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A hybrid computational framework 
for intelligent inter‑continent 
SARS‑CoV‑2 sub‑strains 
characterization and prediction
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Whereas accelerated attention beclouded early stages of the coronavirus spread, knowledge of actual 
pathogenicity and origin of possible sub‑strains remained unclear. By harvesting the Global initiative 
on Sharing All Influenza Data (GISAID) database (https:// www. gisaid. org/), between December 2019 
and January 15, 2021, a total of 8864 human SARS‑CoV‑2 complete genome sequences processed 
by gender, across 6 continents (88 countries) of the world, Antarctica exempt, were analyzed. We 
hypothesized that data speak for itself and can discern true and explainable patterns of the disease. 
Identical genome diversity and pattern correlates analysis performed using a hybrid of biotechnology 
and machine learning methods corroborate the emergence of inter‑ and intra‑ SARS‑CoV‑2 sub‑strains 
transmission and sustain an increase in sub‑strains within the various continents, with nucleotide 
mutations dynamically varying between individuals in close association with the virus as it adapts to 
its host/environment. Interestingly, some viral sub‑strain patterns progressively transformed into 
new sub‑strain clusters indicating varying amino acid, and strong nucleotide association derived from 
same lineage. A novel cognitive approach to knowledge mining helped the discovery of transmission 
routes and seamless contact tracing protocol. Our classification results were better than state‑of‑the‑
art methods, indicating a more robust system for predicting emerging or new viral sub‑strain(s). The 
results therefore offer explanations for the growing concerns about the virus and its next wave(s). A 
future direction of this work is a defuzzification of confusable pattern clusters for precise intra‑country 
SARS‑CoV‑2 sub‑strains analytics.

The coronavirus disease pandemic had forced complete shutdown on all economies of the  world1,2. Since then, 
its breadth and depth have grown tremendously, causing disruptions that demand a hybrid of computational 
approaches sufficient to discover the changing nature of the virus as it transmits from country to country. A 
hybrid computational approach combines more than one methodology or system for the purpose of creating 
new and better models. This approach is adopted in this paper to complement the efforts of biotechnology/bio-
informatic solutions for intelligent mining of the SARS-CoV-2 genomes. While there exist claims that the virus 
has remained  unchanged3, a growing number of studies have reported the emergence of several sub-strains4,5. 
This explains why the rapid human to human transmission of the pathogenic SARS-CoV-2 to most parts of the 
world has exhibited differences in disease severity and fatality even within a demographic region of a country. The 
disparity on the one hand has been attributed to factors such as gender, age, ethnicity, race, and co-morbidities6. 

OPEN

1Department of Computer Science, University of Uyo, P.M.B. 1017, Uyo 520003, Nigeria. 2Centre for Research and 
Development, University of Uyo, P.M.B. 1017, Uyo 520003, Nigeria. 3Department of Mathematics and Computing, 
Mount Royal University, 4825 Mt Royal Gate SW, Calgary, AB T3E 6K6, Canada. 4College of Health Sciences, 
University of Uyo, P.M.B. 1017, Uyo 520003, Nigeria. 5National Institute for Pharmaceutical Research and 
Development (NIPRD), Plot 942, Cadastral Zone C16, Idu, Industrial District, Abuja, FCT, Nigeria. 6College of Health 
Sciences, Niger Delta University, Wilberforce Island, P.M.B. 071, Amassama 560103, Nigeria. 7Department of 
Botany and Ecological Studies, University of Uyo, P.M.B. 1017, Uyo 520003, Nigeria. 8Department of Biochemistry, 
University of Uyo, P.M.B. 1017, Uyo 520003, Nigeria. *email: mosesekpenyong@uniuyo.edu.ng

https://www.gisaid.org/
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-93757-w&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:14558  | https://doi.org/10.1038/s41598-021-93757-w

www.nature.com/scientificreports/

However, the dissimilarity in genome sequencing of early viral samples obtained from infected individuals in 
European, North American, Asian, and Oceanian  regions7 disgorged several studies aimed at analyzing and 
understanding the evolutionary history and relationships among the different SARS-CoV-2 strains.

SARS-CoV-2 is a β-coronavirus–an enveloped non-segmented positive-sense RNA virus (subgenus–sarbe-
covirus, subfamily–Orthocoronavirinae)8, which proliferation begun in December 2019 in Wuhan China. It has 
since been confirmed that two strains of the new coronavirus (the L- and S-strains) are spreading around the 
world  today9, and the fact that the L-type is more prevalent suggests that it is “more aggressive” than the S-type. 
Greater proportion of research progress on SARS-CoV-2 has taken the biotechnology  dimension10,11, specifically 
focusing on species characterization and variants analysis through features extraction. Consequently, Artificial 
Intelligence (AI) and Machine Learning (ML) methods are expanding biotechnology capacity into the bioinfor-
matics realm, through intelligent genome probing for precise viral features classification. So far, AI/ML research 
on SARS-CoV-2 has permeated four key areas of medicine and healthcare, namely, screening and  treatment12–15, 
contact  tracing16, prediction and  forecasting17,18, and drugs and vaccine  discovery19–21.

To understand the origin and structure of SARS-CoV-2, a sequence of the viral genetic material is required. 
Sequencing viral genomes is performed to identify regions of similarity that may have consequences for func-
tional, structural, or evolutionary  associations22. Furthermore, it can reveal the possibility of future health risks 
and vaccine remedies. Phylogenetic tree and genomic tree (also referred to as hierarchical clustering) are common 
determinants for representing genetic diversity and evolutionary relationships of sequenced genomes. While 
phylogenetic tree reflects slow evolution within the genome (point mutations), hierarchical clustering describes 
major genetic re-arrangement events (insertions or deletions). Converting massive amount of complete genome 
sequences into meaningful biological representations has limited progress of discovering viral sub-strains and 
detailed transmission routes. Although numerous algorithms/tools have evolved to target specific gene sites/
locations for “on-the-fly” online phylogeny representations, incomplete representation and clustering errors 
abound–as different genome sites undergo different evolutionary changes, resulting in disparate multi-dimen-
sional patterns at different sites. Attempts at estimating phylogenies by comparing entire genomes have been 
made by focusing mainly on gene content and gene order comparisons. While early attempts concentrated on 
morphological characters with the premise that direct genes comparison makes more sense, modern attempts 
use sequences from homologous  genes22 but are burdened by the fact that a gene’s evolutionary history may differ 
from the evolutionary history of the organism, as some genes sufficiently conserved across the species of interest 
may escape detection. Alignment-free genome comparison methods are therefore becoming  popular22,23 and 
have evolved to crash the heavy computational requirements of traditional alignment-based methods. Randhawa 
et al.24 for instance proposed an alignment-free approach based on ML, for fast, inexpensive, and taxonomic 
classification of complete COVID-19 genomes in real time.

Variants of SARS-CoV-2 have emerged with reported new peaks of infection. A variant is a strain when it 
has a different characteristic. Variants with few mutations belong to the same lineage. Lineages are important 
for showing how a virus spreads through communities or populations. Interestingly, the less virulent strains are 
disappearing while those showing significant mutant variations prevail. A few documented cases of the spread of 
the viral sub-strains are observed based on locations, as follows: In USA, 4 sub-strains and 11 top mutations were 
discovered from the analysis of 12,754 complete SARS-CoV-2 genome sequences, where 2 out of 4 discovered 
sub-strains were potentially more  infectious25. These sub-strains and 5 mutants were first detected in China, 
Singapore, and the United  Kingdom26. In England, a sub-strain of replicative advantage was also discovered as 
variant of SARS-CoV-2, characterized by 9 spike protein mutations consisting of 3 deletions and 6  substitutions27. 
Some of these variants were prevalent in Netherlands, Switzerland, and France. In Southwestern Wisconsin, 
Southeastern Minnesota, Northeast Iowa, the sequencing of whole viral genomes of COVID-19 positive patients 
showed the spread of sub-strains to individuals in 13 cities from epicenters of the  infection28. However, no viral 
sub-strain was observed in  China5.

Vaccine types are also being circulated with several conspiracy theories and disbeliefs about the virus exist-
ence spreading across the globe. There is fear that emerging sub-strain variants may confer resistance to antibody 
neutralization, as evolving variants of concern are rapidly growing lineage to SARS-CoV-2 with high replicable 
mutants that may hinder the efficiency of existing vaccines and expand in response to the increasing after‐infec-
tion or vaccine‐induced  seroprevalence27. Currently, most COVID-19 vaccines target the viral spike protein. 
Although mutations may reduce their efficacy, they do not obliterate their effects. Inactivated virus vaccines that 
target the whole virus have been developed in China, as the immune responses they induce target more than a 
single part of the spike protein; hence, inducing several protective immune responses and instilling redundancy 
in the protective immune responses.

Mining additional knowledge from clinical data would assist complete features extraction, missing infor-
mation recovery, hidden patterns understanding, and facilitate output targets labeling. Most biotechnology/
bioinformatics tools are ‘black boxes’ and not open to contributions from the research community including 
reproducible research. Furthermore, extracted features are incomplete to aid meaningful knowledge integration. 
To support the growing field of medical- and bio- informatics, this paper adopted a novel approach to genome 
sequence mining. Transitions in nucleotide (dinucleotide) and changes in gene (mutation) information were 
exploited as input features or predictors, as these features have direct connection with the behavior of the virus. 
A hierarchical agglomerative clustering method was applied on the extracted features to detect optimal natural 
clusters for determining the evolutionary group of the various isolates, across countries. Using a self-organizing 
map (SOM), genome patterns with low similarity profile (or highly variable genomes) including the reference 
genome, were discerned to visually establish which sub-strain group(s) the various genome samples or isolates 
belong. By decoupling the SOM map through correlation hunting, a cognitive map that associates similar isolate 
clusters was obtained. The generated patterns and isolate similarity information provided details for enriching 
the input dataset through a supervised labelling of the classification targets. Statistical analysis validated the 
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variability of the SARS-CoV-2 isolates. This research has therefore made substantial contributions to knowledge, 
as it provides the following:

 (i) Useful Intermediate Results As opposed to most biotechnology and bioinformatic tools, useful interme-
diate results are produced in this paper to give further insights into the prevalence and transmission of 
SARS-CoV-2. The research is also replicable, as the algorithms and data are available to reproduce and 
validate our results.

 (ii) Support for the Contact Tracing of Undocumented Source of Infection Tracing infectious diseases routes 
for efficient documentation of infected cases is very crucial in emerging pandemic situations. While the 
excavated data holds only few traces of transmission history, our pattern clustering and cognitive knowl-
edge mining results groups the various isolates into sub-strain clusters. This information is then used 
to label the output targets for classification and prediction, hence, providing understanding of which of 
the viral sub-strain(s) maintain(s) the reference genome pattern or is/are spreading within a particular 
country or been acquired from a different country. Furthermore, pattern progressions indicating emerg-
ing cluster transitions are revealed by the self-organizing map deployed in this study.

 (iii) Intelligent System Framework From labelled classification targets, accurate sub-strain classification and 
prediction is achieved. The proposed framework combines machine learning techniques and cognitive 
knowledge mining to extract dinucleotide and mutation frequencies for base variant analysis. Also, hid-
den sub-strains interactions between nucleotide sequences and other information not hitherto seen in 
the raw data are uncovered.

 (iv) Gender-Specific Isolates Mining To engage meaningful research in SARS-CoV-2, characterization and 
prediction by gender is crucial. This aspect which is often missing in the literature was excavated from 
GSAID. A metadata of excavated SARS-CoV-2 genomes by gender is available (Data S7: SupplData7.
xlsx). The metadata permits the intelligent mining of SARS-CoV-2 demographic information, as ambi-
guities in annotation labels inherent in the Global initiative on Sharing All Influenza Data (GISAID) 
database (https:// www. gisaid. org/) have been resolved in this paper. Input features and classification 
target labels of unique isolates based on SOM cluster analysis and cognitive knowledge mining are also 
available (Data S8: SupplData8.xlsx). These resources can be integrated into expert decision-making 
systems to support early contact tracing and global disease surveillance.

Related works
Several studies have dwelled on the characterization of SARS-CoV-2 genome for tracing the evolution, strains, 
and diversity of the virus. In Tang et al.9, for instance, a population genetic analysis of 103 SARS-CoV-2 genomes 
was performed. Their analysis revealed two dominant types of SARS-CoV-2 namely the L type (~ 70%) and S type 
(~ 30%). In another study, Stefanelli et al.7 investigated the phylogeny of 2 patients in Italy; a Chinese tourist from 
Wuhan and an Italian diagnosed, isolated, and hospitalized in January and February 2020. They found the Italian 
patient’s strain to be different from the tourist’s strain, as it clustered with strains from Germany and Mexico, 
while the Chinese tourist’s strain was grouped with strains from Europe and Australia. Similarly, Somasundaram 
et al.29 systematically explored the phylogenetic and viral clade of 28 Indian isolates of SARS-CoV-2. A total of 
449 complete genome samples from USA, Europe, China, East Asia, Oceania, Middle East (Kuwait and Saudi 
Arabia) and India were collected from GISAID. A phylogenetic analysis by maximum likelihood was achieved 
using IQ tree. Out of the Indian isolates, 26 samples were equally distributed into 2 clusters (A and B). Cluster 
A consisted of mostly Oceania/Kuwait and 13 Indian samples, while cluster B contained Europe and some of 
Middle East/South Asian samples together with another 13 Indian samples. The remaining 2 Indian isolates 
which neither belonged to cluster A nor cluster B, were present in the cluster with mostly China and East-Asia 
samples. However, the use of small datasets and the lack of travel history rendered their findings inconclusive.

Application of ML in the combat of COVID-19 has inspired new discoveries as well as improved methods 
based on experience of previous/related epidemic. Familiar areas of application center around medical imaging, 
disease tracing, epidemiology modeling and medicine (analysis of protein structure and drug discovery) and 
virulent nature of the virus. Whereas the processing of input data for informed decision support is necessary, 
the types of data exploited in the case of SARS-CoV-2 and related pandemic are mainly demographic and/or 
(control or clinical data) contributed by patients/volunteers around the world. Table 1 presents a summary of 
works carried out on ML/AI in related areas of application, indicating the objective, number of isolates collected 
and data source, methods, results/findings, and drawbacks. From the related works, we observe the following: 
(i) Most of the works explore hybrid tools that combine biotechnology and ML/AI methodologies, which have 
advanced precision in approach and solution to the pandemic. (ii) While 50% of the works rely on limited 
genomic evidence, others are mainly simulation studies. (iii) The fulcrum of most of the works revolve around 
characterization and forecasting with comparative analysis of SARS-CoV-2 evolution, and relationship between 
it and (other) related viruses. (iv) All the works are silent on the gender dimension. (v) None of these works to 
the best of our knowledge has engaged the possibility of SARS-CoV-2 sub-strains discovery.

The abundance of repetitive DNA in human genome assembly has introduced huge gap of multi-megabase 
heterochromatic regions that challenges standard mapping and assembly algorithms. Consequently, the composi-
tion of the sequence and potential functions of these regions have largely remained unexplored. Furthermore, 
existing genome tools cannot readily engage complete genome analysis to predict complex details and reveal 
hidden patterns, essential to offer explanations to the increased diversity of viral diseases. This work is therefore 
motivated by the existing gap between scientific knowledge and clinical application. Despite current advancement 
in state-of-the-art predictions, application of personalized genomics into clinical practice is yet to flourish. By 
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Reference Objective
Number of isolate and 
source Method Result/finding Drawback

Randhawa et al.21

To combine machine
learning-based alignment-
free approach with COVID-
19 genomic signature for 
real-time taxonomic predic-
tions of unclassified new 
sequences of COVID-19

5538 unique viral genome 
sequences, totaling 61.8 
million bp, including 29 
COVID-19 virus sequences 
available on January 27, 
2020. Sequence data
came from NCBI, Virus-
Host-DB, and GISAID

Combined supervised
machine learning with 
digital signal processing 
(MLDSP), augmented
by decision tree, for genome 
analysis. Spearman’s rank
correlation was then used 
for result validation

Results support the bat 
origin and classified the 
COVID-19 virus as Sarbe-
covirus, within Betacoro-
navirus
Their method achieved 
high classification accuracy 
for the COVID-19 virus 
sequences; and can provide a 
reliable real-time option for 
taxonomic classification

Study only compared the 
relatedness of the COVID-
19 virus sequences to the 
known genera of Corona-
viridae family and known 
sub-genera of the genus 
Betacoronavirus

Khanday et al.30

To classify textual clinical 
reports on SARS-related 
viruses using classical and 
ensemble machine learning 
algorithms

212 patients’ data showing 
symptoms of coronavirus 
and other viruses were col-
lected from  GitHub31

Feature engineering was 
performed using Term 
frequency/inverse docu-
ment frequency (TF/IDF), 
Bag of words (BOW) and 
report length. These features 
were then learned using 
traditional and ensemble 
machine learning classifiers 
that classified the text into 
four different categories: 
COVID, SARS, ARDS and 
Both (COVID, ARDS)

Logistic regression and 
Multinomial Naive Bayes 
performed better than other 
ML algorithms

Study relied on limited 
amount of data

Melin et al.32
To analysis the spatial 
evolution of coronavirus 
pandemic around the world

Publicly available datasets 
were obtained from 
the Humanitarian Data 
Exchange (HDX)33, from 
countries where COVID-19 
cases had occurred between 
January 22, 2020 and May 
13, 2020

The proposed method used 
the Kohonen self-organizing
maps to form clusters of 
countries in the
world. The classification was 
achieved using 4 classes of 
COVID-19 severity
cases (Very High, High, 
Medium, and Low)

Interesting conclusions that 
may be helpful in deciding 
the best strategies in dealing 
with the virus were drawn 
from extensive simulation

The research was mainly a 
simulation study

Melin et al.34

To develop a multiple 
ensemble neural network 
model with fuzzy response 
aggregation for the 
COVID‐19 time series

Dataset from confirmed 
COVID‐19 cases and death 
cases, which consists of 12 
states in Mexico and the 
total data of the country

A 3-module ensemble 
architecture was deployed, 
with each ensemble having 
its own fuzzy aggregator, 
for final prediction of the 
ensemble

The proposed multiple 
ensemble neural network 
models with fuzzy response 
integration closely followed 
real data and yielded precise 
predictions in the validation 
dataset

The research was mainly a 
simulation study

Castillo and  Melin35

To forecast confirmed 
COVID-19 cases and death 
based on the complexity 
of their time series using 
a hybrid fuzzy-fractal 
approach

Publicly available datasets of 
10 countries were obtained 
from the Humanitarian 
Data Exchange (HDX) and 
data from countries where 
COVID-19 cases have 
occurred from January 22, 
2020 to March 31, 2020

The datasets were used to 
build the fuzzy model with 
time series in a fixed period. 
Then the fuzzy fractal model 
was tested by forecasting 
other times series in window 
periods of 10 days

Simulated forecast results 
were close to the real values, 
confirming that the fuzzy 
fractal approach works well 
in time series prediction

The research was mainly a 
simulation study and limited 
to COVID-19 cases

Lopez-Rincon et al.36

Deep learning is coupled 
with explainable artificial 
intelligence techniques to 
discover representative
genomic sequences in 
SARS-CoV-2

10,712 SARS-CoV-2 
sequences were excavated 
on December 23, 2020 from 
The Global Initiative on 
Sharing All Influenza Data 
(GISAID) repository

Convolutional neural 
network classifier was first 
trained on 553 sequences, 
separating the genome of 
different virus strains from 
the Coronavirus family. 
The network’s behavior was 
then analyzed, to discover 
sequences used to model 
SARS-CoV-2 identification. 
The sequences were later 
validated on the excavated 
samples

12 meaningful 21-bps 
sequences that best 
characterized SARS-CoV-2 
were discovered. For all 
the analyzed data, these 
sequences appeared only in 
SARS-CoV-2 samples and 
not in any other viruses

The study concentrated on 
specific genome sites

Lopez-Rincon et al.37

To propose an assisted 
detection test that combines 
molecular testing with deep 
learning

Dataset of 553 complete 
genome non-repeated 
sequences that vary from 
1260 to 31,029 bps in length 
was collected from 2019 
Novel Coronavirus Resource 
(2019nCoVR)  repository38

Deep convolutional neural 
network using tenfold clas-
sification was deployed for 
automatic features creation 
starting from the genome 
sequence of the virus

The proposed approach 
could correctly classify 
SARS-CoV-2, distinguishing 
it from other coronavirus 
strains, regardless of missing 
information and errors in 
sequencing (noise)

Their work concentrated on 
specific genome sites

Kaden et al.39

To investigate SARS-CoV-2 
virus sequences based on 
alignment-free methods for 
RNA sequence comparison

Viral sequence genomes 
from GISAID–with 156 
genomes, and NCBI and 
GenBank–with 892 com-
plete genomes, by April 19, 
2020, were excavated

A Generalized Matrix 
Learning Vector Quantizer 
(GMLVQ) model for labeled 
dataset with virus type 
information, obtained by 
phylogenetic tree analysis, 
was performed using tenfold 
cross validation. From 
classification correlation 
matrix delivered by GMLVQ 
optimization, features 
contributing decisively to 
a typed separation were 
determined

The GMLVQ approach pro-
duced lower complexity and 
allowed easy out-of-training 
generalization

Rejected sequences could 
only allow speculations 
about new virus types 
with respect to nucleotide 
base mutations in the viral 
sequences

Continued
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identifying relevant genetic variants using experiential knowledge we provide inference of the genetic impact of 
the variants on functional genomic elements.

Results and discussion
The general workflow describing the proposed hybrid computational framework is presented in Fig. 1, and the 
sequence of steps implementing the workflow is given on Supplementary Table S1. In addition to describing the 
steps, a visual demonstration of the implementation is incorporated.

Base variant analysis. Dinucleotide transitions and nucleotide mutations were computed for male and 
female isolates and averaged across the various continents namely Africa (Data S1: SupplData1.xlsx), Asia (Data 
S2: SupplData2.xlsx), Europe (Data S3: SupplData3.xlsx), North America (Data S4: SupplData4.xlsx), South 
America (Data S5: SupplData5.xlsx), and Oceania (Data S6: SupplData6.xslx). We analyze the average base tran-
sitions and mutations, and how they influence the overall behavior of the datasets.

Dinucleotide transitions. Averages of dinucleotide transitions of SARS-CoV-2 genomes computed across 
the various continents are presented in Fig.  2. These transitions are represented as quadrilaterals dissected 
along its diagonals. Wang et al.45 found that the SARS-CoV-2 reference genome has 29.94% of A, 32.08% of 
T, 19.61% of G and 18.37% of C. Hence, the expected dinucleotide transitions proportion is the product of the 
two nucleotide bases. For instance, the CG dinucleotide in the viral genome is 3.60% (i.e., 19.61% × 18.37%). 
From this, we arrive at the following computations for the respective dinucleotides/features identified in this 
study: AA = 8.96%; CC = 3.37%; GG = 3.84%; TT = 10.29%; AC = 5.50%; AG = 5.87%; AT = 9.60%; CG = 3.60%; 
CT = 5.87%; GT = 6.29%; TG = 6.29%; TC = 5.87%; TA = 9.60%; GC = 3.60%; GA = 5.87%; and CA = 5.50%. Our 
results corroborate Wang et al.45 on CG dinucleotide reduction of SARS-CoV-2, as the CG transitions for both 
male (M) and female (F) isolates across the various continents present lowest dinucleotide transitions compared 
to the rest of the transitions. Furthermore, slightly different variations exist between male and female transitions, 
which may not be unconnected with genome sequencing errors and the presence of new viral sub-strain(s).

Average dinucleotide transitions variant. Observed transitions variants between male and female isolates 
(M–F) computed from Fig. 2, across the various continents are shown in Table 2. Positive values indicate male 
frequency dominance while negative values indicate female frequency dominance. Table 2 reveals that female 

Table 1.  Summary of ML/AI application of SARS-CoV-2 characterization and prediction.

Reference Objective
Number of isolate and 
source Method Result/finding Drawback

Sawmya et al.40

To track SARS-CoV-2 
evolution among countries 
using phylogenetic analysis 
and perform deep learning 
classification for identifica-
tion of virulent strains

10,179 sequences from 67 
countries were excavated 
from GISAID as of April 
24, 2020

ML and Deep learning 
models were used to identify 
the virulence of the strains. 
From the classification pipe-
line, important features were 
identified as sites of interest 
(SOI) in the virus strains for 
further analysis

As regards virulent strain 
prediction, LightGBM 
classifier was superior to 
deep learning classifiers. As 
regards mutation prediction, 
CNN-LSTM and CNN-
bidirectional LSTM gave 
near similar performance for 
different SoI of the genome

Their work was unable to 
explain some strong relation-
ships between countries, as 
inferred by the phylogenetic 
tree

Sun and  Wang41

To develop mathematical 
model for characterizing 
imported and asymptomatic 
patients

Study relied on demo-
graphic data on COVID-19 
epidemic in Heilongjiang 
province from January 23 to 
March 25, 2020

An ordinary differential 
equation model was trained 
to fit the epidemic data and 
the simulation extended to 
characterize an infected/
imported case as well as 
asymptomatic patients

Imported case was responsi-
ble for the newly confirmed 
COVID-19 infections in the 
province. Stochastic simula-
tions showed significant 
increase in local contacts 
and outbreak of COVID-
19. Reported number of 
asymptomatic patients was 
markedly lower than the 
model predictions, implying 
large unidentified asympto-
matic pool

The research was mainly a 
simulation study and limited 
to COVID-19 cases

Dey and  Mukhopadhyay42

To build machine learning 
models that predict protein–
protein interactions (PPIs) 
between the virus and 
human proteins

SARS-CoV-2 human PPI 
 database43 containing 332 
unique interactions between 
332 human proteins and 
four structural and as well 
as 20 accessory coronavirus 
proteins

Classification models were 
prepared based on different 
sequence-based features of 
human proteins like amino 
acid composition, pseudo 
amino acid composition, 
and conjoint triad

The ensemble voting 
classifier using  SVMRadial, 
 SVMPolynomial, and Random 
Forest technique, gave 
greater accuracy, precision, 
specificity, recall, and F1 
score compared to other 
models

Their classifier yielded 70% 
accuracy due to limited 
experimental data

Dlamini et al.44

To analyze intrinsic dinu-
cleotide genomic signatures 
for whole genome sequence 
data of 8 pathogenic species, 
including SARS-CoV-2

About 33,000 Fully 
assembled, whole genome 
sequence in fast-all (FASTA) 
format were retrieved from 
GISAID, for 8 pathogenic 
species

The genome sequences were 
transformed into dinucleo-
tide relative frequencies and 
classified using extreme gra-
dient boosting (XGBoost) 
model

Their result was able to 
discriminate between 
distantly related species such 
as viruses
and bacteria, closely related 
species such as SARS-CoV-2 
and MERS-CoV, as well as 
samples of the same species 
that originate from different 
regions

Classes with small sample 
size (e.g., Africa), yielded 
high misclassification rate
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Figure 1.  Workflow describing the proposed hybrid approach. The workflow begins with the excavation of 
FASTA files of human SARS-CoV-2 genome sequences from GISAID. These files were stripped and processed 
into a genome database (DB) as multiple columns of nucleotide sequence. AI/ML techniques were then applied 
to extract knowledge from the genome datasets as follows: Using ML techniques, compute dis(similarities) 
scores between the various pairs of genome sequences and obtain a genomic tree of highly dis(similar) isolates 
grouped in the form of a dendrogram/phylogenetic tree. Determine the optimal number of natural clusters—to 
provide additional knowledge for supervised learning. Separate the viral sub-strains using SOM component 
planes—for possible transmission pathway/pattern visualization. Perform nucleotide alignment of the entire 
genome sequences (owing to varying sequence lengths of the different genome isolates, a cutoff at the last 
nucleotide of the genome isolates or the reference genome serves as the maximum pair for comparison), 
remove duplicate columns while imposing a similarity threshold–to yield unique genome sequences. Extract 
genome features by computing dinucleotide transitions and mutation frequencies. Generate cognitive map–for 
intelligent sub-strains prediction. Label classification targets of extracted features using derived SOM clusters 
and cognitive map. Learn and predict new/emerging sub-strains using ANN with k-fold validation method.
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Figure 2.  Base pair transitions in SARS-CoV-2 genomes for male and female isolates. Thick arrows indicate 
transition, while dotted arrows represent transversion. Looped (dotted) arrows represent same base transition. 
Inscriptions on/near the arrows represent transition/transversion frequencies for male and female isolates.
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isolates from Africa greatly dominated the dinucleotide transitions space compared to male isolates, a possible 
pointer to sequencing errors observed in the raw genomes. Other continents however show negligible variations.

Nucleotide mutations. Mutations in base pairs are important for understanding the pathogenicity of SARS-
CoV-2. These computations were compiled after direct pairwise comparisons with the reference genome, aver-
aged across the various continents, to produce Fig. 3. As expected, changes in base pairs were observed after 
pairwise comparisons. Also, genome sequences with very negligeable changes or (no significant mutations) from 
the reference genome were noticed across the various continents for male and female isolates (see Table  3). 
Overall, total insignificant mutants of 587, representing 14.98% of the total number of isolates was observed for 
male patients, while female patients showed 258 insignificant mutants, representing 9.06% of the total number 
of isolates.

Average nucleotide mutations variant. In an analysis of SARS-CoV-2 mutations in the United States, CT mutant 
variants were found to have strong gender  dependence22. Observed mutation variants between male and female 
isolates (M–F) computed from Fig. 3, across the various continents are shown in Table 4. Positive values indicate 
male frequency dominance while negative values indicate female frequency dominance. Table  4 reveals that 
female isolates from Asia greatly dominate the nucleotide mutations compared to male isolates. This trend is 
consistently followed by female isolates from South America with dominant transitions compared to male iso-
lates. However, other mutation statistics have mixed dominant values with varying degree of dominance. The 
result indicates that nucleotide mutations (not only the CT mutant) dynamically vary between individuals and 
are more associated with the virus adaptability to its host or environment.

Hierarchical clustering analysis (agglomerative nesting: AGNES). Li et al.46 investigated the angi-
otensin-converting enzyme 2 (ACE2)—the receptor agent for the SARS-CoV-2 virus—a known contributor to 
viral infections susceptibility and/or  resistance47. ACE2 generates small proteins by cutting up larger protein 
angiotensinogen, in turn affecting the nucleotide/protein. They compared ACE2 expression levels across 31 nor-
mal human tissues between males and females and between younger and older persons using two-sided student’s 
t-test. By examining the expression patterns, they found that protein expression levels were similarly expressed 
between males and females or between younger and older persons in experimented tissues. Furthermore, men 
showed worse prognosis than women. Their findings however lacked experimental and clinical data validation.

Using clinical evidence, we provide results of hierarchical clustering analysis to examine the arrangement of 
the nucleotide (protein) sequences/clusters across the entire genome through mutant accumulation, for male and 
female patients. Three distance measures were experimented, the ward, complete and single methods. The ward 
method had the highest agglomerative coefficient of (male = 0.9746; female = 0.9683), indicating more compact 
clusters; closely followed by complete (male = 0.9579; female = 0.9523); average (male = 0.9423; female = 0.9445); 
and single (male = 0.8710; female = 0.9058) methods.

To determine if differences exist in the genome sequences between genders, an independent t-test was 
imposed on the AGNES dis(similarity) scores. Results showed that male patients had statistically insignificantly 
longer genome sequences (0.9726 ± 0.0377) compared to female patients (0.9673 ±  0.0344), t(3280) = 1.710 , 
p = 0.0871 . However, there was no statistically significant difference in mean similarity between the nucleotide 
(protein) structures of the two groups at 95% confidence interval, hence, no significant genetic variations were 
observed. This result therefore corroborates the findings in Li et al.43 and validates the claim that no significant 
genetic variation exists in human SARS-CoV-2 genomes for both groups.

Genome pattern analysis. Component planes reveal the distribution of single feature values on a SOM 
map. They permit an investigation of continents that share similar variant(s) or sub-strain(s) of SARS-CoV-2 
and which variant permeates the different regions. Each component plane expresses the genome pattern of an 
isolate, where similar nucleotides are placed closely together in a 2D space. Hence, the patterns are established 
based on accumulation of nucleotides rather than individual nucleotide changes. To account for the variability 
in SOM neighborhood structure at every SOM run, the reference genome was included as part of the experiment 
datasets during each training phase. Hence, 4 reference genome pattern possibilities were generated to establish 
the very topology suitable for the trained datasets.

Our topologies possess random (but controllable) discontinuities that permit more flexible self-organization 
with high-dimensional data, thus, preserving as much as possible, the map structure. The SOM training was 

Table 2.  Observed average dinucleotide transitions variants between male and female isolates.

Continent AA CC GG TT AC AG AT CG CT GT TG TC TA GC GA CA

Africa − 32 − 10 − 12 − 38 − 23 − 20 − 26 − 5 − 24 − 23 − 29 − 17 − 27 − 13 − 18 − 24

Asia 4 1 2 4 2 3 3 0 3 3 4 2 4 2 2 2

Europe 2 0 0 1 1 1 1 0 1 1 1 1 1 0 0 1

North America 9 2 2 10 5 5 7 1 6 5 6 4 7 3 5 5

South America − 3 − 2 − 2 − 5 − 4 − 3 − 3 − 1 − 4 − 5 − 5 − 3 − 4 − 2 − 3 − 3

Oceania 7 1 2 1 1 2 2 3 2 3 1 4 2 2 1 1
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carried out by gender, per continent. To ensure clear visualization of the generated maps, most of the gender-
specific runs were split into 2 runs. This method was adopted to reduce the computational burden accompany-
ing the huge datasets in this study. A total of 18 SOM maps were generated (see Figs. 4, 5, 6, 7, 8). We observed 
single-, double- and multiple-source transmissions. Overall, 7 pattern clusters were discovered as documented 
in Table 5. Cluster 1 represents the reference genome. Clusters 2, 3, 4, 5 and 6 are inter-continent pattern clus-
ters or sub-strain(s). Cluster 7 indicates discovered intra-country pattern clusters or sub-strains. The analysis 
of Wang’s et al.22 suggests the presence of four sub-strains in the United States. Our results therefore sustain an 
increase in sub-strains within the various continents and offer explanations for the growing concerns and next 
wave(s) of the virus.

Female—(b) Venezuela (2), Argentina (3), Colombia (4–47), Ecuador (48–50), Brazil (51–154). Male and 
female—(c) Map 1: Male—Australia (2–7), Guam (8–9), New Zealand (10). Female—Australia (11–15), New 
Zealand (16).

Figure 3.  Base pair changes in SARS-CoV-2 genomes for male and female isolates. Thick arrows indicate 
transitions, while dotted arrows represent transversions. Inscriptions on/near the arrows represent transition 
frequencies for male and female isolates.
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A distribution of discovered clusters (7 in this case) by gender, across the various continents under study, 
is presented on Table 5. Notice that cluster 7 has the highest proportion of data points, indicating increased 
intra-country transmissions; save North America, where cluster 3 has the highest proportion of data points, an 
indication of increased inter-country transmissions. A further analysis across the continents reveals that the 
African, Asian, and South American isolates clustered around sub-strains G1, G2 and G5 (where G represents 
a generic/general sub-strain) with number of isolates and cluster proportions for male and female patients 
distributed as follows:

• Africa—G1: 186 (M = 20.22%, F = 23.27%), G2: 185 (M = 23.18%, F = 20.75%), and G5: 89 (M = 6.74%, 
F = 13.34%). The least sub-strains proportions come from Reference: 31 (M = 3.77%, F = 3.56%) and G4: 0 
(M = 0%, F = 0%).

Table 3.  Isolates with insignificant mutants across continents.

Continent Country

Male Female

No. of insignificant 
mutants Total isolates %

No. of insignificant 
mutants Total isolates %

Africa
South Africa 27 503 5.37 56 1004 5.58

Tunisia 4 19 2.11 0 0 –

Asia

Singapore 10 487 2.05 6 53 1.13

China 47 189 24.86 47 131 35.88

Sri Lanka 2 23 8.70 0 0 –

Bangladesh 8 22 36.36 0 0 –

India 5 1041 0.48 2 557 0.36

Kazakstan 5 14 35.71 9 10 90

Indonesia 10 64 15.63 4 27 14.81

Turkey 2 80 2.50 0 0 –

Taiwan 24 34 70.59 20 30 66.67

Philippines 1 6 16.67 0 0 –

Israel – – – 1 15 6.67

Saudi Arabia 384 408 94.12 77 91 86.83

Oman 1 81 1.23 0 0 –

United Arab Emirates 22 73 30.14 9 38 23.68

Europe

Romania 1 18 5.56 0 0 –

Spain 3 148 2.03 4 117 3.42

Italy 6 309 1.94 5 253 1.98

Russia 1 42 2.38 2 83 2.41

France 1 78 1.28 1 53 1.89

North America
Mexico 2 66 3.30 2 44 4.55

Dominican Republic – – – 1 5 0.20

South America

Chile 1 1 100 0 0 –

Colombia 3 133 2.26 2 77 2.60

Ecuador 4 21 19.07 0 0 –

Brazil 13 58 22.41 10 261 3.83

Total 587 3918 14.98 258 2849 9.06

Table 4.  Observed mutant variants between male and female isolates.

Continent AC AG AT CG CT GT TG TC TA GC GA CA

Africa − 19 − 14 − 3 12 − 21 − 37 − 48 − 8 − 5 − 8 − 5 − 26

Asia − 79 − 78 − 147 − 52 − 91 − 115 − 121 − 91 − 141 − 47 − 90 − 73

Europe 9 − 1 3 18 − 15 18 − 16 21 0 − 21 4 6

North America − 2 15 38 17 21 12 14 13 41 21 14 − 4

South America − 35 − 35 − 59 − 20 − 42 − 51 − 55 − 41 − 56 − 19 − 39 − 32

Oceania 50 − 15 − 45 11 − 23 62 23 23 − 53 − 54 9 32
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• Asia—G1: 255 (M = 27.31%, F = 24.04%), G2: 168 (M = 17.47%, F = 16.36%), and G5: 150 (M = 16.47%, 
F = 13.74%). The least sub-strains proportions come from cluster 4: 27 (M = 1.61%, F = 3.84%) and G4 
(M = 0.40%, F = 0.20%).

• South America—G1: 75 (M = 24.86%, F = 18.95%), G2: 91 (M = 23.24%, F = 31.37%) and 6: 20 (M = 3.78%, 
F = 8.50%). The least sub-strains proportions come from cluster 4: 15 (M = 4.32%, F = 4.58%) and G4: 2 
(M = 0%, F = 1.31%).

  European and North American isolates clustered around the Reference genome, the G1 and G2 sub-strains, 
with number of isolates and cluster proportions for male and female patients distributed as follows:

• Europe—cluster 1: 80 (M = 13.18%, F = 13.78%), cluster 2: 185 (M = 34.73%, F = 27.21%) and cluster 3: 45 
(M = 4.18%, F = 11.31%). The least sub-strains proportions come from cluster 4: 17 (M = 2.57, F = 3.18%) and 
cluster 5: 12 (M = 0.64, F = 3.53%).

• North America—cluster 1: 50 (M = 9.18%, F = 11.56%), cluster 2: 79 (M = 25.17%, F = 2.51%) and cluster 3: 113 
(M = 35.03%, F = 55.28%). The least sub-strains proportions come from cluster 4: 15 (M = 2.38%, F = 4.08%) 
and cluster 5: 0 (M = 0%, F = 0%).

Due to paucity of data, the Oceanian isolates have data for only cluster 1: 2 (M = 24.86%, F = 18.95%). Table 6 
summarizes the clusters distribution, by gender across the various continents.

Cognitive knowledge generation. While mutations are expected, there is need to initiate robust surveil-
lance mechanism for continuous monitoring of public health implications and rapid response to new strains of 
COVID-19. To intelligently predict the viral sub-strains for both genders, novel cognitive maps that preserves 
chains of similar isolates were generated from the SOM component planes using the Python programming lan-

Figure 4.  SOM component planes visualization for African isolates. Component planes 1 (encircled) represent 
the SARS-CoV-2 reference genome. The male and female isolates have 2 SOM maps each with country and 
(component plane map position(s)) distributed as follows: Male—(a) Map 1: Cameroon (2), Ghana (3–15), 
South Africa (16–200). Map 2: South Africa (2–63), Gambia (64–66), Algeria (67), Egypt (68–81), Tunisia 
(82–90), Morocco (91–92), Mozambique (93–96), Nigeria (97–107), Senegal (108–156), Rwanda (157–173). 
Female—(b) Map 1: Ghana (2), South Africa (3–240). Map 2: South Africa (2–186), Gambia (187), Algeria 
(188), Egypt (189–194), Tunisia (195–203), Madagascar (204), Nigeria (205–208), Senegal (209–237), Rwanda 
(238–239).

Figure 5.  SOM component planes visualization for Asian isolates. Component planes 1 (encircled) represent 
the SARS-CoV-2 reference genome. The male and female isolates have 2 SOM maps each with country and 
(component plane map position(s)) distributed as follows: Male—(a) Map 1: Singapore (2–18), Iraq (19), China 
(20–71), Kuwait (72–74), Malaysia (75–94), Sri Lanka (95–109), Bangladesh (110–119), India (120–249). Map 
2: India (1–145), South Korea (146–149), Kazakhstan (150), Indonesia (151–164), Turkey (165–180), Iran (181–
184), Taiwan (185–191), Vietnam (192–200), Israel (201), Saudi Arabia (202–221), Mongolia (222–224), Oman 
(225–231), Lebanon (232–240), United Arab Emirates (241–251). Female—(b) Map 1: Singapore (205), Iraq (6), 
China (7–54), Malaysia (55–79), Sri Lanka (80–85), Bangladesh (86–90), India (91–249). Map 2: India (2–129), 
South Korea (130–131), Kazakhstan (132–136), Indonesia (137–149), Turkey (150–159), Iran (160–162), Taiwan 
(163–176), Vietnam (177–193), Israel (194–197), Philippines (198–199), Saudi Arabia (200–217), Pakistan 
(218–219), Oman (220–227), Lebanon (228–233), United Arab Emirates (234–247), Bahrain (248).
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guage. The extracted clusters are necessary for supervised labeling of the classification targets. By disassembling 
the SOM correlation hunting matrix space, we attribute these associations to disparate classes of discovered viral 
sub-strains. The outcome are cognitive maps with 7 clusters simulating the discovered SOM patterns and coun-
tries/isolates linked to these patterns for male and female patients (Supplementary Table S3). Each sub-strain 
cluster holds similar isolates that belong to a related pattern bounded by certain degree of association or cor-
relation range, established by the SOM, and captures all isolates discovered within this range. We also captured 
from the SOM component planes any progression in patterns showing sub-strain(s) development leading to 
well separated cluster image(s). The cognitive knowledge would assist early contact tracing of cases in emerging 
disease situations as well as establish how the reference genome has evolved over time. This additional knowl-
edge also permits further characterization of the viral sub-strains, as our results allow unique SARS-CoV-2 base 
pairs sequence identification (which do not appear in other viral sub-strains) and could be useful as baselines for 
designing new primers that permit further insights and examination by experts.

ANN performance evaluation. From the cluster patterns established by SOM, the datasets were labeled 
for further processing (see Male_SOM and Female_SOM worksheets of SupplData8.xlsx). To create a common 
scale and ensure that all input features have equal treatment in the model, the datasets were normalized using 
the minmax normalization technique [Eq. (1)]. The minimum and maximum components are obtained from 
the means of the nucleotide transitions or mutations features.

Figure 6.  SOM component planes visualization for European isolates. Component planes 1 (encircled) 
represent the SARS-CoV-2 reference genome. The male and female isolates have 2 SOM maps each with country 
and (component plane map position(s)) distributed as follows: Male—(a) Map 1: Switzerland (2), Faroe Island 
(3–7), Belgium (8–9), Poland (10–23), Greece (14–29), Romania (30–43), Spain (44–102), Georgia (103–105), 
Italy (106–161). Map 2: Italy (2–59), Russia (60–73), France (74–112), Slovakia (113), Hungary (114–118), 
Cyprus (119), Ukraine (120–125), Sweden (126), Austria (127), Croatia (128–129), Bosnia and Herzegovina 
(130), Czech Republic (131–152). Female—(b) Map 1: Switzerland (2), Faroe Islands (3–6), Belgium (7–8), 
Greece (9–19), Germany (20–26), Romania (27–47), Spain (48–95), Georgia (96), Italy (97–161). Map 2: Italy 
(2–28), Russia (29–55). France (56–87), Slovakia (88–90), Moldovia (91–93), Hungary (94–100), Ukraine 
(101–104), Austria (105), Finland (106), Bosnia and Herzegovina (107), Czech Republic (107–123).

Figure 7.  SOM component planes visualization for North American isolates. Component planes 1 (encircled) 
represent the SARS-CoV-2 reference genome. The male isolates have 2 SOM maps while the female isolates 
have 1 map, each with country and (component plane map position(s)) distributed as follows: Male—(a) Map 
1: Mexico (2–46), USA (47–150). Map 2: USA (2–23), Panama (25–102), Saint Martin (103–105), Guadeloupe 
(106–109), Canada (110–112), Costa Rica (113–145), Dominican Republic (146). Female—(b) Map 1: Mexico 
(2–34), USA (35–106), Panama (107–165), Saint Martin (166–168), Guadeloupe (169–176), Canada (177–182), 
Costa Rica (183–196), Dominican Republic (197–200).
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where, xi is a nucleotide transition or mutation feature, min(X̄j) and max(X̄j) are the minimum and maximum 
means obtained from means of the respective nucleotide transitions or mutations feature dataset. The obtained 
scaling prevents zero values, hence, yielding an even spread of the datasets. Next, using the k-means algorithm, 
via Silhouette criterion, 7 cluster groups were assigned to the records. These groups or clusters provided infor-
mation for relabeling the cluster column of both datasets and constructing the output classification targets for 
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Figure 8.  SOM component planes visualization for South American and Oceanian isolates. Component planes 
1 (encircled) represent the SARS-CoV-2 reference genome. For South American isolates, the male isolates 
(a) and female isolates (b) have 1 SOM map each. For Oceanian isolates, the male and female isolates (c) are 
condensed into 1 map, each with country and (component plane map position(s)) distributed as follows: Male—
(a) Map 1: Venezuela (2–3), Chile (4), Argentina (5), Colombia (6–62), Ecuador (63–72), Peru (73), Brazil 
(74–186).

Table 5.  Cluster distribution by gender across continents.

Continent Gender

Cluster 1 
(reference 
genome)

Cluster 2 (inter-
country sub-
strain G1)

Cluster 3 (inter-
country sub-
strain G2)

Cluster 4 
(inter-country 
sub-strain G3)

Cluster 5 
(inter-country 
sub-strain G4)

Cluster 6 (inter 
country sub-
strain G5)

Cluster 7 (intra-
country sub-
strain) Total

No % No % No % No % No % No % No % %

Africa
Male 14 3.77 75 20.22 86 23.18 10 2.70 0 0 25 6.74 161 43.40 100

Female 17 3.56 111 23.27 99 20.75 10 2.10 0 0 64 13.42 176 36.90 100

Asia
Male 26 5.22 136 27.31 87 17.47 8 1.61 2 0.40 82 16.47 157 31.53 100

Female 40 8.08 119 24.04 81 16.36 19 3.84 1 0.20 68 13.74 167 33.74 100

Europe
Male 41 13.18 108 34.73 13 4.18 8 2.57 2 0.64 20 6.43 119 38.26 100

Female 39 13.78 77 27.21 32 11.31 9 3.18 10 3.53 8 2.83 108 38.16 100

North America
Male 27 9.18 74 25.17 103 35.03 7 2.38 0 0 18 6.12 65 22.11 100

Female 23 11.56 5 2.51 110 55.28 8 4.02 0 0 8 4.02 45 22.61 100

South America
Male 10 5.41 46 24.86 43 23.24 8 4.32 0 0 7 3.78 71 38.38 100

Female 6 3.92 29 18.95 48 31.37 7 4.58 2 1.31 13 8.50 48 31.37 100

Oceania
Male 3 33.33 0 0 0 0 0 0 0 0 0 0 6 66.67 100

Female 1 16.67 0 0 0 0 0 0 0 0 0 0 5 83.33 100

Table 6.  Mean values and standard deviation of model performances on the male dataset.

k Classification accuracy RMSE MAE Precision recall AUC 

3 98.5900 ± 0.7600 0.0500 ± 0.0200 0.0100 ± 0.00 0.9900 ± 0.0300 0.9700 ± 0.0400 1.00 ± 0.00

5 98.5900 ± 0.7600 0.0500 ± 0.0200 0.0100 ± 0.00 0.9900 ± 0.0300 0.9700 ± 0.0400 1.00 ± 0.00

10 98.5900 ± 0.7600 0.0500 ± 0.0200 0.0100 ± 0.00 0.9900 ± 0.0300 0.9700 ± 0.0400 1.00 ± 0.00

15 98.5900 ± 0.7600 0.0500 ± 0.0200 0.0100 ± 0.00 0.9900 ± 0.0300 0.9700 ± 0.0400 1.00 ± 0.00
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supervised learning. The normalized datasets, newly formed clusters and classification targets for the male and 
female datasets are found in the Male_Normalized and Female_Normalized worksheets of SupplData8.xlsx.

The performance of the NN model was evaluated on the normalized, labelled datasets, using the following 
metrics: Classification Accuracy, Root Mean Squared Error (RMSE), Mean Absolute Error, Precision, Recall and 
Area Under the Curve (AUC). The metric specific result from each dataset compared using paired t-test, depict 
no statistically significant difference between the male and female features (p > 0.05) at the 0.05 level of signifi-
cance. Results obtained on Tables 6 and 7 confirm the suitability of ANNs in predicting COVID-19 sub-strains 
for male and female patients, respectively. Furthermore, perfect accuracies with an AUC of 1 were obtained for 
k = 3, 5, 10 and 15 folds.

Using the mean squared error (MSE) function, the NN performance plots yielded best validation per-
formance, with RMSE values of the different k-folds, for male and female datasets, derived as follows k = 3: 
M = 0.06807 (Fig. 9a), F = 0.0672 (Fig. 9b); k = 5: M = 0.0601 (Fig. 9c), F = 0.0587 (Fig. 9d); k = 10: M = 0.0573 
(Fig. 9e), F = 0.0521 (Fig. 9f); k = 15: M = 0.0430 (Fig. 9g), F = 0.0310 (Fig. 9h). These results indicate improved 
classification errors as the number of validation folds increase.

A receiver operation characteristics curve (ROC) windows showing the training, validation, test, and all 
ROC, with k = 3, 5, 10 and 15, for male and female patients are given in Fig. 10a and b, respectively. The deployed 
model is helpful for classifying new datasets and for building expert support systems for efficient SARS-CoV-2 
sub-strains discrimination.

On Table 8, a summary of important performance metrics extracted from the literature for ANN with or 
without cross validation method, is presented to enable a comparison of our approach with state-of-the-art. We 
observe that the proposed approach performed better with very high classification accuracy, precision, and recall 
rates, indicating good generalization and correct prediction.

Conclusion
AI-based Big Data analytics are offering promising applications through the processing of large and complex 
datasets. In clinical diagnostics, for instance, image processing and computer vision are revolutionizing image-
based diagnosis. In the field of genetics, large-scale genomic research is poised to improve care through genotype 
definitions of other organisms. The increased availability of multiscale, multimodal, longitudinal patient datasets 
has provided exclusive opportunities for individualized medicine by permitting the visualization of different 
patient dimensions. Although this is widely believed to enhance the performance of predictive algorithms for 
near-clinical practice, these data are highly unstructured and require further refinements to enable structured 
access and intelligent features combination.

The future of individualized medicine has however imposed limitations, challenges, and biases, as machine 
learning models are typically sensitive to selection biases (i.e., under- or over-represented specific patient sub-
groups in the training cohort, including under-explored ethical considerations), and have contributed to stiffen-
ing successful deployment of AI in medical applications, particularly those utilizing human genetics and genome 
datasets. Although addressing underrepresented data in training datasets can resolve bias, while model retraining 
can assist in improving performance; confusable symptoms relative to the disease have posed a major bottleneck 
for future applications. This work has created a foundation for future studies on emerging infectious diseases by 
investigating the variation and functions of SARS-CoV-2 genomes for possible discovery of patterns exhibited 
by human isolates. A novel taxonomy was created to permit intelligent features mining. The case of symptomatic 
and asymptomatic patients also presents inconsistencies and is inconclusive in this paper. This aspect of infectious 
disease demands further research efforts on prompt detection of asymptomatic cases. A major limitation of this 
research is that some SOM pattern clusters were still confused and demands a defuzzification of these clusters 
using robust neuro-fuzzification tools.

Methods
Data source and genome sequences selection. Publicly available datasets of coronavirus cases around 
the globe deposited between December 2019 and January 15, 2021 were excavated from GISAID (https:// 
gisaid. org—a database of SARS-CoV-2 partial and complete genome compilations distributed by clinicians and 
researchers, the world over). Using the EpiCoV query interface of GISAID, complete genome sequences with 
patient status information (gender and age) were filtered. We observed that not all the excavated isolates met 
this criterion. Hence, out of about 70,000 entries, 8864 isolates (5130 male samples, and 3734 female samples) 
from different countries of the world contained at least the gender information, and were collected and pro-
cessed, across 6 continents, Antarctica exempt (as no deposit of SARS-CoV-2 data was found as at the time of 
excavation). Age range of 1 month and 107 years were collected. Complete genome lengths of above 29,000 bp 
with < 1% undefined or ambiguous bases (‘N’s) or with high coverage unambiguous bases or nucleotides, were 

Table 7.  Mean values and standard deviation of model performances on the female dataset.

k Classification accuracy (%) RMSE MAE Precision Recall AUC 

3 98.5900 ± 0.7600 0.0500 ± 0.0100 0.00 ± 0.00 0.9900 ± 0.0100 1.00 ± 0.01 1.00 ± 0.00

5 98.6100 ± 0.7000 0.0500 ± 0.0100 0.0100 ± 0.00 0.9900 ± 0.0300 1.00 ± 0.01 1.00 ± 0.00

10 98.6100 ± 0.7000 0.0500 ± 0.0100 0.00 ± 0.00 0.9900 ± 0.0100 1.00 ± 0.01 1.00 ± 0.00

15 98.6100 ± 0.7000 0.0500 ± 0.0100 0.00 ± 0.00 0.9900 ± 0.0100 1.00 ± 0.01 1.00 ± 0.00

https://gisaid.org
https://gisaid.org
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Figure 9.  Neural network performance plots.
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excavated from 88 different countries distributed across the following continents: Africa (Data S1: SupplData1.
xlsx), Asia (Data S2: SupplData2.xlsx), Europe (Data S3: SupplData3.xlsx), North America (Data S4: SupplData4.
xlsx), South America (Data S5: SupplData5.xlsx), and Oceania (Data S6: SupplData6.xslx).

Table 9 documents the continent, isolate distribution by country, isolate distribution by gender, and total iso-
lates excavated. Metadata on the extracted genome sequences consisting of the following columns (Isolate Code: 
Country + isolate number, Country, Accession Number, Gender, Age, Status, Specimen source and Additional 

Figure 9.  (continued)

Figure 10.  Receiver operation characteristics for k = 3, 5, 10, 15.

Table 8.  Summary of performance metrics from previous works.

Reference k-fold method Classification accuracy (%) RMSE Precision Recall F1-Score % AUC %
40 – 72.3300 – 0.7241 0.7167 0.72030 –
42 – From Asia (67.0000) otherwise (86.0000) – – – – –
37 Tenfold 76.9000 – – – – –
21 Tenfold 93.5000 – – – – –
35 Tenfold 90.0000 – – – – 0.9200
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Information) were also documented (Data S7: SupplData7.xlsx). The Additional Information column holds 
both location and host information such as transmission history, treatment history, date sample was taken, etc. 
Fast-all (FASTA) files of the genome isolates can be located at GISAID using the Accession Number. Specimen 
sources include swabs (nasal, oral, throat, nasal and oral); fluids (bronchoalveolar lavage, saliva, sputum, stool) 
and unknown. We observed that the GSAID database was inconsistent in rendering the patient status, as numer-
ous incoherent annotations introduced inherent redundancy. To assist efficient documentation and processing 
of data, a taxonomy re-classifying the patient status is given in Fig. 11. This taxonomy subsumes the incoherent 
annotations (annotations in square text boxes) into unique specifications (annotations in oval shapes), for intel-
ligent data  mining48.

The presence of ambiguous nucleotides may potentially mask the genomic signature encoded within nucleo-
tide frequencies. Although sequencing errors in the form of ambiguous nucleotides (e.g., strings of letter “N”) 
were noticed in the datasets, the affected nucleotide positions were ignored during preprocessing, such that 
the nucleotide positions maintained their current position and did not shift. A total genome sequence size of 
( 8864× 29000− 8864× 30165)bps = (257, 056, 000− 267, 382, 560)bps was excavated, processed, and stored 
in comma separated value (CSV) file.

Table 10 documents patient status statistics for symptomatic and asymptomatic cases. As observed, there 
are more hospitalized cases (7580) compared to non-hospitalized cases (391), with more male patients, hos-
pitalized (M = 4318, F = 3262). Furthermore, more males died of COVID-19 than females (M = 541, F = 248). 
Asymptomatic cases however represent (37/5130; 0.72%) and (41/3734; 1.10%) of the total male and female 
isolates, respectively.

Configuration of computing device. An HP laptop 15-bs1xx with up to 1 TB storage running on Win-
dows 10 Pro Version 10.018326 Build 18,362 was used for processing the excavated genome sequences, algo-
rithms/programs, and other ancillary data. The system has an installed memory (RAM) of 16 GB with the fol-
lowing processor configuration: 1.60 GHz, 1801 MHz, 4 Core(s) and 8 logical processors. Although our system 
performed satisfactorily and produced the desired results, higher system configurations would improve the 
computational speedup.

Hierarchical agglomerative clustering (HAC). The dataset is configured with observations (nucleo-
tides) represented in rows, while columns are variables (genome sequences ordered by countries). The number 
of columns corresponds to selected countries while the sequences have varying lengths. The data table is further 
converted into as.matrix format where all values of raster layers objects have columns for each layer and rows for 
each cells with numeric (continuous) values. In order to make the variables comparable through the elimination 
of arbitrary variable units, they are transformed (standardized) such that they have mean of zero and standard 
deviation of  unity49, using Eq. (2).

where sd(x) represents the standard deviation of the feature values.
The procedure for implementing the HAC are as follows: Compute all the pairwise similarities (distances) 

between observations in the dataset and represent the result as a matrix. The resultant matrix is square and sym-
metric with diagonal members defined as unity–the measure of similarity between an element and itself. The 
matrix elements are computed by iterating over each element and calculating its (dis)similarity to every other 
element. Suppose A is a similarity matrix of size N × N , and B , a set of N elements. Aij is the similarity between 
elements Bi and Bj using a specified criterion (Euclidean distance, squared Euclidean distance, manhattan dis-
tance, maximum distance, Mahalanobis distance, cosine similarity). The selected criterion however depends on 

(2)x(s) = xi −
mean(x)

sd(x)
,

Table 9.  Distribution of excavated isolates.

Continent Country Male Female Total

Africa Algeria (3), Cameroon (1), DRC (8), Egypt (35), Gambia (13), Ghana (15), Madagascar (3), Morocco (6), Mozambique (7), Nigeria 
(18), Rwanda (27), Senegal (135), South Africa (1507), Tunisia (26) 701 1103 1804

Europe
Andorra (1), Austria (18), Belgium (11), Bosnia and Herzegovina (4), Bulgaria (1), Croatia (15), Cyprus (8), Czech Republic (173), 
Denmark (3), Faroe Islands (14), Finland (2), France (131), Georgia (4), Germany (12), Greece (30), Hungary (80), Italy (561), 
Moldova (3), Norway (1), Poland (7), Portugal (2), Romania (52), Russia (125), Slovakia (4), Spain (256), Sweden (3), Switzerland (2), 
Ukraine (13)

802 743 1545

Asia
Bahrain (1), Bangladesh (29), Cambodia (1), China (319), India (1598), Indonesia (91), Iran (11), Iraq (2), Israel (38), Kazakhstan 
(24), Kuwait (3), Lebanon (18), Malaysia (89), Mongolia (6), Myanmar (1), Nepal (1), Oman (58), Pakistan (4), Philippines (12), Saudi 
Arabia (500), Singapore (540), South Korea (18), Sri Lanka (29), Taiwan (64), Thailand (2), Turkey (134), United Arab Emirates (111), 
Vietnam (74)

2618 1160 3778

South America Argentina (2), Brazil (519), Chile (1), Colombia (186),
Ecuador (28), Peru (2), Venezuela (3) 394 347 741

North America Canada (27), Costa Rica (58), Dominican Republic (6), Guadeloupe (17), Mexico (110), Panama (253), Saint Martin (8), USA (499) 603 375 978

Oceania Guam (2), New Zealand (2), Australia (14) 12 6 18

Total: Number of countries excavated per continent: Africa (14), Europe (28), Asia (28), South America (7), North America (8), 
Oceana (3) 5130 3734 8864
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Figure 11.  Reclassified GISAID COVID-19 patient status taxonomy.
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the nature of the experimental datasets. This paper adopts the standardized Euclidian distance criterion, as this 
measure is widely used and has shown good performance in the modeling variances in biological sequences.

HAC visualization. After computing the distance between every pair of observation point, the result is 
stored in a distance matrix. Then, (i) every point is put in its own cluster (i.e., the initial number of clusters 
corresponds to the number of variables); (ii) the closest pairs of points are merged based on the distances from 
the distance matrix as the number of clusters reduces by 1; (iii) the distance between the new cluster and the 
previous ones is recomputed and stored in a new distance matrix; (iv) steps (ii) and (iii) are repeated until all the 
clusters are merged into one single cluster.

The distance separating the clusters is specified via linkage  methods49 which includes, complete, average, 
single, and ward. Complete linkage computes the similarities and uses the maximum distance between clusters 
for merging while calculating cluster distances and adopting minimum inter-cluster distance merging. The 
average linkage calculates the average distance between groups of genome sequence before merging; while the 
total within-cluster variance is minimized with ward’s method and the pair of clusters with minimum between-
cluster distance are merged. We rely on all the four assessment techniques and adopt the distance measure with 
the highest agglomerative coefficient for cluster formation. The resultant cluster solution is finally visualized as 
a tree structure called a dendrogram (or phylogenomic) tree. As the tree is traversed upwards, observations that 
are similar to each other are combined into branches, which are themselves fused at a higher height. The height 
of the fusion provided on the vertical axis, indicates the (dis)similarity between two observations. The higher 
the height of the fusion, the less similar the observations are. Figure 12 show cluster plots and genomic plots 
generated using the ward minimum variance criterion.

Optimal natural clusters selection. While there are natural structural entities in some datasets that pro-
vide information on the number of clusters or classes, others including the dataset containing genome sequences 
are structured without boundaries. Cluster validation (an unsupervised methodology aimed at unravelling the 
actual count of clusters that best describes a dataset without any priori class knowledge) is therefore essential. In 
this paper, three widely used criteria to validate the number of clusters in the genome sequence dataset of these 
widely used criteria namely, silhouette,  elbow50, and gap-statistics are discussed. The three criteria aim at mini-
mizing the total intra-cluster variation (total within-cluster sum of square) as given in Eq. (3).

where ck is the kth cluster, and, w(ck) is the within-cluster variation. The total within-cluster sum of squares (wss) 
measures the compactness of the clustering solution. The following steps are applied to achieve the optimal clus-
ters: (i) Compute using clustering algorithm (e.g., k-means clustering) for different values of k ; by varying k for 
a range of cluster values. (ii) For each k , calculate wss. (iii) plot the curve of wss according to the number of 
clusters k . (iv) the location of a bend (knee) in the plot is generally considered as an indicator of the appropri-
ate number of clusters. Silhouette criterion is used to validate the clustering solution using pair-wise difference 
between the within-cluster distances, and by maximizing the value of this index to arrive at the optimal cluster 
 number51. Elbow criterion plots the variance resulting from plotting the explained variation as a function of the 
number of clusters and picking the elbow of the curve as the number of clusters to use. Gap-statistics compares 
the total intra-cluster variation for different values of k with their expected values under null reference distri-
bution of the data. The reference dataset is generated using Monte Carlo simulations of the sampling process.

In this paper, the k-means  algorithm52 is implemented using the R script consisting of R functions for the 
silhouette, elbow, and gap-statistics. The clustering solution can be visualized using the fviz_cluster function in R, 
to group the extracted genome sequences and finally represent the groupings in a tree format using dendrogram. 
As a preprocessing step to study the phylogeny of the genome isolates, the HCA or AGNES plots as shown in 

(3)minimize

(

k
∑

i=1

w(ck)

)

Table 10.  Symptomatic and asymptomatic statistics.

Continent

Symptomatic Not 
Hospitalized Deceased AsymptomaticHospitalized

Live Released
Recovering/
recovered Mild Moderate Severe Critical

Quarantine/
isolate Home

M F M F M F M F M F M F M F M F M F M F M F

Africa 599 1039 97 63 1 0 0 0 0 0 0 0 0 0 2 0 0 0 2 1 0 0

Asia 1737 728 623 327 29 16 37 25 0 0 0 0 5 1 5 2 0 0 182 61 0 0

Europe 441 436 34 31 35 43 122 109 32 21 35 17 4 6 1 0 25 19 37 26 32 33

North America 165 123 96 61 2 0 0 0 0 0 0 0 4 3 0 0 159 120 173 62 4 6

South America 100 109 68 66 27 29 0 0 0 0 0 0 7 1 0 0 33 33 147 98 1 2

Oceania 1 2 0 0 9 4 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0

Total: 3043 2437 918 548 103 92 159 134 32 21 35 17 20 11 8 2 219 172 541 248 37 41

Total hospitalized (M = 4318; F = 3262)
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Fig. 12a and c, reveal for the male and female groups, respectively, two natural clusters A and B, suggesting more 
countries with viral strains of close lineage (group A), while few mild divergent strains (group B) with specific 
mutations are geographically different. Hence, for the male isolates, the phylogenomic tree (Fig. 12b) grouped 
68 isolates/countries under cluster A, while the remaining 3 isolates belong to cluster B. For the female isolates 
(Fig. 12d), 63 isolates belonged cluster A while the remaining 3 isolates were grouped under cluster B.

Genome features extraction. Dinucleotide transition frequency. The SARS-CoV-2 reference  genome53 
(Severe acute respiratory syndrome coronavirus-2 isolate Wuhan-Hu-1, complete genome) obtained from the 
NCBI: www. ncbi. nlm. nih. gov) contains 4 conventional DNA nucleotide bases, A,C, G, T . Hence, there are 
42 = 16 unique dinucleotide pairs that can be constructed from these bases, namely:

(4)ω = {AA,AC,AG,AT, CA, CC, CG, CT,GA,GC,GG,GT, TA, TC, TG, TT}

Figure 12.  Cluster plots and genomic trees. Notice 2 distinct groups (or clusters) A and B separated between 
closely similar and dissimilar isolates, with the A group having heavy isolates concentration than the B group. 
For males (b), group A consists of 68 isolates with 7 sub-groups as follows: 1 (CHL, SAU); 2 (CHN, TUN, KAZ, 
SGP, POL, FRA, USA, GUM, ESP, ROU); 3 (ITA, MEX, TUR, ZAF, FRO, NZL, PER, RUS, AUS, CRI); 4 (SVK, 
IRQ, CZE, HUN, HRV, OMN, CAN, ARG, CHE, EGY, KWT, SOU, MYS, SAI, Iran, AUT, VNM, GMB, ISR, 
MNG, GEO, UKR, DZA, BEL, MAR, BIH, GLP); 5 (ECU, ARE, BGD, TWN); 6 (CMR, NGA, IDN, LBN, BRA, 
MOZ, IND, SEN, COL, PAN, GRC, LKA, VEN). Group B consists of 1 sub-group as follows: 1 (DOM, GHA, 
RWA). For Females (d), group A consists of 63 isolates with 6 sub-groups as follows: 1 (TWN, KAZ, SAU); 2 
(AUT, DEU, FRA, TUN, ROU, USA); 3 (LBN, GMB, ECU, AUS, IND, CRI, ARE, ESP, ZAF, ITA, MEX); 4 (BIH, 
GEO, BEL, NZL, CZE, HUN, MDG, FIN, ARG, TUR, FRO, OMN, CAN, GLP, SAI, EGY, MYS, CHE, UKR, 
SOU, RUS, PAK, MDA, SVK, ISR, VNM, NGA, BGD, BHR, IRQ, Iran, DZA, VEN); 5 (DOM, IDN, CHN, 
SGP); 6 (SEN, PAN, BRA, COL, LKA, GRC).

http://www.ncbi.nlm.nih.gov
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If we denote the frequency of the ith dinucleotide as di , then, a genomic sequence with 16-dimensional feature 
vector in the form of Eq. (5) are possible,

The frequencies of the dinucleotide transitions are obtained by accumulating each dinucleotide along the 
extracted genome sequences. We ignore ambiguous nucleotides absent in the reference genome. Suppose we have 
n total genome length. By allowing a single sliding iteration window there exists n− 1 bubble counts. Hence, the 
dinucleotide frequencies of di can be obtained by counting all nucleotides that correspond to i.

Nucleotide mutation frequency. Several techniques for biological sequence alignment (multiple or pairwise) 
have flourished the  literature54 and are continually being refined, but most of these techniques suffer from the 
lack of accuracy and partial interpretations. A direct pairwise alignment of each nucleotide with the reference 
genome was achieved by computing the recurrence of mutated nucleotides down the sequence line. For this 
study, the sequence of established SARS-CoV-2 reference genome (NC_045512; 29903 bp) sequenced in Decem-
ber 2019 was used. Suppose n represents the total length of a genome; By permitting a single sliding iteration 
window, a mutation may be any of the following pair:

If we denote the frequency of the ith nucleotide pair as pi , then, genomic sequence pairs with 12-dimensional 
feature vector in the form of Eq. (7) are possible,

Unsupervised genome clustering. Several mathematical techniques have been deployed for identifying underly-
ing patterns in complex data. These techniques, which cluster data points differently in multidimensional space 
are important to discover fundamental patterns of gene expression inherent in data. The clustering technique 
adopted in this paper is the SOM and has been used extensively in the field of bioinformatics, for visual inspec-
tion of biological processes, genes pattern expressions–as maps of (input) component planes analysis. SOM is a 
neural-network that projects data into a low-dimensional  space55, by accepting a set of input data and then map-
ping the data onto neurons of a 2D grid (see Fig. 13). The SOM algorithm locates a winning neuron, its adjust-
ing weights, and neighboring neurons. Using an unsupervised, competitive learning process, SOMs produce a 
low-dimensional, discretized representation of the input space of training samples, known as the feature map. 
During training, weights of the winning neuron and neurons in a predefined neighborhood are adjusted towards 
the input vector using Eq. (8),

(5)fω = {dAA, dAC, dAG, . . . , dTT}

(6)m = {AC,AG,AT, CA, CG, CT,GA,GC,GT, TA, TC, TG}

(7)fm = {pAC, pAG, pAT, . . . , pTG}

(8)wt+1
id = wt

id + rf
(

i, q
)(

xd − wt
id

)

; 1 ≤ d ≤ D.

Figure 13.  SOM showing the map topology and interactions between nodes. Each neuron is assigned a vector 
of weights ( w = wi1,wi2, . . .wiN ) with dimension similar to the input vector i(i = 1, 2, . . . , L ); where L is the 
total number of neurons in the network. The input nodes have p features, and the output nodes, q prototypes, 
with each prototype connected to all features. The weight vector of the connections consumes the prototype of 
each neuron and has same dimension as the input vector. SOMs differ from other artificial neural networks as 
they apply competitive learning, against error correction learning such as backpropagation, and the fact that 
they preserve the topological properties of the input space using a neighborhood function.
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where r is the learning rate and f (i, q) is the neighborhood function, with value 1 at the winning neuron q ; 
and decreases as the distance between i and q increases. At the end, the principal features of the input data are 
retained, hence, making SOM a dimension reduction technique. The batch unsupervised weight/bias algorithm of 
MATLAB (trainbu) with mean squared error (MSE) performance evaluation, was adopted to drive the proposed 
SOM. This algorithm trains a network with weight and bias learning rules using batch updates. The training was 
carried out in two phases: a rough training with large (initial) neighborhood radius and large (initial) learning 
rate, followed by a finetuned training phase with smaller radius and learning rate. The rough training phase 
can span any number of iterations depending on the capacity of the processing device. In this paper, we kept 
the number of iterations at 200 with initial and final neighborhood radius of 5 and 2, respectively, in addition 
to a learning rate in the range of 0.5 and 0.1. The fine training phase also had a maximum of 200 epochs, and 
a fixed learning rate of 0.2. Selection of best centroids of the genome feature within each cluster was based on 
the Euclidean distance criterion. The algorithm configures output vectors into a topological presentation of the 
original multi-dimensional data, producing a SOM in which individuals with similar features are mapped to the 
same map unit or nearby units, thereby creating smooth transition of related genome sequences to unrelated 
genome sequences over the entire map.

Genome sequence transformation and low similarity profile selection. Each genome sequence is mapped into 
an equivalent genomic signal (a discrete numeric sequence) using the following individual nucleotide encoding 
(i.e., A = 1; C = 2; G = 3; T = 4). Nucleotide pairs above 29,000 bp is maintained in this paper as base input vector, 
indicating approximate (maximum) length of DNA sequences of the raw SARS-CoV-2 genome. Next, repeated 
sequences are removed using a Microsoft Excel macro that deletes duplicate columns. A Microsoft Excel macro 
implementing this process is found on Supplementary Table S2. A similarity threshold of 0.90 is then imposed 
to further trim closely similar genomes, resulting in genomes with low similarity profiles or highly variable 
sequences distributed per continent and outlined in a component planes window, containing 88 isolates/coun-
tries shared according to gender as contained in SupplData8.xlsx (male = 71 countries; female = 66 countries), 
as follows (Africa: M = 371, F = 477; Asia: M = 514, F = 510; Europe: M = 311, F = 283; North America: M = 294, 
F = 199; South America: M = 185, F = 153; Oceania: M = 9, F = 6). The similarity threshold may be increased or 
reduced to grow or shrink the size of the component planes window. In this paper, a maximum window size of 
250 component planes is allowed, to enable proper viewing of the pattern clusters (see Figs. 4, 5, 6, 7, 8 of the 
“Results and discussion” section).

Pattern correlates generation. A vector representation of pairwise Euclidean distance computation among the 
vectors in the form of a distance matrix (also called the component plane) is achieved using MATLAB 2017b. 
Component planes help detect similar patterns in identical positions indicating correlations between the respec-
tive components. Local correlations may also occur if two parameter planes are similar in some regions. Both 
linear and non-linear correlations including local or partial correlations between variables are possible. We 
achieve the correlation  hunting56 automatically, by decoupling the SOM correlations, to explore patterns among 
the pairwise genome samples for distinct identification of transmission pathways or routes. The extracted cor-
relation matrices are pairwise relations of the viral sub-strains’ transmissions.

Cognitive knowledge extraction. Knowledge mining has served huge benefits for quick learning from big data. 
We apply Natural Language Processing of the genome datasets to extract knowledge of similar strains of the 
virus. A simple iteration technique is imposed on the SOM isolates ( i = 1, 2, 3, . . . , n) , where n is the maximum 
number of isolates, as follows: For each isolate pattern, compile similar patterns with the rest of the isolates (i.e., 
i + 1, i + 2, . . . , n) . Concatenate compiled isolate(s) into a list ( j1, j2,…, jm ) where j is an element of the list. 
Dump the compiled list into CogMap(ki ∈ j1, j2,…, jm) . As the distance matrix is extremely high-dimensional, 
suitable representative sequences of the isolate clusters are decoupled into a cognitive map for labeling of the 
classification targets.

Neural network design. Although five core Artificial Neural Networks (ANN) areas have been explored, 
namely: Multi-Layer Perceptron, Radial Basis Network, Recurrent Neural Networks, Generative Adversarial 
Networks, and Convolutional Neural Networks; this paper adopts the Multi-Layer Perceptron model (MLP)—
a class of feedforward ANNs, with at least three layers of nodes: an input layer, a hidden layer, and an output 
layer (Fig. 14). Except for the input nodes, each node is a neuron that uses a nonlinear activation function. MLP 
utilizes a supervised learning technique called backpropagation for training. Our output classes or classification 
targets (C1-C7) are derived from pattern clusters discovered from learning the SOM. A k-fold cross-validation 
method is adopted to divide the data into k parts. At each iteration i , the ith fold is used for testing, while the 
other folds are used for training. In this paper, the number of groups is split (into k parts) such that each data 
sample spans 3, 5, 10 and 15 yielding 60, 100, 200 and 300 calls, respectively, on the training and testing mode of 
each dataset. The k-fold cross validation method is known to estimate the robustness of the model on new data 
and is used to drive the validation phase of the NN. As the model is fit on training data, a more realistic estimate 
of how well the model prediction will work on new cases is obtained. In the current experimental setup, twenty 
(20) runs of stratified k-fold cross  validation57 is performed on the male and female datasets using a Neural Net-
work (NN) model developed in the MATLAB2017b.
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