s cor-
relation coefficient (MCC) of 0.5, and balanced accuracy (BA) of 70% (otherwise, the target protein was disre-
garded). Table 1 reports the global performance of the models for the 218 proteins in distinguishing between 
active and inactive compounds. The mean prediction accuracy of these models was above 90% on the basis of 
different performance measures. Hence, model accuracy was generally high (supported by the use of negative 
training and test instances without bioactivity annotations), thus providing a sound basis for feature importance 
correlation analysis.

Feature importance analysis. Contributions of individual features to correct activity predictions were 
quantified. The specific nature of the features depends on chosen molecular representations. Here, each training 
and test compound was represented by a binary feature vector of constant length of 1024 bits (see “Methods”). 
Each bit represented a topological feature. For RF-based activity prediction, sequential feature combinations 
maximizing classification accuracy were determined. As detailed in the Methods, for recursive partitioning, Gini 
impurity at nodes (feature-based decision points) was calculated to prioritize features responsible for correct 
predictions. For a given feature, Gini importance is equivalent to the mean decrease in Gini impurity calculated 
as the normalized sum of all impurity decrease values for nodes in the tree ensemble where decisions are based 
on that feature. Thus, increasing Gini importance values indicate increasing relevance of the corresponding 
features for the RF model. Gini feature importance values were systematically calculated for all 218 target-based 

Table 1.  Model performance. The mean, standard deviation (Std) and minimum (Min) values are reported for 
multiple metrics including recall, BA, F1 score, and MCC across the 218 RF models.

Recall BA F1 MCC

Mean 93% 96% 0.90 0.90

Std 8% 4% 0.12 0.11

Min 66% 83% 0.47 0.54
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RF models. On the basis of these values, features were ranked according their contributions to the prediction 
accuracy of each model.

Feature importance correlation. A compound activity class implicitly captures ligand binding charac-
teristics for a given target. Accordingly, we hypothesized that the feature importance ranking derived from a 
target-based RF model might represent a computational signature of binding characteristics of this target. If 
so, feature correlation calculated on the basis of these rankings could be used as an indicator for relationships 
between targets and their binding characteristics. Of note, a feature ranking captures model-internal informa-
tion without taking any target criteria into account. This has important implications for feature importance 
correlation. If accurate prediction models can be derived, as in this case, neither the chemical nature of the 
features, nor their encoding needs to be further evaluated. Instead, only their correlation (or similarity) must 
be determined. Therefore, following our approach, a critically important step was determining whether feature 
importance correlation differed among protein pairs as a potential indicator of varying relationships. Figure 1 
shows the distribution of systematically calculated Pearson and Spearman correlation coefficients for compari-
son of feature importance values and feature rankings, respectively. For both coefficients, a large value range 
was observed. As anticipated for diverse target proteins, many comparisons revealed weak correlation, with 
median coefficient values of 0.11 and 0.43, respectively. However, there were numerous “statistical outliers” with 
larger values, in part indicating strong correlation. Supplementary Fig. S1 shows a heatmap capturing all 47,524 
pairwise comparisons that further illustrates these observations. In the map, target-based models were hierar-
chically clustered, revealing the formation of clusters by models with high feature importance correlation along 
the diagonal and the presence of varying degrees of correlation across the map. Hence, feature importance cor-
relation analysis yielded different results warranting further investigation.

Similar binding characteristics. The next task was to determine whether strong feature importance 
correlation was indeed an indicator of related ligand binding characteristics. By definition, proteins sharing 
active compounds have similar binding characteristics. Therefore, we searched for pairs of targets with com-
mon ligands. While proteins forming 22,008 pairs (93%) did not have any active compounds in common, 452 
protein pairs were found to share a single active compound, 527 pairs shared two to 10 actives, and 666 pairs 
more than 10 actives (with a maximum of 2191). Figure 2 reports the mean feature importance correlation for 
protein pairs sharing increasing numbers of active compounds and reveals a clear relationship. In the presence 
of shared actives, correlation was generally strong and further increasing with increasing numbers of common 
compounds. Thus, these findings clearly showed that feature importance correlation revealed similar binding 
characteristics. We also hierarchically clustered proteins from pairs with strong correlation. Supplementary 
Fig. S2 shows a heatmap for a subset of proteins from pairs with a Pearson coefficient of at least 0.5. This subset 
resulted from hierarchical clustering of the data sets based on pairwise correlation coefficient values and repre-
sented the largest cluster, which was enriched with G protein coupled receptors. In this heatmap, proteins from 
the same enzyme or receptor families were grouped together. Members of the same family typically shared a few 
active compounds.

Functional relationships. In light of these findings, we then asked the question whether feature impor-
tance correlation might also serve as an indicator of functional relationships between proteins that are inde-
pendent of active compounds. While this supposition appeared to be far-fetched, we devised an analysis scheme 

Figure 1.  Feature importance correlation. Distributions of feature importance correlation values are reported in 
boxplots for all protein pairs in the data set. Correlation values were calculated using the Pearson (blue) and 
Spearman (gray) coefficients.
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for investigating it. Therefore, Gene Ontology (GO) terms covering cellular component, molecular function, 
and biological process were extracted for the 218 proteins. Between four and 189 GO terms were obtained per 
protein (with a mean of 43). For each protein pair, we then calculated the Tanimoto coefficient (Tc) to quantify 
the overlap in GO terms:

Here, A and B represent the sets of GO terms for a pair of proteins A and B, respectively.
Accordingly, GO Tc values served as a measure of functional relatedness of proteins from a pair. Only 2058 

protein pairs (8.7%) did not share any GO terms (resulting in Tc = 0). Supplementary Fig. S3 reports the global 
distribution of GO Tc values over all the 218 proteins. The distribution is Gaussian-like on a logarithmic scale, 
as expected in the presence of many random values. The mode of the distribution maps to small Tc value < 0.10.

Figure 3 shows feature importance correlation for protein pairs with increasing GO Tc values, which reveals 
another clear relationship. Correlation increased with increasing functional relatedness of paired proteins. At 
GO Tc values of ~ 0.75, maximal correlation was observed. Given the global GO Tc distribution, values of 0.50 or 
greater were of high significance. Thus, feature importance correlation also was a strong indicator of functional 
relationships not taking compound information into account.

Tc(A, B) =
|A ∩ B|
|A ∪ B|

Figure 2.  Correlation for protein pairs with common active compounds. Mean feature importance correlation 
values are reported for protein pairs with increasing numbers of shared compounds.

Figure 3.  Correlation for protein pairs with common GO annotations. Mean feature importance correlation 
values are reported for protein pairs with increasing GO Tc values.
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From correlations to multi‑target compounds. Since feature importance correlation indicates func-
tional relationships between proteins as well as similar binding characteristics, high correlation might also 
imply that proteins share ligands, as analyzed above. Figure 4 shows two exemplary compounds with activity 
against different targets that were identified based on this premise. For example, the serotonin 5-HT 2A recep-
tor (HTR2A) was strongly correlated with several dopamine receptor isoforms (correlation coefficients of 0.90 
or above). We searched the therapeutic target database (TTD)14 for new drug candidates with corresponding 
target annotations, revealing zicronapine (currently in phase III clinical trials), which modulates HTRA2 and 
the dopamine D1 and D2 receptors (Fig. 4a). Another exemplary set of proteins with strong pairwise correla-
tion included the dopamine, norepinephrine, and serotonin transporter proteins. In this case, TTD was found 
to contain a serotonin-norepinephrine-dopamine reuptake inhibitor with reported activity against these three 
targets (Fig. 4b). In light of such examples, it is conceivable that feature importance correlation could also be 
used to suggest new targets for known bioactive compounds. For example, if two proteins display strong feature 
importance correlation, known active compounds might be subjected to cross-testing.

Unexpected correlations. Supplementary Fig. S4 shows that proteins forming pairs with increasing fea-
ture importance correlation tended to originate from the same target group. Hence, many of these paired pro-
teins were related, as one might expect. However, strongly correlated pairs also contained distinct proteins. 
While correlation coefficient values larger than 0.75 were mostly observed for proteins from the same class, val-
ues of strongly correlated protein pairs from different classes fell mostly into the range from 0.50 to 0.75. Table 2 
reports examples of strongly correlated pairs of proteins from different target groups (which were among the sta-
tistical outliers in Fig. 1). Although proteins in these pairs did not share any active compounds and were virtually 
unrelated, strong feature importance correlation indicated (non-obvious) functional relationships. For example, 

Figure 4.  Multi-target compounds. Shown are two exemplary clinical compounds with different activity. Each 
of these compounds is active against strongly correlated target proteins. (a) Zicronapine, with activity against 
HTR2A and dopamine D1 and D2 receptors. (b) Serotonin-norepinephrine-dopamine reuptake inhibitor with 
activity against the dopamine, norepinephrine, and serotonin transporter proteins.

Table 2.  Exemplary strongly correlated pairs of proteins from different classes.

Target 1 Target 2

Pearson/Spearman correlationName Classification Name Classification

Cystinyl aminopeptidase Enzyme/protease Estrogen receptor beta Transcription factor/nuclear 
receptor 0.77/0.37

Cystinyl aminopeptidase Enzyme/protease Estrogen receptor alpha Transcription factor/nuclear 
receptor 0.72/0.41

Corticotropin releasing factor 
receptor 1

Membrane receptor/G protein 
coupled receptor (GPCR) Phosphodiesterase 10A Enzyme/hydrolase 0.72/0.41

Adenosine A1 receptor Membrane receptor/GPCR PI3-kinase p110-delta subunit Enzyme/transferase 0.65/0.49

Carboxyl-esterase 2 Enzyme Neuronal acetylcholine receptor 
protein alpha-7 subunit

Ion channel/ligand-gated ion 
channel 0.61/0.50

Prostanoid DP receptor Membrane receptor/GPCR Protein-tyrosine phosphatase 1B Enzyme/hydrolase 0.60/0.45

Adenosine A2a receptor Enzyme/hydrolase Phosphodiesterase 10A Membrane receptor/GPCR 0.60/0.44

Monoamine oxidase B Enzyme/oxidoreductase Serotonin 2c receptor Membrane receptor/GPCR 0.59/0.63

Carbonic anhydrase IX Enzyme/lyase Serotonin 6 (5-HT6) receptor Membrane receptor/GPCR 0.58/0.65

Peroxisome proliferator-activated 
receptor gamma

Transcription factor/nuclear 
receptor Protein-tyrosine phosphatase 1B Enzyme/hydrolase 0.57/0.49

Beta amyloid A4 protein Membrane receptor Serotonin transporter Transporter/eletrochemical 
transporter 0.53/0.57

Acyl coenzyme A: cholesterol 
acyltransferase Enzyme Cannabinoid CB1 receptor Membrane receptor/GPCR 0.36/0.69
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with a Pearson correlation coefficient of 0.77, strong correlation was observed for cystinyl aminopeptidase and 
estrogen receptor alpha and beta (a protease and nuclear hormone receptors, respectively). These proteins had 
only five GO terms in common (signal transduction, zinc ion binding, metal ion binding, cell–cell signaling, and 
protein binding) that were not indicative of a specific relationship. Nonetheless, there was a physiological link 
between these proteins. Cystinyl aminopeptidase cleaves vasopressin, oxytocin, and other peptide hormones and 
catalyzes the final step in the conversion of angiotensinogen to angiotensin IV. During pregnancy, it is secreted 
into the maternal serum. Estrogen receptor alpha and beta also trigger degradation of peptide hormones such 
as vasopressin, oxytocin, or angiotensin III and aid in homeostasis during  pregnancy15. Feature importance cor-
relation indicated a number of other non-obvious relationships (Table 2), for example, between adenosine A1 
receptor and the PI3-kinase p110-delta subunit. Of note, other G protein coupled receptors and protein kinases 
are known to share ligands, further supporting relationships between these different protein classes.

Conclusion
In drug discovery research, ML is mostly applied to predict molecular properties and search for active com-
pounds. Among practitioners, there is often limited trust in computational predictions if they cannot be ration-
alized from a chemical or biological perspective. To alleviate the black box character of many (but not all) ML 
models, techniques such as feature weighting and mapping can be applied to help explain the predictions. Such 
efforts are typically focused on individual models and their output. In this work, we have investigated feature 
importance on a large scale for a purpose completely distinct from model interpretation. The concept of feature 
importance correlation introduced in this study aims to identify relationships between proteins on the basis of 
ML model-internal information without the need to explain individual predictions. Instead, computational sig-
natures of feature importance are generated and feature importance correlation is quantified. Therefore, we have 
systematically determined feature importance for compound activity prediction models of 218 target proteins 
and assessed feature importance correlation in a pairwise manner. The underlying idea was that correlation 
between important features learned by independent models for different target proteins should be an indicator 
of relationships between these proteins. Accordingly, in the case of compound activity predictions, strong cor-
relation should indicate similar binding characteristics of paired proteins. Proof-of-concept for this conjecture 
was provided by confirming a high degree of feature importance correlation for models of proteins that shared 
active compounds and thus had similar binding characteristics. Moreover, we also found that strong feature 
importance correlation was an indicator of functional relationships between proteins according to GO, not tak-
ing active compounds into account; a surprising finding. These results also indicate that populations of active 
compounds of target proteins implicitly capture more functionally relevant information than one might expected.

From an ML perspective, major conditions of feature importance correlation analysis represent an attractive 
aspect of this concept. Individual models must be consistently derived and sufficiently accurate and discrete 
features must contribute to the predictions. As long as these requirements are met, the nature of the features and 
the specifics of the ML algorithm may vary, hence alleviating any need for model interpretation. Accordingly, a 
variety of molecular representations, ML methods, and metrics are applicable to determine feature importance 
correlation or similarity. These include approaches such as RF and the Gini importance measure that are com-
putational efficient and suitable for large-scale analysis, as reported herein.

Strong feature importance correlation was also observed for a subset of proteins from different target groups 
that did not share active compounds. Such unexpected relationships are of particular interest from a functional 
viewpoint and also of practical relevance for applications such as drug repurposing. New targets for existing 
drugs are typically inferred from binding site or ligand similarity, but have not been predicted on the basis of 
global binding characteristics or functional relationships. Importantly, feature importance correlation analysis 
does neither require the comparison of compounds with activity against different targets, nor the detection of 
multi-target compounds, but establishes higher-level relationships between target proteins of interest.

In summary, in light of the findings reported herein, the concept of feature importance correlation represents 
a new facet of ML in drug discovery research and provides new opportunities. For example, one can further 
explore unexpected relationships between target proteins revealed by feature importance correlation.

Methods
Compound data and features. Compound activity classes were assembled from  ChEMBL16 and nega-
tive training and test compounds without target annotations were randomly selected from the ZINC  database17 
comprising compounds from medicinal chemistry vendors. There was no overlap between the selected ChEMBL 
and ZINC compounds. For feature importance analysis, it must be ensured that the negative class represents an 
inert reference state for the predictions. Since ChEMBL (or other public database) do not contain confirmed 
consistently inactive compounds for the qualifying proteins, this was best accomplished by a random sample of 
compounds without biological annotations.

From ChEMBL, active compounds were selected on the basis of stringent criteria. Specifically, compounds 
were only considered if high-confidence activity data were available, i.e.  Ki values from highest-confidence 
(score 9) direct interaction assays with individual human proteins. Compounds with multiple measurements 
not falling into the same order of magnitude were disregarded as well as borderline active compounds (pKi < 5). 
Activity classes were required to contain at least 60 compounds and two different chemical series, which were 
systematically determined using an algorithm for the identification of analog  series18.

On the basis of these selection criteria, 218 compound data sets were assembled with activity against diverse 
target proteins, containing 62 to 3541 compounds per set. Proteins were assigned to target groups according 
the ChEMBL classification  scheme16. Notably, there was only very limited compound overlap between different 
target-based data sets. Only 1,645 (7%) of all possible pairs shared active compounds.
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Compounds were represented using the binary version of the extended connectivity fingerprint of diameter 
4 (ECFP4) with a fixed length of 1024 feature  bits19. This EFCP4 encoding was selected since it yielded accurate 
models and was of lower dimensionality than other hashed encodings, which was preferable for feature impor-
tance correlation analysis. The topological fingerprint was calculated with a Python-based in-house implementa-
tion from the OpenEye OEChem toolkit20.

Machine learning. RF represents an ensemble of decision trees built in parallel using recursive  partitioning21. 
For activity predictions, compounds are recursively divided into subsets to arrive at terminal nodes combin-
ing compounds with the same class label (active/inactive). To reduce high correlation among trees, models 
are trained on a bootstrap sample and a random subset of features are considered for node splitting (known as 
feature bagging)22. RF model predictions result from a consensus decision (majority vote) over the ensemble (set 
to 500 trees).

Two-fold cross validation was implemented to optimize the values of four model hyper-parameters via grid 
search including minimum samples per leaf node (candidate values: 1, 5, 10) minimum samples per split node 
(2, 8, 16), maximum number of features during node splitting (square root or logarithm to the base 2 of the 
number of features), and class weights. The latter parameter determined whether or not weighting was applied to 
compounds during training (inversely proportional to the class frequencies for imbalanced data sets). Decision 
trees were permitted to grow until leaves contained less than the minimum number of compounds required to 
split a node and the resulting branches had at least the minimum terminal node size. All RF calculations were 
carried out with scikit-learn23.

Activity classes were divided into training (75%) and test sets (25%) based on chemical series  splitting24, and 
the same sets of negative training (1000) and test (10,000) instances were used for all models.

Model performance was evaluated on the basis of multiple performance measures including balanced accu-
racy (BA)25, F1  score26, and Matthew’s correlation coefficient (MCC)27.

TP: true positive, TN: true negative, FP: false positive, FN: false negative.

Feature importance correlation. The Gini impurity  criterion28 was used as a measure of node-based 
recursive partitioning quality. Gini impurity is a metric from information theory defined as:

Here, pi is the frequency for class i at a given node, and n is 2 for binary classification. Accordingly, Gini impor-
tance for a given feature is equivalent to the mean decrease in Gini impurity, i.e. the normalized sum of all 
impurity decrease values for nodes in the RF where splitting was based on that  feature29. Thus, increasing values 
indicate increasing feature importance for the RF  model29.

Correlation or statistical association across feature importance values from the 218 RF models was computed 
using the Pearson and Spearman correlation coefficients. Pearson’s coefficient accounts for a proportional rela-
tionship whereas the Spearman coefficient quantifies rank  correlation30,31. Both coefficients range from -1 to 1, 
accounting for perfect negative and positive correlation, respectively. Calculations were carried out with R and 
Python.

Data availability
Most calculations were carried out with public domain data and programs. The OpenEye OEChem toolkit requires 
a license from OpenEye Scientific Software, Inc.
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