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Machine learning application 
for the prediction of SARS‑CoV‑2 
infection using blood tests 
and chest radiograph
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Keith W. H. Chiu1, Benjamin X. H. Fang5, Ming Yen Ng1,6, Siu‑Ting Leung7, Christine S. Y. Lo8, 
Ho‑Yuen F. Wong5, Hiu‑Yin S. Lam5, Long‑Fung J. Chiu9, Tiffany Y So10, Ka Tak Wong11, 
Yiu Chung I. Wong12, Kevin Yu12, Yiu‑Cheong Yeung13, Thomas Chik13, Joanna W. K. Pang14, 
Abraham Ka‑chung Wai15, Michael D. Kuo1, Tina P. W. Lam5, Pek‑Lan Khong1, 
Ngai‑Tseung Cheung16 & Varut Vardhanabhuti1*

Triaging and prioritising patients for RT-PCR test had been essential in the management of COVID-19 
in resource-scarce countries. In this study, we applied machine learning (ML) to the task of detection 
of SARS-CoV-2 infection using basic laboratory markers. We performed the statistical analysis and 
trained an ML model on a retrospective cohort of 5148 patients from 24 hospitals in Hong Kong to 
classify COVID-19 and other aetiology of pneumonia. We validated the model on three temporal 
validation sets from different waves of infection in Hong Kong. For predicting SARS-CoV-2 infection, 
the ML model achieved high AUCs and specificity but low sensitivity in all three validation sets 
(AUC: 89.9–95.8%; Sensitivity: 55.5–77.8%; Specificity: 91.5–98.3%). When used in adjunction with 
radiologist interpretations of chest radiographs, the sensitivity was over 90% while keeping moderate 
specificity. Our study showed that machine learning model based on readily available laboratory 
markers could achieve high accuracy in predicting SARS-CoV-2 infection.

Since being declared a global pandemic on 11th March 2020, the infection of severe acute respiratory syndrome 
coronavirus 2 (SARS–CoV-2), known officially as COVID-19, has rapidly spread globally. Multiple waves of 
infections have been observed in several countries around the world, and despite efforts in mass vaccination, 
this is likely to take some time to get the viruses fully under control at a global level. We also have to combat the 
possibility of perpetually recurring waves of infection as the world battles against the emergence of variants. 
Therefore, it still remains of paramount importance to be able to provide a timely diagnosis to the different 
affected regions with scalability.
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Reverse transcriptase-polymerase chain reaction (RT-PCR) tests, although regarded as the gold standard, 
has reported false-negative rates being variably quoted between 10–61%1,2. There is also a disparity in testing 
capability globally. In western countries such as Europe and North America, the cumulative number of tests per 
population is 10 times that of Asia and 34 times that of Africa as of the end of August 20203. In resource-scarce 
settings, substitute tests may be needed to prioritise RT-PCR for vulnerable or high risk group. Early reports have 
shown that there are important characteristics in laboratory blood results such as leucopenia and lymphopenia4–7. 
Several prior studies have assessed the utility of non-specific inflammatory biomarkers such as C-reactive pro-
tein (CRP), white cell count (WBC) and absolute neutrophil count (ANC) to discriminate probable bacterial 
infections from non-bacterial infections8,9. Still, as of yet, none have examined these in context with COVID-19 
infection. Hong Kong also offers a unique perspective in this regard in being affected at a relatively early stage 
from a global perspective with initial outbreaks coinciding with local seasonal influenza infections. Several 
studies have examined descriptive characteristics of COVID-19 laboratory markers4,5,10, but machine learning 
applications offer another potential way to incorporate more subtle relationships between different laboratory 
markers11. A few studies have recently been published regarding the use of machine learning for diagnosis. For 
example, Zoabi et al. (2021) applied machine learning technique for prediction of COVID-19 using eight clinical 
and demographics binary features12. There is also a potential adjunct role of imaging in aiding the diagnosis of 
COVID-19. Chest radiographic abnormalities have been reported at the initial presentation of COVID-195,13,14 
is more scalable/readily available compared to CT and, has been advocated as a radiology decision tool for sus-
pected COVID-19 by the British Society of Thoracic Imaging15.

The objective of this study is to apply machine learning for the task of COVID-19 detection using basic labo-
ratory markers and explore the adjunctive role of chest radiographs. Here, we initially performed a statistical 
comparison of blood tests in patients with different aetiologies of pneumonia, including COVID-19 involving 
5,148 patients in 24 hospitals in Hong Kong during the first and second waves of infection. This is to establish a 
baseline laboratory comparison between COVID-19 from other pneumonia and other diagnoses. We then trained 
and validated machine learning models using basic blood tests with comparison to reference RT-PCR testing to 
predict COVID-19 infection status, and explore different use case scenarios with adjunction of chest radiographs. 
The models were then validated with temporal validation sets across other waves of infection in Hong Kong.

Results
Patient cohorts and analysis.  Primary cohort.  Summary of the study design and local outbreak time-
line is presented in Fig. 1. From the start of the local outbreak to 28th April 2020, a total of 85,393 patients from 
32 hospitals in Hong Kong had taken the RT-PCR test for SARS-CoV-2 virus. After applying the inclusion 
and exclusion criteria, a total of 5230 patients were eligible and included in the primary cohort. Of the 5230 
patients, 18 (0.3%) patients were co-infected with COVID-19 and bacterial pneumonia, 15 (0.3%) patients were 
co-infected with COVID-19 and another viral infection, 48 (0.9%) patients were co-infected with bacterial and 
non-COVID-19 viral pneumonia, and one patient was coinfected with all three. Due to the low amount of cases, 
the coinfected cases were removed from further analysis (n = 82). The primary cohort then finally included a 
total of 5148 patients. Of these, 447 patients were COVID-19 (8.7%), 405 patients (7.9%) with other viral pneu-
monia, and 1515 patients (29.4%) with bacterial pneumonia. A total of 1,862 (36.2%) were classified as clinical 
pneumonia with no laboratory confirmation or incomplete tests. For the non-pneumonia patient, there were 919 
patients (17.96%), of whom 256 (5.0%) were classified with other (non-pneumonia) infections by ICD-9 clas-
sification. Baseline characteristics of the primary cohort with laboratory tests and differences between disease 
groups are described in Table 1.

There were significant differences between patient age across disease groups (Kruskal–Wallis H: p < 0.001). 
Patients with COVID-19 were the youngest and were significantly younger than other viral (Mann–Whitney: 
p < 0.001) and bacterial pneumonia (Mann–Whitney: p < 0.001). Box plots describing the distribution of the 
laboratory blood markers are presented in Fig. 2. WBC was significantly lower in patients with COVID-19 than 
any other disease groups with large estimated effect sizes (f = 0.78 to 0.86). CRP and LDH were also found to be 
statistically lower in COVID-19 patients compared to other groups except for other non-pneumonia infections. 
In contrast, WBC, CRP and LDH were found to be highest in bacterial pneumonia.

Correlation between each laboratory markers and age was analysed. Neutrophils count was found to be highly 
positively correlated with WBC (rs = 0.96; p < 0.001). In addition, monocytes and WBC were found to be mod-
erately correlated (rs = 0.53; p < 0.001). Haemoglobin were also found to be highly correlated with haematocrit 
(rs = 0.98; p < 0.001), and moderately correlated with age (rs = 0.45; p < 0.001). No other features were found to 
be moderately or strongly correlated with age (rs = -0.30 to 0.28).

Validation cohorts.  To evaluate the performance of the discriminative model, three validation cohorts across 
different periods of the epidemic in Hong Kong were obtained. Baseline demographics and clinical characteris-
tics comparing COVID-19 and non-COVID-19 patients in the validation sets are presented in Table 2. A total 
of 605 patients were obtained for validation set 1, of whom 40 patients were positive for COVID-19. A subset of 
patients in validation set 1 that fulfilled the criteria for the primary cohort was obtained to test the performance 
of the model for detecting other subtypes of pneumonia. Distribution of laboratory markers between subtypes 
of pneumonia of the validation set 1 are given in Supplementary Table 1. Validation set 2 and 3 were consecu-
tive temporal validation sets based on patients that falls outside period of the primary cohort. As the time of 
the validation set 2 and 3 was outside of influenza season, many of the patients were only tested for a subset of 
common viruses (Viral group 1 in Supplementary Fig. 1). Of those patients who had viral testing performed, 
only four patients have confirmed positive in the validation set 3, and no patients in the validation set 2. Due to 



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:14250  | https://doi.org/10.1038/s41598-021-93719-2

www.nature.com/scientificreports/

the low number of confirmed cases, model performance for pneumonia subtype was not assessed in validation 
sets 2 and 3.

Development of a machine learning model to detect COVID‑19 and other subtypes of pneu‑
monia.  Driven by the observation of primary cohort analysis and to further analyse the discriminability of 
basic laboratory markers, a machine learning classifier was trained to classify whether the patient has COVID-
19, other viral pneumonia, bacterial pneumonia or non-pneumonia. A total of 3,058 patients from the primary 
cohort was used as the training set. Of these, 421 patients (13.8%) were COVID-19 confirmed, 359 patients 
(11.7%) were of other viral pneumonia, 1431 patients (46.8%) were of bacterial pneumonia, and 847 (27.7%) 
were of other diseases. Baseline characteristics of the primary cohort and laboratory tests of the training set are 
summarised in the Supplementary Table 2.

Given the significant differences in age between groups, to avoid bias, age and haemoglobin were not used for 
the model. In addition, monocytes, neutrophils and haematocrit were also removed for redundancy. The features 
selected for the final model were sex, WBC, lymphocytes, platelets, CRP and LDH. Several algorithms and classi-
fiers were considered (see Supplementary Table 3). Categorical gradient boosting (CatBoost) was selected as the 
classifier of the model due to the ease of handling missing numbers and categorical features, and also produce 
the highest cross-validation performance. The CatBoost model was trained with 80% of the training set with the 
other 20% used for cross-validation, model selection, and threshold selection.

Model evaluation.  The performance of the ML model was validated on three validation sets. In addition, a 
clinical model was devised to provide baseline performance for the evaluation, along with radiologist interpreta-

Figure 1.   Schematic showing study design with patient selection at each point of the study and temporal 
representation of training and validation sets in Hong Kong.
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Table 1.   Baseline demographics and laboratory characteristics of the primary cohort. SD standard deviation, 
IQR intequartile range, PNA pneumonia, WBC white blood cell, CRP C-reactive protein, LDH lactate 
dehydrogenase.

COVID-19 Other viral PNA Bacterial PNA Clinical PNA Other infections Other diseases

Demographics

Total, n 447 405 1515 1862 256 663

Female, n (%) 202 (45) 192 (47) 570 (38) 865 (46) 138 (54) 276 (42)

Age, years

Mean ± SD 42 ± 17 53 ± 22 74 ± 17 73 ± 19 45 ± 21 61 ± 21

Median (IQR) 39 (28–57) 52 (35–70) 77 (65–87) 79 (62–88) 39 (29–59) 64 (46–79)

16–35 174 (39) 101 (25) 46 (3) 117 (6) 104 (41) 105 (16)

35–50 113 (25) 87 (21) 85 (6) 147 (8) 62 (24) 82 (12)

50–65 115 (26) 83 (20) 237 (16) 281 (15) 37 (14) 152 (23)

 > 65 45 (10) 134 (33) 1147 (76) 1317 (71) 53 (21) 324 (49)

Haemoglobin g/dL

Missing, n (%) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Mean ± SD 13.9 ± 1.4 12.9 ± 2.2 11.1 ± 2.4 11.4 ± 2.5 13.2 ± 2.0 12.0 ± 2.6

Median (IQR) 13.9 (13.0–15.0) 13.2 (11.7–14.6) 11.1 (9.3–12.8) 11.7 (9.7–13.2) 13.4 (12.1–14.5) 12.4 (10.3–14.0)

Haematocrit

Missing, n (%) 0 (0) 0 (0) 0 (0) 1 (0) 0 (0) 0 (0)

Mean ± SD 0.4 ± 0.0 0.4 ± 0.1 0.3 ± 0.1 0.3 ± 0.1 0.4 ± 0.1 0.4 ± 0.1

Median (IQR) 0.4 (0.4–0.4) 0.4 (0.4–0.4) 0.3 (0.3–0.4) 0.4 (0.3–0.4) 0.4 (0.4–0.4) 0.4 (0.3–0.4)

WBC, 109/L

Missing, n (%) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Mean ± SD 5.5 ± 1.9 8.8 ± 4.8 12.6 ± 12.9 11.3 ± 6.7 9.4 ± 5.5 11.5 ± 21.5

Median (IQR) 5.2 (4.3–6.4) 7.7 (6.0–10.2) 11.1 (7.5–15.4) 9.8 (7.1–13.7) 7.7 (6.3–10.5) 9.0 (6.8–12.4)

Lymphocyte, 109/L

Missing, n (%) 4 (1) 48 (12) 97 (6) 108 (6) 17 (7) 43 (6)

Mean ± SD 1.3 ± 0.6 1.4 ± 0.8 1.1 ± 2.1 1.2 ± 1.5 1.7 ± 1.1 1.4 ± 2.5

Median (IQR) 1.3 (0.9–1.7) 1.3 (0.8–1.8) 0.9 (0.5–1.4) 1.0 (0.6–1.5) 1.6 (1.0–2.1) 1.2 (0.7–1.7)

Monocyte 109/L

Missing, n (%) 4 (1) 48 (12) 100 (7) 108 (6) 17 (7) 44 (7)

Mean ± SD 0.5 ± 0.2 0.6 ± 0.4 0.7 ± 1.0 0.8 ± 1.8 0.6 ± 0.4 0.7 ± 0.9

Median (IQR) 0.5 (0.3–0.6) 0.6 (0.4–0.8) 0.6 (0.4–0.9) 0.6 (0.4–0.9) 0.5 (0.3–0.7) 0.6 (0.4–0.9)

Neutrophil 109/L

Missing, n (%) 4 (1) 48 (12) 97 (6) 108 (6) 17 (7) 43 (6)

Mean ± SD 3.6 ± 1.7 6.7 ± 4.8 10.4 ± 7.4 9.1 ± 5.5 7.1 ± 5.6 8.4 ± 5.7

Median (IQR) 3.3 (2.4–4.4) 5.4 (3.9–7.8) 8.9 (5.8–13.5) 7.8 (5.1–11.6) 5.2 (3.9–8.3) 6.7 (4.5–10.6)

Platelet 109/L

Missing, n (%) 0 (0) 0 (0) 4 (0) 2 (0) 0 (0) 0 (0)

Mean ± SD 221.2 ± 74.1 233.3 ± 87.4 246.0 ± 117.7 241.2 ± 108.7 234.1 ± 81.2 255.4 ± 108.4

Median (IQR) 205.0 (171.0–
259.0)

223.0 (173.0–
280.0)

231.0 (169.5–
307.0)

224.5 (168.0–
294.0)

233.0 (179.0–
281.2)

236.0 (188.0–
301.0)

CRP mg/dL

Missing, n (%) 48 (11) 181 (45) 610 (40) 638 (34) 122 (48) 292 (44)

Mean ± SD 1.9 ± 4.0 4.9 ± 7.7 9.9 ± 9.6 7.4 ± 8.1 5.7 ± 9.4 5.9 ± 8.0

Median (IQR) 0.4 (0.2–1.4) 1.9 (0.4–6.0) 7.1 (2.1–15.2) 4.9 (1.1–11.0) 0.7 (0.1–7.0) 2.1 (0.3–8.8)

LDH U/L

Missing, n (%) 31 (7) 250 (62) 936 (62) 1020 (55) 146 (57) 347 (52)

Mean ± SD 208.9 ± 74.8 238.1 ± 124.7 371.9 ± 625.5 287.0 ± 344.9 198.5 ± 73.4 296.8 ± 500.6

Median (IQR) 186.5 (158.0–
237.0)

210.0 (165.0–
253.2)

252.6 (193.7–
353.0)

226.5 (184.0–
290.0)

177.0 (155.5–
212.0)

210.5 (178.0–
293.2)
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Figure 2.   Box Plots and pairwise Mann–Whitney U test summary for common blood laboratory markers. For 
each blood laboratory marker, the lower and upper bounds of the diagnostic reference range adopted in the local 
hospitals are given by the grey dotted lines. Statistical significance is indicated by the orange highlights, and the 
effect size estimated by f is given in the table. If statistical significance is achieved this is highlighted in orange. 
(a) Boxplot for comparing white blood cell (WBC) counts across different disease groups (Kruskal–Wallis 
H: p < 0.001). (b) Boxplot for comparing lymphocyte counts across different disease groups (Kruskal–Wallis 
H: p < 0.001). (c) Boxplot for comparing platelet counts across different disease groups (Kruskal–Wallis H: 
p < 0.001). (d) Boxplot for comparing C-reactive protein (CRP) level across different disease groups (Kruskal–
Wallis H: p < 0.001). (e) Boxplot for comparing lactate dehydrogenase (LDH) level across different disease 
groups (Kruskal–Wallis H: p < 0.001). (f) Boxplot for comparing haemoglobin distribution across different 
disease groups (Kruskal–Wallis H: p < 0.001). PNA pneumonia.
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Validation set 1 Validation set 2a Validation set 3

COVID-19 Non COVID-19 COVID-19 Non COVID-19 COVID-19 Non COVID-19

Demographics

Total, n 40 565 155 2966 27 355

Female, n (%) 25 (62) 261 (46) 84 (54) 1420 (48) 15 (56) 181 (51)

Age, years

Mean ± SD 57 ± 19 67 ± 20 54 ± 17 67 ± 20 55 ± 19 72 ± 19

Median (IQR) 58 (46–70) 70 (54–85) 56 (40–66) 71 (55–84) 58 (43–66) 78 (61–87)

16–35 7 (18) 48 (8) 30 (19) 267 (9) 5 (19) 20 (6)

35–50 6 (15) 74 (13) 30 (19) 328 (11) 5 (19) 36 (10)

50–65 11 (28) 105 (19) 51 (33) 590 (20) 9 (33) 48 (14)

 > 65 16 (40) 338 (60) 44 (28) 1781 (60) 8 (30) 251 (71)

Haemoglobin g/dL

Missing, n (%) 0 (0) 0 (0) 5 (3) 15 (1) 1 (4) 5 (1)

Mean ± SD 12.7 ± 1.9 11.7 ± 2.5 13.5 ± 1.5 12.0 ± 2.5 13.2 ± 2.0 11.5 ± 2.6

Median (IQR) 12.8 (11.3–14.2) 11.8 (9.9–13.3) 13.4 (12.7–14.5) 12.2 (10.4–13.7) 13.5 (13.0–14.3) 11.6 (9.8–13.4)

Haematocrit

Missing, n (%) 0 (0) 0 (0) 6 (4) 119 (4) 1 (4) 5 (1)

Mean ± SD 0.4 ± 0.1 0.4 ± 0.1 0.4 ± 0.0 0.4 ± 0.1 0.4 ± 0.1 0.3 ± 0.1

Median (IQR) 0.4 (0.3–0.4) 0.4 (0.3–0.4) 0.4 (0.4–0.4) 0.4 (0.3–0.4) 0.4 (0.4–0.4) 0.3 (0.3–0.4)

WBC, 109/L

Missing, n (%) 0 (0) 0 (0) 6 (4) 119 (4) 1 (4) 5 (1)

Mean ± SD 6.7 ± 2.4 10.7 ± 6.0 5.3 ± 1.7 10.3 ± 6.0 5.0 ± 1.5 10.6 ± 5.7

Median (IQR) 6.2 (5.1–8.0) 9.2 (6.7–13.0) 5.0 (4.1–6.2) 9.0 (6.6–12.5) 4.7 (3.9–6.0) 9.4 (7.0–13.0)

Lymphocyte, 109/L

Missing, n (%) 0 (0) 0 (0) 8 (5) 618 (21) 1 (4) 6 (2)

Mean ± SD 1.4 ± 0.6 1.2 ± 0.8 1.2 ± 0.5 1.4 ± 0.9 1.1 ± 0.5 1.3 ± 0.8

Median (IQR) 1.3 (0.9–1.7) 1.0 (0.7–1.6) 1.2 (0.9–1.6) 1.2 (0.8–1.8) 1.0 (0.8–1.3) 1.2 (0.8–1.7)

Monocyte 109/L

Missing, n (%) 0 (0) 0 (0) 8 (5) 618 (21) 1 (4) 6 (2)

Mean ± SD 0.5 ± 0.2 0.7 ± 0.8 0.5 ± 0.2 0.7 ± 0.5 0.6 ± 0.3 0.7 ± 0.4

Median (IQR) 0.5 (0.4–0.7) 0.6 (0.4–0.9) 0.5 (0.4–0.7) 0.6 (0.4–0.8) 0.5 (0.4–0.7) 0.6 (0.5–0.9)

Neutrophil 109/L

Missing, n (%) 0 (0) 0 (0) 8 (5) 617 (21) 1 (4) 5 (1)

Mean ± SD 4.6 ± 2.4 8.5 ± 5.5 3.5 ± 1.6 8.0 ± 5.6 3.2 ± 1.2 8.2 ± 4.9

Median (IQR) 4.2 (2.9–5.2) 7.0 (4.7–10.7) 3.1 (2.3–4.2) 6.6 (4.4–10.3) 3.1 (2.2–3.7) 7.0 (4.7–10.2)

Platelet 109/L

Missing, n (%) 0 (0) 0 (0) 6 (4) 122 (4) 1 (4) 6 (2)

Mean ± SD 255.0 ± 101.9 241.5 ± 105.6 198.2 ± 59.5 247.2 ± 100.2 202.7 ± 49.4 245.5 ± 107.2

Median (IQR) 238.0 (171.8–
318.5)

232.0 (172.0–
297.0)

193.0 (156.0–
239.0)

233.5 (183.0–
294.0)

187.0 (173.2–
229.8)

238.0 (184.0–
291.0)

CRP mg/dL

Missing, n (%) 1 (2) 223 (39) 35 (23) 1642 (55) 8 (30) 311 (88)

Mean ± SD 4.1 ± 7.4 8.2 ± 9.6 2.3 ± 3.5 6.1 ± 7.3 1.9 ± 2.7 3.2 ± 3.8

Median (IQR) 0.7 (0.3–2.4) 4.4 (0.9–11.9) 0.7 (0.3–2.9) 3.3 (0.6–8.8) 0.5 (0.4–2.1) 1.8 (0.5–4.3)

LDH U/L

Missing, n (%) 4 (10) 365 (65) 63 (41) 2501 (84) 4 (15) 341 (96)

Mean ± SD 245.3 ± 79.4 274.5 ± 145.4 227.4 ± 121.5 287.4 ± 339.4 251.3 ± 80.6 527.1 ± 769.1

Median (IQR) 228.0 (189.5–
268.0)

226.0 (185.8–
322.8)

190.2 (172.8–
235.0)

225.0 (182.0–
290.0)

231.0 (193.0–
286.0)

280.5 (195.2–
442.0)

Contact history

Travel, n (%) 12 (30) 133 (24) N/A N/A 0 (0) 2 (1)

Close contact, 
n (%) 20 (50) 14 (2) N/A N/A 19 (70) 6 (2)

Symptoms

Fever, n (%) 19 (48) 254 (45) N/A N/A 15 (56) 168 (47)

Cough, n (%) 23 (58) 295 (52) N/A N/A 16 (59) 92 (26)

URTI, n (%) 14 (35) 94 (17) N/A N/A 14 (52) 33 (9)

Continued
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tion. The clinical model was based on the early observation that lymphopenia associated with COVID-19. Local 
diagnostic ranges for lymphocytes were used for the model. The clinical model and radiologist interpretation 
were evaluated on the validation set 1 and 3. The performance of individual radiologist is presented in Supple-
mentary Table 4.

The validation of all models in classifying COVID-19 is summarised in Table 3. For discriminating COVID-
19, the ML model achieved high AUCs and specificity in all three validation sets (AUC > 0.9 and specificity > 0.9). 
Radiologists’ read achieved low sensitivity, and moderate to high specificity in the validation set 1 and set 3. 
When used together, the combined ML model and radiologists achieved a significantly higher sensitivity of over 
90% in each validation sets but a reduction in specificity. The basic clinical model was not able to accurately 
identify COVID-19 patients. Performance of the model on the classification of other pneumonia subtypes in 
the validation set 1 is presented in Table 4. The model achieved a moderately high AUC of 77.4% in classifying 
bacterial pneumonia but was unable to adequately discriminate between other viral and non-pneumonia patients.

The SHAP analysis of the models shows that WBC was the most important predictor for COVID-19 with a 
decrease in WBC corresponding with a higher probability of COVID-19. For bacterial pneumonia, WBC and 
lymphocytes have the highest impact, with high WBC and low lymphocytes count corresponding to an increase 
in the likelihood of bacterial pneumonia. Summary plots for SHAP analysis and illustrative examples of how the 

Validation set 1 Validation set 2a Validation set 3

COVID-19 Non COVID-19 COVID-19 Non COVID-19 COVID-19 Non COVID-19

Shortness of 
breath, n (%) 10 (25) 236 (42) N/A N/A 1 (4) 122 (34)

Headache, n (%) 2 (5) 16 (3) N/A N/A 4 (15) 19 (5)

Myalgia, n (%) 3 (8) 9 (2) N/A N/A 0 (0) 85 (24)

Nausea & vomit-
ing, n (%) 1 (2) 26 (5) N/A N/A 0 (0) 85 (24)

Diarrhoea, n (%) 1 (2) 20 (4) N/A N/A 4 (15) 36 (10)

Anosmia, n (%) 0 (0) 0 (0) N/A N/A 5 (19) 2 (1)

Admission condition

Fever (> 37.5 °C), 
n (%) 9 (22) 111 (20) N/A N/A 20 (74) 166 (47)

Requiring sup-
plemental oxygen, 
n (%)

4 (10) 140 (25) N/A N/A 2 (7) 85 (24)

Table 2.   Baseline demographics and laboratory and clinical characteristics of validation sets. SD standard 
deviation, IQR interquartile range, WBC white blood cell, CRP C-reactive protein, LDH lactate dehydrogenase. 
a Clinical characteristics were not extracted for validation set 2.

Table 3.   COVID-19 discriminability of the machine learning model and comparison to clinical, radiologist 
consensus and combined model. AUC​ area under the curve, PPV positive predictive value, NPV negative 
predictive value, CI confidence intervals, ML machine learning model. a AUC for Clinical, Radiologist and 
combined Radiologist and ML model are not applicable. b For validation set 2, only one radiologist interpreted 
the chest radiograph for validation set 3.

Positive/total AUC​a Accuracy Sensitivity Specificity PPV NPV

n % (95%-CI) % (95%-CI) % (95%-CI) % (95%-CI) % (95%-CI) % (95%-CI)

Validation set 1

ML model 40/605 89.9 (85.9–93.9) 89.3 (86.5–91.6) 57.5 (40.9–73.0) 91.5 (88.9–93.7) 32.6 (22.8–42.3) 97.9 (96.6–99.1)

Clinical model 40/605 N/A 70.4 (66.6–74.0) 30.0 (16.6–46.5) 73.3 (69.4–76.9) 7.4 (3.4–11.4) 93.7 (91.4–95.9)

Radiologist 
consensus 40/605 N/A 73.2 (69.5–76.7) 55.0 (38.5–70.7) 74.5 (70.7–78.1) 13.3 (8.1–18.4) 95.9 (94.0–97.8)

Radiolo-
gist + ML model 40/605 N/A 68.4 (64.6–72.1) 92.5 (79.6–98.4) 66.7 (62.7–70.6) 16.4 (11.6–21.3) 99.2 (98.3–

100.1)

Validation set 2

ML model 155/3121 91.3 (89.2–93.3) 93.0 (92.0–93.9) 57.4 (49.2–65.3) 94.8 (94.0–95.6) 36.8 (30.7–42.9) 97.7 (97.2–98.3)

Validation set 3

ML model 27/382 95.8 (91.6–99.9) 96.9 (94.6–98.4) 77.8 (57.7–91.4) 98.3 (96.4–99.4) 77.8 (62.1–93.5) 98.3 (97.0–99.7)

Clinical model 27/382 N/A 67.2 (62.2–71.9) 57.7 (36.9–76.6) 67.9 (62.7–72.8) 11.8 (6.2–17.4) 95.6 (93.0–98.1)

Radiologist 
readb 27/382 N/A 92.3 (89.1–94.8) 53.8 (33.4–73.4) 95.1 (92.3–97.1) 45.2 (27.6–62.7) 96.5 (94.6–98.5)

Radiolo-
gist + ML model 27/382 N/A 55.5 (50.3–60.6) 92.3 (74.9–99.1) 52.7 (47.3–58.1) 12.7 (8.0–17.4) 98.9 (97.4–

100.4)
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final prediction using the combined model works in practice with the contribution of SHAP value are shown in 
Fig. 3 and supplementary Fig. 2.

Discussion
There has been an emphasis on testing using RT-PCR in the early stages of management of the COVID-19 
pandemic. Despite the growing availability of RT-PCR testing kits, confirmation is usually only available after 
triaging, or treatment decisions have been made. Leveraging existing infrastructures and differentiating from 
other common respiratory tract infections need to be considered for long term sustainability in combating the 
disease. There are two potential scenarios when using simple tests may be useful. First, a model may be helpful 
in countries that cannot afford large supplies of RT-PCR testing kits, particularly currently it is looking likely that 
the pandemic will assume a more protracted course with prolonged economic impact. Given the high sensitivity 
and negative predictive value of our combined model, it is potentially indicated for low-risk patient stratification, 
whereby a negative prediction from the ML model allows for patients’ discharge while awaiting final labora-
tory confirmation. The risk of subsequent community infection is thus minimised whilst not overburdening 
the healthcare system or isolation centres. Second, consider a scenario whereby the disease prevalence is low 
or becomes seasonal; the model may serve as a surveillance system for future outbreaks. The machine learning 
approach offers the potential of automation with tasks running in the background and only alerting clinicians 
in case of positive prediction. The tools being used here are based on clinical intuition. Using laboratory blood 
results for screening is already being done in clinical practice even at the early stages of the outbreak16. CXR 
radiographic appearances, although overlaps with other viral aetiologies17, when used in combination with blood 
test increases sensitivity. Machine learning has the potential to better handle non-linearly separable data thus 
achieving better performance. Despite that, analysis of our machine learning model had found linear associa-
tion in some predictor such as WBC and CRP. WBC was significantly lower in COVID-19 patients than viral 
pneumonia patients, but the median value was still within the normal range. Human interpretation which relies 
solely on just the reference range may miss this subtlety.

Major strengths in our study include a large sample size of patients with reference laboratory testing in all 
cases, in a population where there was clinical suspicion of respiratory infection at the initial presentation. Our 
cohorts of positive COVID-19 cases were also consecutive during different phases of outbreaks in Hong Kong. 
The study also involved 27 hospitals in all territories of Hong Kong and was validated on three separate held-
out test sets, with the latter two validation sets included consecutive patients during the third wave of infection. 
We also only used blood results and CXR at the initial presentation, which mirrors the potential use case. The 
COVID-19 cases in Hong Kong are unique as all the patients regardless of clinical severity were hospitalised. 
Our model is therefore likely applicable to patients with full disease spectrum.

Several recent studies have been published on COVID-19, but in the initial periods, these have mainly 
included clinical characteristics, laboratory findings, descriptive findings of radiological appearances and were 
mostly focusing on COVID-19 patients in isolation5–7. Our findings were broadly in line with previous studies 
with low white cell count and CRP having high discriminability. Of note, whilst the median lymphocyte count 
in our cohorts was low for COVID-19, it was similar to other viral pneumonia. It is known that other viral pneu-
monias were also associated with lymphopenia8,18. Moreover, the median value for non-pneumonia was even 
lower thus limiting its discriminating power. CRP in our cohort was raised but not as high compared to other 
pneumonia. Owing to different reference ranges, the actual values are not directly comparable with other studies. 
The findings may also reflect the range of clinical spectrum at presentations where our patients may present at an 
earlier stage compared to at the epicentre of the outbreak in other countries. Our CRP results are similar to one 
other territory-wide study that was performed in Hong Kong 19 and another smaller study from Taiwan20, which 
directly compared laboratory markers with other non-COVID-19 respiratory infections. This was also true in 
early-stage patients in a separate study21, as well as in one of the largest cohort to date which included severity of 
clinical status, where the CRP was higher in more severe groups reflecting more severe inflammatory states5. A 
few recent studies demonstrated the value in using data-driven machine learning approach in prognostication 
for COVID-1922,23, and have similarly identified lymphocytes and CRP to be important features, as well as LDH 
for predicting mortality. In terms of diagnostic capability with machine learning, some recent studies have also 
been performed, but with smaller datasets, lack of temporal validation and often without clinical comparison 
24–26. More recently several machine learning based approaches have been published demonstrating more broader 
applicability in COVID-19 related applications including triage assessment27, severity classifcaiton28,29, risk prog-
nostication including mortality30 as well as applying to multi-omics data31. For example, a similar approach was 
tried with similar findings also with an attempt for explanability similar to our study32. This study used decision 
trees and criteria graph whilst our study used SHAP analysis. Another recently published study also applied 

Table 4.   Pneumonia subtype discriminability of the machine learning model. AUC​ area under the curve, PNA 
pneumonia.

Disease

Positive/total AUC, % (CI) Accuracy, % (CI) Sensitivity, % (CI) Specificity, % (CI)

N % (95%-CI) % (95%-CI) % (95%-CI) % (95%-CI)

Bacterial PNA 45/175 77.4 (70.2–84.5) 55.4 (47.7–62.9) 100.0 (92.1–100.0) 40.0 (31.5–49.0)

Viral PNA 49/175 62.9 (54.0–71.9) 56.6 (48.9–64.0) 67.3 (52.5–80.1) 52.4 (43.3–61.3)

Non PNA 62/175 62.5 (54.1–70.9) 61.7 (54.1–68.9) 38.7 (26.6–51.9) 74.3 (65.3–82.1)
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Figure 3.   Case examples of human and machine learning model prediction. The cut-off threshold for SHAP 
model is 0.48 meaning that if the model output value is above this, then the prediction is positive. The relative 
contribution of each laboratory marker is shown in the individual SHAP value plot. (a) An elderly female 
with a positive prediction from chest X-ray (bilateral lower zones shadowing) and positive prediction from 
laboratory markers (WBC: 5.29, lymphocytes: 1.09, LDH: 247, and CRP: 1.63). The ground-truth COVID-19 
RT-PCR result is positive. (b) An elderly male with a negative prediction from chest X-ray (normal radiographic 
appearance) and positive prediction from laboratory markers (LDH: 178, lymphocytes: 1.46, platelet: 146, and 
CRP: 1.033The ground-truth COVID-19 RT-PCR result is positive.
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machine learning to clinical and laboratory improves the performance of the prediction of COVID-1933. There 
is increasing body of evidence in the literatures now supporting the potential usefulness in applying machine 
learning for these tasks.

Some limitations are worth noting. First, this is a retrospective study. Prospective validation of such models 
would be helpful to see how it performs in real practice. Second, there are potentially important features such as 
other laboratory and clinical features which were not used. Owing to the retrospective nature of this study, other 
blood tests were fewer in numbers in our cohorts. Clinical notes at the initial presentation were in hand-written 
formats and were not readily retrievable at scale across multiple hospitals for all patients. However, we were 
able to review these for validation sets 1 and 3. In particular, the duration of clinical symptoms may be helpful 
to include in future models as these may show better discriminability between seasonal influenza. Thirdly, the 
generalisability of the model needs to be tested in other settings. The sensitivity of any diagnostic test depends 
on patient characteristics. More specifically, predictive models are derived from the training datasets with its 
own distribution of disease severity and varying disease spectrum. In Hong Kong, all patients are admitted to 
hospitals or treatment centres regardless of their clinical status. Different countries have different approaches 
to testing and hospitalisation of patients with COVID-19, so the generalisability will depend on how well this 
matches with the idiosyncrasies of the individual healthcare practices.

In summary, a machine learning model was able to achieve high accuracy for the prediction of SARS-CoV-2 
infection. Adjunctive use of chest radiograph could play a role in increasing sensitivity while achieving moderate 
specificity when combined with ML blood model, which may have potential implications in triaging patients, 
particularly when RT-PCR testing resources are scarce.

Methods
Ethics approval.  This study protocol was approved by multi-institutional review boards in multiple hos-
pitals across Hong Kong: HKU/Hong Kong West Cluster Research Ethics Committee (Ref. UW 20-291), Hong 
Kong East Cluster Research Ethics Committee (HKECREC-2020-012), Kowloon Central/Kowloon East Cluster 
Research Ethics Committee (KC/KE-20-0052/ER-3), Kowloon West Cluster Research Ethics Committee (Ref. 
KW/EX-20-065), CUHK/New Territories East Cluster Clinical Research Ethics Committee (Ref. 2020.216), and 
New Territories West Cluster Research Ethics Committee (NTWC/REC/20048). Informed patient consent was 
waived owing to the retrospective nature of the study. The study design followed the TRIPOD criteria34. For 
information, please refer to Supplementary Document. All methods were carried out in accordance with local 
authority guidelines and regulations. All experimental protocols were approved by a named institutional and/
or licensing committee.

Study design and cohort selections.  The patients used in this study are based on a territory-wide search 
of patients with clinical suspicion of COVID-19 infection presenting to the accident and emergency depart-
ment from the start of the COVID-19 outbreak. Patients that were retrieved had undergone RT-PCR testing for 
SARS-CoV-2 fulfilling the testing criteria by Centre for Health Protection, Department of Health, Government 
of Hong Kong SAR (see Supplementary document).

Due to a large number of patients who were screened because of cross-border travel or close contact with 
positive patients, to select symptomatic patients from the cohort, the following inclusion criteria were applied: 
(i) had frontal chest radiographs on the date of the RT-PCR test, (ii) had laboratory testing done, specifically 
haematological blood count with or without differential counts, C-reactive protein (CRP) and lactate dehydro-
genase (LDH) on the date of the RT-PCR test. In addition to test results, the patient demographics and ICD 
diagnosis code at the date of the first examination of each patient were also retrieved. Patients younger than 
16 years old were excluded.

Primary cohort.  The primary cohort consists of patients in the first and second wave of infection from 1st Janu-
ary to 28th April 2020. To analyse the distribution of laboratory markers for different aetiology of pneumonia, 
patients that had nasopharyngeal aspirate (NPA) virologic sampling tested for common respiratory pathogens 
using multiplex PCR with or without sputum culture were selected. Patients were categorised into the following 
six disease groups: COVID-19, other viral pneumonia, bacterial pneumonia, clinical pneumonia, other infec-
tion, and other diseases. For patients included in COVID-19, other viral and bacterial pneumonia groups, they 
must be laboratory-confirmed positive by their respective laboratory tests. Viral and bacterial pneumonia is 
confirmed by either PCR or sputum culture. Patients that have partial laboratory tests or negative laboratory 
test results but has an ICD-9 classification of pneumonia were a group as clinical pneumonia. For other infec-
tion and disease, to ensure the patient does not have pneumonia pathogens, patient included to the groups must 
have negative test results for RT-PCR for SARS-CoV-2 and other common viral pathogens and sputum culture 
for bacterial infection. A detailed summary for cohort selects and lists of pathogens tested by PCR are listed in 
Supplementary Fig. 1.

Validation cohorts.  To evaluate the performance of the modelling in discriminating the disease groups, the 
model was tested on three different validation cohorts across different time periods during the epidemics in 
Hong Kong. The first validation cohort (validation set 1) consisted of all COVID-19 patients presented in Hong 
Kong between 16th February to 2nd March with patients from 21 different hospitals. Negative patients for the 
validation set 1 were randomly sampled in the same period to give approximately 6% prevalence. To assess the 
generalisability of the findings, the second and third validation cohorts were obtained between 20th to 31st July 
2020, which coincided with the third wave of local outbreak in Hong Kong. The second validation cohort (vali-
dation set 2) consisted of consecutive suspected patients presented across Hong Kong in 27 hospitals over 4 days 
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between 20th to 23rd July, and the third validation cohort (validation set 3) was based on consecutive patients 
at a single hospital (XX Hospital) between 24th to 31st July. For validation set 1 and 3, in addition to laboratory 
test results, clinical details and frontal chest radiographs were also retrieved for analysis. Clinical details included 
travel or contact history, patient condition and symptoms at presentation, and were obtained from reviewing 
patient admission notes or discharge summaries.

Statistical analysis.  The patient demographics and the blood test results for haemoglobin, haematocrit, 
white blood cells (WBC), neutrophils, lymphocytes, monocytes, platelets, CRP and LDH were recorded and 
analysed for each disease group. For each variable, normality was tested by Shapiro-Wilks test. Comparison 
across diseases groups was tested by Kruskal–Wallis H test, with post hoc Mann–Whitney U test for statistical 
difference between individual groups. The effect size of laboratory markers between each group was estimated 
by the common language effect size f. f is equivalent to the area under the curve (AUC) for the receiver operat-
ing characteristic curve (ROC). Correlation between each test marker and age were also analysed by Spearman’s 
rank correlation coefficient rs.

Modelling and evaluation.  To analyse the discriminability of the laboratory markers, the features were 
modelled by machine learning to classify whether the patient has COVID-19, other viral pneumonia, bacte-
rial pneumonia or non-pneumonia. The training set for the model was based on the patients from the primary 
cohort with overlapping patients from the validation sets removed. Patients that were classified as clinical pneu-
monia were not included in the modelling. The model was evaluated in the three validation sets to assess the per-
formance and generalisability. In addition to the machine learning model (ML), the performance was compared 
with a clinical model and radiologist reads of frontal chest radiographs to provide a baseline for evaluation.

Machine learning model.  To develop the ML model for classification of the diseases, several binary classification 
algorithms and classifiers were considered: Categorical gradient boosting (CatBoost), support vector machine 
(SVM), and logistic regression. Catboost is an open-source ensemble method based on gradient boosted deci-
sion tree designed for heterogeneous features types35,36. For SVM, gaussian, second-degree polynomial, and 
third-degree polynomial degree kernel function were tested. Each classifier was trained with 80% of the train-
ing set with the other 20% used for cross-validation, model selection, and threshold selection. To alleviate the 
problem of class imbalanced, a class-weighted cross-entropy loss was used as the loss function for all the tested 
classifers. For handling of missing values, the median feature value from the training set was used for the train-
ing of SVM and logistic regression. While no specific imputation is needed for the training of CatBoost as the 
optimal effect of missing values in the input are learned by CatBoost algorithm.

Clinical model.  A clinical model based on the blood test was devised. The model is based on the early obser-
vation that lymphopenia associated with COVID-19. Local diagnostic ranges for lymphocytes were used for 
the model. A patient is classified as likely to have COVID-19 if the patient has a lymphocytes count of less than 
3.89 × 109/L and at least one of the following condition: (a) had close contact with a confirmed case, (b) had a 
travel history to an affected area classified as having active infections (e.g. mainland China, Europe and the US), 
(c) presented with fever (temperature > 37.5 °C), (4) required supplemental oxygen on admission.

Radiologist interpretation and combined radiologist ML model.  A pre-defined set of CXR findings were used 
based on local experience and emerging literature to define “typical” radiographic features of COVID-1913,17. 
Radiologist interpretation of the frontal chest radiographs was performed on the validation set 1 and validation 
set 3. For validation set 1, four board-certified radiologists (2, 5, 10, and 15 years of experience) with subspe-
cialty training in thoracic radiology read the films independently and blinded of RT-PCR results. The consensus 
agreement was used as the reference standard if two or more radiologists agreed on the finding. If there was a 
two-way tie, i.e. two radiologists reported positive finding, and two radiologists reported negative results, then 
the final prediction will be positive. This is because the aim is to increase sensitivity. For validation set 3, only one 
radiologist with thoracic radiologist read the films.

As most confirmed patients were admitted to hospital and owing to extensive testing and contact tracing, 
it is thought that a lot of patients were at the early stages of the disease. Chest radiographs may be normal, or 
if changes were present, they might be too subtle to be detectable. Hence, radiologist interpretation of chest 
radiographs alone will be unlikely to achieve very high sensitivity in detecting COVID-19. In order to maximise 
sensitivity for a combined ML model, the prediction of the model is deemed positive if either the ML model or 
radiologist reads positive (please refer to Supplementary Document for more details).

Evaluation.  The AUC, accuracy, sensitivity, specificity, positive prediction value (PPV), and negative predic-
tion value (NPV) were calculated for the prediction of each model. 95% confidence intervals (CI) for accuracy, 
sensitivity, and specificity were calculated using Clopper-Pearson “exact” methods37. Standard logit methods and 
Delong methods were used to estimate the CI for the predictive values and AUC, respectively38,39. In addition to 
the performances of the model, feature importance and interaction were analysed by using post-model Shapley 
additive explanations (SHAP) analysis40.
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Data availability
Due to the retrospective nature of the study, specific patient level data used for this study cannot be made pub-
licly available as patients did not agree for their data to be shared publicly. De-identified data may be available 
upon reasonable request.
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