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Maximal modularity 
and the optimal size of parliaments
Luca Gamberi, Yanik‑Pascal Förster, Evan Tzanis, Alessia Annibale & Pierpaolo Vivo*

An important question in representative democracies is how to determine the optimal parliament 
size of a given country. According to an old conjecture, known as the cubic root law, there is a fairly 
universal power‑law relation, with an exponent equal to 1/3, between the size of an elected parliament 
and the country’s population. Empirical data in modern European countries support such universality 
but are consistent with a larger exponent. In this work, we analyse this intriguing regularity using 
tools from complex networks theory. We model the population of a democratic country as a random 
network, drawn from a growth model, where each node is assigned a constituency membership 
sampled from an available set of size D. We calculate analytically the modularity of the population 
and find that its functional relation with the number of constituencies is strongly non‑monotonic, 
exhibiting a maximum that depends on the population size. The criterion of maximal modularity 
allows us to predict that the number of representatives should scale as a power‑law in the size of the 
population, a finding that is qualitatively confirmed by the empirical analysis of real‑world data.

In modern times, representative democracies have played a leading role in the advancement of human rights, 
education, and technology on a global scale. At the heart of every representative democracy is a centralised par-
liament: an assembly of elected citizens who are delegated by their constituents to exercise the legislative power, 
and to keep the government in  check1. This apparatus has an operating cost and, in the shadows of political 
scandals, economic crises, and social turmoil, people have questioned the effectiveness of their country’s costly 
political and administrative structure and have claimed that a reduction of the number of elected representa-
tives would reduce deviant behaviours and enhance efficiency of parliamentary  works2. However, there is so 
far no sound analytical framework to determine the optimal parliament size of a given country, so to ensure 
an adequate representation and cost-effectiveness, which are both in the public interest. In this paper, we argue 
that a principle of maximal modularity can provide some reliable guidance on how to determine the absolute 
number of representatives required for efficient public representation in a democratic country. This principle 
may therefore provide a transparent reference point to inform public policies.

Generally speaking, the ideal number of members of Parliament (MPs) has to strike a balance between effi-
ciency, in terms of the share of power held by each MPs and their ability to realise their electoral agenda, and 
optimal representativity, i.e. the ability of the MPs to promote the instances of their voters, in proportion to their 
number. Both criteria are encoded in the assembly size, as a bigger chamber allows constituencies to be smaller 
and thus more homogeneous in terms of character, local economic activity, and social needs. On the other hand, 
it diminishes the influence and resources that each MP can count on to advance their agenda and thus promote 
their constituents’  interests3. The “efficiency” paradigm has been at the core of a flourishing line of research 
amongst political scientists and “electoral engineers”, since the late  1980s4. Researchers have revealed the effect 
of different electoral systems on the efficiency and stability of political architecture, in relation to the size of the 
corresponding  assembly5. Representation of minority groups, gender quotas, ballot votes, and district sizes are 
believed to heavily influence the efficiency of a parliament and the relative voting power of political  parties6,7. 
Another pressing issue that has been thoroughly studied concerns the distribution of relative weights of votes for 
delegates in international bodies or for parliaments in federal states such as the United States. The most famous 
approach is the one proposed by Webster and Sainte–Laguë independently, after which several other quotient 
rules were  adopted8. Game theory approaches, such as the Penrose square root  law9, were also proposed later 
on and are currently used for instance in the Council of the European Union, to implement a “one person, one 
vote”  system10. An interesting empirical decision-making model linking participation in elections and electoral 
college size, at any level (local to national), was proposed  in11.

Both the problems of efficiency and relative representativity have been investigated for a long time in the 
political science literature and share a common denominator: they depend—directly or indirectly—on the abso-
lute chamber size in a way that is yet to be fully  understood6.
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In recent times, political scientists and technocrats have heavily relied on the so-called cubic root law (CRL) 
formulated by Taagepera and collaborators  in12–15. This law follows the realisation that the size of most elected 
parliaments exhibits a strong statistical regularity with respect to their population. The proposed empirical 
model optimises the assemblies’ representation based on the efficiency of communication between MPs and their 
constituents. According to Taagepera’s arguments, the size of parliaments should follow S ∝ N

γ
0  , where γ = 1/3 

and N0 an “effective” population size, rescaled by considering only the portion of active voters and, among them, 
the fraction of literate  adults12. As literacy is believed to be strongly correlated with mobility, the latter rescaling 
was introduced to account for social mobility in the absence of a reliable direct measure for this  parameter16. 
Figure 1 highlights the aforementioned regularity, but when considering the sizes of European lower chambers 
only, the best fitting curve deviates from the theoretical CRL, resulting in γ ≈ 0.44 . A more comprehensive 
analysis of parliaments’ size data can be found  in11. It is also worth mentioning that the CRL formulated in terms 
of an effective population was perceived to be in contrast with the spirit of any “good” representation model that 
should include the entire pool of constituents, regardless of age, political engagement, or  education6. Moreover, 
Taagepera’s derivation has been criticised in a recent  paper17, whose formulation leads instead to a square-root 
law (SRL). The same SRL arises from a constitutional game-theoretical model put forward  in18.  

In this work, we tackle the democratic representation problem using network theory. Networks have been 
successfully employed in social science for over 30 years, for their versatility in describing different aspects of 
political, behavioural, and social interaction between  individuals19. In social networks, nodes represent social 
agents (for example, individuals in a population) and links represent their interactions. The network structure 
contains important information about relational ties in a society and is likely influenced by agents’ attributes 
(e.g. age, occupation, wealth ...)20. An important topological feature of real-world social networks is their scale-
free degree distribution, i.e. the distribution of the number of ties following a power-law21. This topology can 
be reproduced in growing networks using a preferential attachment wiring protocol that was proposed  in22.

The objective of this work is to shed light on the observed statistical regularities in the size of parliaments. 
We will be focusing on electoral systems in which representatives are elected according to an FPTP (“First-Past-
The-Post”) principle, i.e. whoever collects the majority of votes within a constituency gets elected. We expect that 
simple modifications of the model presented here could be devised to account for other scenarios. For example, 
the case where more than one representative is expressed by the same electoral pool, as in the case of the US 
Senate, could be accounted for by suitably increasing the number of representatives per constituency.

Taking the United Kingdom as an example, each Member of Parliament is elected to the House of Commons 
from one of the 650 constituencies. The nature and physical boundaries of the constituencies are regulated by the 
House of Commons (Redistribution of Seats) Act (1944), which prescribes that the MP’s role is to “represent the 
common interest of the residents in a spatially bounded territory”. Thus, when constituencies are designed, the 
legislator should aim to enclose within geographical boundaries areas that share common interests and  values23.

The network model we propose is inspired by this design principle. We build a synthetic scale-free network in 
which N agents (nodes) represent the entire population of a country that has to be partitioned into constituencies, 
each electing their MP to the national Parliament. Two citizens are connected if there is a stable social interaction 
between them. Individuals are therefore arranged into social communities, as proposed, for instance,  in24. The 
key result of our paper is a principle for determining the optimal number of constituencies, i.e. for grouping the 
population into electoral clusters that “best” represent the underlying community structure of the network. We 
remark that we need to strike a balance between representativity and homogeneity in constituency size. Hence, 
our approach needs to improve upon the standard “community detection” framework, which would allow the 
constituency size to fluctuate wildly. We achieve this result by constraining the size of the constituencies at the 
outset, and determining the number of constituencies that optimises the partitioning of the underlying network.

More specifically, we generate synthetic networks from a growth model with preferential attachment to nodes 
of higher degrees and within the same constituency. We introduce a mobility (or affinity) parameter into our 

Figure 1.  The figure shows a log-log scale plot of the size of lower chamber S vs. population N for some 
European countries and the EU Parliament. The best fit with a power-law (red line) shows that the size of the 
chamber grows as S ≈ αNγ , with γ ≈ 0.44 and α ≈ 0.17 . Demographic data from Eurostat (2017).
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model, of a similar nature to that proposed  in12, which allows us to tune the probability that a node interacts 
with foreign constituencies. Note that in this approach, each node is assigned a constituency label a priori, and 
the network topology follows as a result of this assignment. This is in contrast to what usually happens in com-
munity detection, where node memberships are determined a posteriori, based on the network topology. In 
this regard, our approach is based on a generative model for block-structured networks rather than on a cluster 
detection model.

Working with synthetic networks relieves us from making assumptions over geographical constraints, as 
constituencies are purely virtual, i.e. designed around groups of people with stronger interpersonal ties. Although 
this modelling choice may need to be supplemented with more realistic assumptions, non-geographical electoral 
systems have been proposed in the past with strong supporting arguments in terms of representation of minorities 
and dispersed  communities25. Furthermore, geographical constraints would strongly depend on the country at 
hand, whereas our model aims to be as general as possible.

We adopt the modularity as a metric to measure the goodness of these partitions, and we derive an exact 
expression for the average network modularity, in terms of the number D of constituencies for fixed network 
size N. By maximising the modularity, we are able to determine analytically the optimal number of equally sized 
constituencies into which networks generated according to our prescription should be partitioned. We show that 
our findings are robust against the tuning of resolution parameters, by also considering the generalised definition 
of modularity introduced  in27. In our investigation, we find that the empirical regularities discussed above arise 
quite naturally from the topology of the clustered networks that we study here.

The manuscript is organised as follows: in “The model” section, we introduce the network growth model. In 
“Recursive equations” section, we derive and solve the recursive equation for the expected modularity at generic 
network size and number of constituencies. In “Approximate solution” section, we present a numerical solution 
for the maximum modularity as a function of the network size and we construct an approximate scheme to solve 
the problem analytically. In addition, we show that the size dependence of the maximum modularity is robust 
when using a generalised definition of modularity which allows to tune the resolution of communities. Finally, 
we present our main findings in the “Conclusion” and we compare them with empirical evidence. The technical 
details of our derivation are presented in the Appendix.

Our findings reveal that the optimal partitioning in constituencies for a given population is well approximated 
by a power-law S ≃ Nγ , which is in qualitative agreement with the empirical data. Interestingly, we observe 
that the mobility does not play a significant role in determining the exponent γ , at least for the homogeneous 
mobility case studied in this work.

The model
We model social interactions within a population by means of simple, undirected networks, which are con-
structed using a block preferential attachment prescription, a modified version of the Barabási–Albert (BA) 
algorithm in which the target node’s block membership influences the wiring  probability22,28–31.

The network is formed dynamically in such a way that at each time step N, a node N is created, with m stubs, 
and a constituency membership label σN ∈ {1, . . . ,D} is assigned, according to a prescribed sequential order such 
that σN = mod(1+ N ,D) (see Fig. 2 for an illustration). In this way, any two nodes i and i + D have the same 
membership and all the constituencies have roughly equal size (their sizes are either identical or differ by one 
unit). The sequential assignment is a modelling choice that greatly simplifies the analytical treatment presented 
in this section, however the final outcome does not heavily depend on the way the constituencies σ are assigned, 
provided that they are on average all equally sized. The network at time step N is represented by an N × N adja-
cency matrix A(N) , with entries Aij(N) for i, j ≤ N . We prescribe that the initial configuration of the network be 
a clique of m+ 1 nodes. Accordingly, we set the initial time at m+ 1 , so that the growth process starts at m+ 2.

When a node N is added, each of its m stubs is wired to a random node i of the existing network sampled 
with probability

Figure 2.  Sketch of a D = 3 constituencies network, for the case m = 1 , at the steps N = 8 (left) and N = 9 
(right) of the growth algorithm, respectively. Membership attributes 1, 2 and 3 represented by the colour blue, 
yellow and green respectively are allocated sequentially in such a way that σi = mod (1+ i, 3) , hence σ1 = 1 , 
σ2 = 2 , σ3 = 3 , σ4 = 1 and so on. The dashed line represents the new connection made at step N = 9.
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with L(N) =
∑N

i=1 ki(N) = m(2N −m− 1) , being the total number of links present in the network, 
ki(N) =

∑N
j=1 Ai,j(N) the degree of node i, calculated at N > m , and p(σi|σN ) being the probability that any node 

with given constituency label σN attaches to any of the nodes with constituency σi . The denominator in (1) ensures 
normalization of piN , such that 

∑N
i=1 piN = m , where we have used 

∑

i ki(N − 1)δσ ,σi = L(N − 1)/D ∀ σ . As 
the addition of new nodes cannot modify the links between pre-existing nodes, we have that Aij(N) is the same 
for any N ≥ max(i, j) , so from now on, we will drop the time index from the entries of the adjacency matrix.

The probability p(σi|σN ) can be parametrised by a mobility parameters µ that controls the likelihood to pick 
the target constituency, as 

which is normalised 
∑D

σi=1 p(σi|σN ) = 1 , as it should.
Hence, for µ = 0 , the new node N will attach necessarily to a member of its own community whereas, for 

µ = 1 , the node N can attach to any community with the same probability 1/D. Thus, the probability that a new 
node attaches to a given node of a foreign constituency is µ/D . The contribution 

∑N−1
ℓ=1 Ai,ℓ/L(N − 1) in the 

definition (1) ensures that new nodes attach preferentially to nodes with higher degree. Our attachment pre-
scription realizes a power-law degree distribution with exponent = 3 , that is typical of social  networks22 and, 
although the attachment mechanism is extremely simple, it is rich enough for our  purposes32,33. Using Eq. (1), 
we can write the probability for the entry Ai,N , with i = 1, . . . ,N − 1 , of the adjacency matrix, given its previous 
configuration A(N − 1) and the community membership sequence denoted by σ , as

Assuming that each of the m stubs is wired independently to a randomly drawn node, the joint distribution for 
the N-th row and column is

and, by iteration, one can get the full distribution for the configuration A(N) of the adjacency matrix

with p(A(m+ 1)) =
∏m+1

i<j δAi,j ,1δAi,j ,Aj,i , determined by the initial configuration of the growth algorithm.
For the sake of simplicity, we limit our analytical considerations to the case m = 1 . A different choice of the 

number of stubs m, or a different initial configuration of the growth model, do not significantly affect the degree 
distribution, in the large-N  limit34. Our numerical explorations suggest that this also holds true for our key 
observable and results. Therefore, we leave the m > 1 case for future investigations.

The key observable we will monitor in our model is the modularity, introduced  in35, as a quality factor for a 
partition of a network in communities. The modularity of a graph is defined as

This quantity compares the intra-cluster edge density of a given network (in our case, the clusters are defined 
by the constituency membership attribute) with the edge density of a null model, i.e. a set of unbiased random 
graphs that are wired regardless of the community structure but with the same degree sequence as the original 
 network36. This comparison mechanism provides a reliable metric to establish the goodness of a network clus-
tering procedure. Moreover, the modularity takes values QD(N) ∈ [−1, 1] , with positive values denoting that a 
graph exhibits a community structure being captured by their assigned  memberships37.

We will use the modularity to assess the cluster structure induced by the sequence σ and the underlying social 
structure originated from the web of connections. We aim to find the number of constituencies that maximises 
this observable, resulting in the optimal partitioning of the synthetic population created by the growth algorithm. 
For a network of size N, we have that the expected modularity is given by

where the expectation is over the distribution (5). At the (N + 1)-th step, one row and one column are added to 
the adjacency matrix as follows

(1)piN = m

∑N−1
ℓ=1 Ai,ℓ(N − 1)

L(N − 1)/D
p(σi|σN ),

(2)p(σi|σN ) =
µ

D
+ (1− µ)δσi ,σN ,

(3)p(Ai,N |A(N − 1), σ (N)) = [piNδAi,N ,1 + (1− piN )δAi,N ,0]δAi,N ,AN ,iδkN (N),m.

(4)p(A1,N . . .AN−1,N |A(N − 1), σ (N)) =
N−1
∏

i=1

p(Ai,N |A(N − 1), σ (N)),

(5)p(A(N)|σ (N)) =
N−1
∏

i=1

p(Ai,N |A(N − 1), σ (N))

N−2
∏

i=1

p(Ai,N−1|A(N − 2), σ (N − 1)) . . . p(A(m+ 1)),

(6)QD(N) =
1

L(N)

N
∑

s,r

[

Ar,s −
kr(N)ks(N)

L(N)

]

δσr ,σs .

(7)�QD(N)� =
1

L(N)

〈

N
∑

s,r

[

Ar,s −
kr(N)ks(N)

L(N)

]

δσr ,σs

〉

=:
1

L(N)
aN −

1

L(N)2
bN ,
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We note that the number of links is deterministic as at each time step m(= 1) links are added to the network. 
Therefore we argue that an expression for �QD(N + 1)� can be found recursively, in particular by solving recur-
sions for the coefficients aN and bN that we present in the following subsection.

Recursive equations. We now construct a recursion for the term aN . We note that the term aN+1 can be 
split into the contribution from the new row/column and the rest of the matrix as follows

where the sum runs over all pre-existing nodes (up to N) belonging to the community σN+1 . We recognise that 
the expectation value represents the probability that node N + 1 attaches to any node within its own community 
at step N. Under the assumption that any target constituency is chosen independently of the degrees of its mem-
bers, and using Eq. (2), one can derive the expression provided in (9), as shown in more detail in the Appendix

Using Eq. (9), the solution of the recursion (8) is found as

A comparison between Eq. (10) and a numerical simulation is shown in Fig. 3. The simulation data in Fig. 3 was 
obtained by computing the observable aN =

∑N
r,s=1 Ar,sδσr ,σs on synthetic networks of different sizes, generated 

using the growth algorithm described in this section. For each size, results were averaged over 200 realisations 
of the network generative process.

We then consider the recursion for term bN . Following our definition in Eq. (7),

where we used kN+1(N + 1) = m = 1 . Distinguishing the two cases

A(N + 1) =

















0
0

A(N)
...
1
0

0 0 · · · 1 0 0

















.

(8)aN+1 = aN + 2

〈

N
∑

r:σr=σN+1

Ar,N+1

〉

,

(9)

〈

N
∑

r:σr=σN+1

Ar,N+1

〉

=
{

0 when N < D

1− µD−1
D when N ≥ D.

(10)aN =
{

0 when N ≤ D

2(N − D)
(

1− µD−1
D

)

when N > D .

(11)bN+1 =

〈

N
∑

s,r

kr(N + 1)ks(N + 1)δσr ,σs

〉

(i)

+ 2

〈

N
∑

r

kr(N + 1)δσr ,σN+1

〉

(ii)

+ 1,

Figure 3.  Plots of aN as a function of the network size N, with parameters µ = 0.5 and D = 3 . The simulation 
data were obtained averaging over 200 realisations of the network generative process. Error bars, red vertical 
segments, are calculated as standard deviation from the mean.
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• case N ≥ D : the expectation (i) in Eq. (11) yields 

 as discussed in the Appendix, and for the expectation (ii) in Eq. (11) we get 

 also in the Appendix, where 

 represents the average number of intra-cluster connections for constituency σN+1 at time N. When evaluat-
ing the expectation in Eq. (14) one gets 

 where mod( · ,D) is the modulus operator with divisor D and ⌊·⌋ denotes the floor operation.
• case  N < D : this case is characterised by only N constituencies being yet populated and a uniform probability 

of wiring, leading to the following expectation for (i) in Eq. (11) 

 as shown in the Appendix, while the expectation (ii) in Eq. (11) reads 

 since constituency σN+1 is populated by one node at time step N + 1 , which is however excluded from the 
sum.

Gathering all the terms, the recursive equation for bN is found to be

with initial condition

Solving the recursion in Eq. (18), for general N, is not an easy task. In the next Section, we provide an ana-
lytical expression for CN+1(N) in the limit N ≫ D , which turns out to be a good approximation for the exact 
solution, even at small N. In Fig. 4 we plot the approximate solution for bN against numerical simulations of the 
growing process.

Approximate solution. To make analytical progress, we assume that the edges are uniformly distributed 
between the D communities so that CN+1(N) ≃ L(N)/D . This holds true in the limit N ≫ D , however, uni-
formity is not expected in the regime N ∼ D . As shown in Fig. 5, though, the exact expression for CN+1(N) (red 
dots), defined in Eq. (14), is  well approximated by L(N)/D (blue line) in the whole range. The exact calculation 
for CN+1(N) in the regime N < D is carried out in the Appendix. Combining the results in the two regimes, the 
analytical bottleneck arising in Eq. (11) - (i) simplifies as follows (see Appendix, eq. (38))

  
Under this approximation, the recursion in Eq. (11), now simplifies to

(12)

〈

N
∑

s,r

kr(N + 1)ks(N + 1)δσr ,σs

〉

= bN + 4
µ

D
(N − 1)+ 2(1− µ)CN+1(N)+ 1,

(13)

〈

N
∑

r:σr=σN+1

kr(N + 1)

〉

= CN+1(N)+ 1− µ
D − 1

D
,

(14)CN+1(N) =

〈

∑

r:σr=σN+1

kr(N)

〉

(15)
CN+1(N) =





D
�

x=mod(N+1,D)+1

1

x − 1
+

µ

D
(mod(N + 1,D)− 1)



(1− δmod(N+1,D),0)+

+ µ
D − 1

D
δmod(N+1,D),0 + 2

�

N

D

�

− 1,

(16)

〈

N
∑

s,r

kr(N + 1)ks(N + 1)δσr ,σs

〉

= bN + 4
N − 1

N
+ 1,

(17)

〈

N
∑

r:σr=σN+1

kr(N + 1)

〉

= 0,

(18)bN+1 =
{

bN + 4N−1
N + 2 when 2 < N < D

bN + 4µN−1
D + 2(2− µ)CN+1(N)+ 2

(

2− µD−1
D

)

when N ≥ D,

(19)b2 = 2+ 2δD,1.

(20)

〈

N
∑

s,r

kr(N)AN+1sδσr ,σs

〉

=
{

2 (N−1)
N when N < D

2 (N−1)
D when N ≫ D.
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with the initial condition (19).The solution is given by

with γ being the Euler–Mascheroni constant and ψ(0)(x) the digamma function, arising from summing the first 
inverse integers series 

∑x−1
k=1

1
k . This approximate solution is in very good agreement with numerical simulations, 

as shown in Fig. 6.
Inserting in Eq. (7) the expressions for aN and bN , provided in Eq. (10) and in Eq. (22) respectively, we obtain 

the solution for 〈QD(N)〉 in the regime N ≥ D

(21)bN+1 ≃
{

bN + 4N−1
N + 2 when 2 < N < D

bN + 4 2N−1
D + 2 when N ≥ D,

(22)bN =
{

−2(3+ 2γ − 3N + 2ψ(0)(N)) when N < D
2
D (D − 4N + DN + 2N2 − 2D(γ + ψ(0)(D)) when N ≥ D,

(23)�QD(N)� =
N − D

N − 1

(

1− µ
D − 1

D

)

−
1

2D(N − 1)2
(D − 4N + DN + 2N2 − 2D(γ + ψ(0)(D))).

Figure 4.  bN as a function of the network size N for the parameters D = 3 and µ = 0.5 . The simulation 
data were obtained averaging over 200 realisations of the network generative process. Error bars, red vertical 
segments, are calculated as standard deviation from the mean. Note that error bars are smaller than symbols for 
most values of N.

Figure 5.  Mean-field approximation of CN+1(N) plotted against numerical simulations for D = 3 and µ = 0.5 . 
The simulation data were obtained averaging over 200 realisations of the same experiment.
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The numerical simulation in Fig. 7 shows a perfect agreement with the average modularity given by Eq. (23).
We observe that the expected modularity is strongly non-monotonic in the number of constituencies. This is 
in agreement with the following observations about the limiting cases: for D = 1 , the two terms of the sum in 
Eq. (6) cancel out, and for D = N the concept of community is lost and the Kronecker delta is always zero, thus 
both cases result in QD(N) = 0 . Note that in the intermediate regime 1 < D < N and provided that µ ∈ [0, 1) 
we have that the probability for a node to link to any of its fellow constituents is higher than the “rest of the 
population”. This ensures that, on average, the modularity is positive. This non-monotonic behaviour was also 
observed empirically  in38.

Values for µ ∈ [0, 1) are consistent with the constituencies design process according to which boundaries 
should be drawn around local communities. The regime µ ≥ 1 would result in an equal or lower intra-constit-
uency edge density compared to the density of outgoing edges, suggesting that the imposed partitions would 
not capture the real community structure of the network and thus would not be interesting for our purpose. 
Moreover, µ = 1 is the physiological upper bound to ensure that probability (2) is non-negative.

Furthermore, we observe that the mobility parameter µ dampens the modularity without producing a pro-
nounced shift of its maximum, as shown in Fig. 8. This effect is due to a tightening of the community structures 
within each constituency as the effect of a decreasing µ is to increase their average intra-cluster density and thus 
to increase the overall modularity. Conversely, when µ → 1 , nodes attach randomly to any constituency resulting 
in an average modularity QD(N) that tends to zero.

Figure 6.  Approximate solution for bN plotted against numerical simulations of the generative process for 
D = 3 and µ = 0.5 . The simulation data were obtained averaging over 200 realisations of the same experiment.

Figure 7.  Expression for the average modularity 〈QD(N)〉 in Eq. (23) as a function of the number of 
constituencies D, with parameters µ = 0.2 and N = 50 . The simulation data was obtained averaging over 350 
realisations of the same experiment. Error bars, red vertical segments, are calculated as standard deviation from 
the mean.
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Finally, we find an expression for the maximum value of the modularity. Indeed, it is our key objective to 
find an optimal way to partition our synthetic population into constituencies. We argue that this optimal way of 
partitioning is realised when the modularity reaches its maximum and the imposed partitions best capture the 
underlying community structure of the network. We derive then the location D∗(N) = argmaxD �QD(N)� , in 
the regime N ≫ D , from Eq. (23)

with ψ(1)(D) being the first order polygamma function, defined as the first derivative of the digamma function. 
This expression constitutes our main result, as it gives a recipe to pick the optimal number of constituencies, 
for a given population size N. The implicit Eq. (24) can be solved numerically for D∗ . Interestingly, we find that 
D∗(N) has a clear power-law behaviour similar to the one observed in demographic data. Figure 9  shows D∗(N) 
for small networks, the numerical data being fitted by a power-law D∗ = αNγ , in the interval N ∈ [100, 1000] , 
with exponent γ ≈ 0.53 and α ≈ 0.77 . In this range of N, the real value of D∗ leads to the same integer constitu-
ency size for any values of µ . In this sense, µ does not significantly affect the behaviour of D∗. The value of the 
exponent can be also determined by the following analytical considerations in the more interesting large network 
limit. Expression (24) can be rewritten as follows

with the coefficients αN = (N − 1)(µ− 1) and βN = N(N + µ(1− N)− 2) . By setting ψ(1)(D∗) = T  and 
extracting D∗ from Eq. (25)

Now, since we are evaluating this quantities in the large network limit, we may use the polygamma asymptotic 
behaviour ψ(1)(x) ∼ 1

x in Eq. (26), and solve for T obtaining

Inserting Eq. (27) in the original Eq. (25), we obtain the asymptotic optimal number of constituencies

which is consistent with the numerical solution of the implicit Eq. (24) shown in Fig. 9.
We conclude this section by noting that generalised definitions of modularity have been introduced in the 

 literature26,27,39, which allow to control the resolution of communities by tuning a control parameter. The purpose 
of such generalizations is to overcome the so-called resolution limit of the original definition of modularity, 
that is known to prefer merging two well-defined clusters into larger ones, when these are smaller (in terms of 

(24)
∂�QD(N)�

∂D
=

1

(N − 1)2
[(N − 1)(µ− 1)+

1

D∗2N(N + µ(1− N)− 2)+ ψ(1)(D∗)] = 0,

(25)αN +
1

D∗2 βN + ψ(1)(D∗) = 0,

(26)T = ψ(1)

(
√

−βN

αN + T

)

.

(27)T ≈
1

2

(

−
1

βN
+

√
1− 4αNβN

βN

)

.

(28)D∗ ≈
√

√

√

√

−βN

αN + 1
2

(

− 1
βN

+
√
1−4αNβN

βN

) ∼
√
N ,

Figure 8.  The plot shows the effect of the mobility parameter µ on the modularity 〈QD(N)〉 , with N = 50 . The 
simulation data were obtained averaging over 200 realisations of the same experiment for µ = {0.4, 0.6, 0.8} and 
350 realisations for µ = 0.2 . Error bars, vertical segments, are calculated as standard deviation from the mean.
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internal links) than a certain threshold. Denoting with η the resolution parameter and considering the generalised 
modularity defined  in27 (other definitions have been shown to be  equivalent39)

we can repeat the analysis carried out earlier to obtain the value of D that maximises the generalised modularity. 
In the limit of large network size, this is given by the η-dependent value

which correctly reproduces the result obtained in (28), for η = 1 . Values of η > 1 shift the maximum of the 
average modularity to values larger than D∗ =

√
N  , whereas for η < 1 the maximum is shifted to smaller values 

than D∗ , consistently with the interpretation of η as a fine-tuning parameter. Interestingly, (30) shows that there 
is a physical lower bound on the values that η is allowed to take, given by η ≥ µ . Notably, the introduction of the 
control parameter η does not affect the overarching behaviour in N of D∗ , as long as η = µ+O(N0) , showing 
robustness of our results at different resolutions. While there is no general recipe to choose η a priori, the choice 
η = 1 , for which the modularity (29) weighs equally the network A under consideration and the null model, 
allows for a kinetic interpretation of the modularity as the autocovariance function of the cluster occupancy 
of a random walk on the network between two successive time  steps39, and it has the additional advantage of 
making the optimal number of constituencies, as given in (30), independent of the mobility µ . This intriguing 
independence may constitute an interesting subject for further investigations, as well as the interplay between 
mobility and resolution parameters in generalised definitions of network modularity.

Conclusion
The problem of democratic representation is of primary importance for modern societies. In this work, we pro-
posed a network model representing a growing population of final size N that has to be partitioned into D equally 
sized constituencies. The underlying network community structure can be tuned by the mobility parameter µ 
that controls the interaction probability between nodes belonging to different constituencies.

We adopted the average modularity as a measure for the goodness of the resulting partitioning and showed 
that it displays a strong non-monotonic behaviour, as a function of D, in the regime µ ∈ [0, 1) . By solving the 
recurrence equations for the modularity in the regime N ≫ D , we found an analytical expression for the optimal 
number of constituencies D∗ that maximises the modularity w.r.t. the number of induced partitions.

The approximate regime in which the problem is solved corresponds to one MP accounting for a large fraction 
of the population. This is arguably a reasonable assumption when considering democratically elected parliaments 
for which the condition above is always satisfied. Nevertheless, a numerical solution was also attainable for any 
value of N and D. Our main finding concerns the functional form for the optimal size of a Parliament D∗ ∼ N1/2 
that is found to be in reasonable agreement with what is observed in real-world data, thus providing further 
support for a revision of Tageepera’s arguments in the direction of a "square root"  law17,18. While a larger mobility 
parameter induces a more efficient mixing of the population and therefore reduces its average modularity for a 
fixed number of available constituencies (see Fig. 8), quite interestingly it does not influence the position of the 
maximum D∗ as a function of N to leading order.

(29)QD(N) =
1

L(N)

N
∑

s,r

[

Ar,s − η
kr(N)ks(N)

L(N)

]

δσr ,σs ,

(30)D∗(η) ∼
√
N

√

η − µ

1− µ
,

Figure 9.  The log-log plot shows the maximum modularity D∗ = αNγ , in the approximate regime, for µ = 0.9 
and µ = 0.1 compared with D∗ = N1/2 . A fit for the curve µ = 0.9 results in α ≈ 0.77 and γ ≈ 0.53 . The fit was 
performed in the interval N ∈ [100, 1000].
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It is worth noting that, when considering a generalized definition of the modularity, which explicitly depends 
on a resolution parameter η , the position of the maximum retains the same dependence on the population size, i.e. 
D∗ ∼ N1/2f (µ, η) , but acquires a prefactor f (η,µ) that depends on the mobility µ for all values of the resolution 
parameter η except η = 1 , for which the original definition of the modularity is retrieved. Hence, the intriguing 
independence of the position of the maximum on the mobility emerges as a peculiarity of the modularity (in its 
original definition). Given the lack of a general criterion to fix η a priori, explorations of the interplay between η 
and parameters that control preferential attachment in growth models, such as µ in our model, can provide an 
interesting pathway for future work.

As a further pathway for future work one could consider introducing geographical constraints in the model 
and including a mobility parameter that depends on the population density of each constituency. This is expected 
to generate a richer behaviour for D∗ . Other, more complex, network topologies may also achieve a similar 
result. In future research, adopting different topologies, or studying small network scenarios, may broaden the 
applicability of our model to other absolute representation problems, from management (optimal proportion of 
managers vs. employees in a company) to determining the optimal number of parishes in a community.

Data availability
According to UK research councils′ Common Principles on Data Policy, all codes used to produce and analyse 
numerical data supporting this study will be  available upon request.

Appendix
In this section, we discuss the recursion for aN and we present a more detailed version of the exact calculation 
for bN.

aN : We consider the term 
〈

∑N
r:σr=σN+1

Ar,N+1

〉

 , appearing in Eq. (8). The expectation over the distribution 
of Eq. (5) is given by

where we have used Eq. (1). Note that the term within angle brackets is zero for N < D , as in this case no 
node is present in the network with the relevant label. For N large, the average of the sum in (31) converges to 
N
∑

k kp(k, σN+1) , in terms of the joint probability p(k, σN+1) . This in turn factorises in the product of marginals 
due to the independence of k and σ , leading eventually to the result

where one uses L(N) = N�k(N)� , and p(σN+1) = 1/D . For N ≥ D but not too large, fluctuations of O(1/N) 
are expected.

bN:Recall the expression from Eq. (11)

where the factor 2 is due to the symmetry of the adjacency matrix. We analyse each average in Eq. (11), labelled 
(i) and (ii), separately:  

 (i) Starting with the case N ≥ D , we have observed that, when m = 1 , the degree of a given node 
can only increase by one at each time step and only if the newly created node connects to it, i.e. 
kr(N + 1) = kr(N)+ Ar,N+1 . This leads to 

(31)

〈

N
∑

r:σr=σN+1

Ar,N+1

〉

p(A(N+1)|σ (N+1))

=

〈

N
∑

r:σr=σN+1

∑

Ar,N+1={0,1}
Ar,N+1p(Ar,N+1|A(N), σ (N))

〉

p(A(N)|σ (N))

=

〈

N
∑

r=1

δσr ,σN+1

kr(N)

L(N)/D
p(σr |σN+1)

〉

p(A(N)|σ (N))

= p(σN+1|σN+1)
1

L(N)/D

〈

N
∑

r=1

kr(N)δσr ,σN+1

〉

p(A(N)|σ (N))

,

(32)

〈

N
∑

r:σr=σN+1

Ar,N+1

〉

p(A(N+1)|σ (N+1))

≃ p(σN+1|σN+1),

(33)bN+1 =

〈

N
∑

s,r

kr(N + 1)ks(N + 1)δσr ,σs

〉

(i)

+ 2

〈

N
∑

r

kr(N + 1)δσr ,σN+1

〉

(ii)

+ 1,
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 The first expectation may now be rewritten in the following way 

 The D − 1 constituencies such that σr  = σN+1 are equivalent in the sum above as the probability of 
wiring N + 1 ∼ r is µ/D for all, thus, considering the contribution to Eq. (35) from one constituency 
σs̄ �= σN+1 we may rewrite 

 Now performing the expectation value of 
∑

s:σs=σN+1
AN+1,s , using Eq. (9), we get 

 We are left with the term 
〈

∑N
r:σr=σN+1

kr(N)

〉

= CN+1(N) to calculate, being the expected number of 
links in community σN+1 at time N and its complementary 

〈

∑

r:σr �=σN+1
kr(N)

〉

= C̄N+1(N) . When the 
first round of communities has been assigned, i.e. N ≥ D , the expression becomes 

 where we have used C̄N+1(N)+ CN+1(N) = 2(N − 1) . The expression for CN+1(N) is found to be 

 where mod( · ,D) is the modulus operator with divisor D and ⌊·⌋ denotes the floor operator. This builds 
up by summing the contribution to the expected links in community σN+1 from every node. For the case 
N ≥ D , a node j such that its membership σj = σN+1 always contributes with one link (its own stub) 
plus another link with probability 1− µD−1

D  , in case the target node at the other end of the stub has the 
same membership σN+1 . Conversely, if σj  = σN+1 , the new node j can only add one link to constitu-
ency σN+1 with probability µ/D . In the first round of membership assignment, a contribution to the 
number of links can come from nodes generated following the first node in σN+1 , with a probability 1/j. 
The expression can be intuitively checked following Fig. 10. The remaining expectation of Eq. (34), is 
non-zero only if s = r , so 

(34)

〈

N
∑

s,r

kr(N + 1)ks(N + 1)δσr ,σs

〉

=

〈

N
∑

s,r

(kr(N)+ Ar,N+1)(ks(N)+ As,N+1)δσr ,σs

〉

=

〈

N
∑

s,r

kr(N)ks(N)δσr ,σs

〉

+ 2

〈

N
∑

s,r

kr(N)AN+1,sδσr ,σs

〉

+

〈

N
∑

s,r

Ar,N+1AN+1,sδσr ,σs

〉

= bN + 2

〈

N
∑

s,r

kr(N)AN+1,sδσr ,σs

〉

+

〈

N
∑

s,r

Ar,N+1AN+1,sδσr ,σs

〉

.

(35)

〈

N
∑

s,r

kr(N)AN+1,sδσr ,σs

〉

=

〈

N
∑

s

AN+1,s

N
∑

r:σr=σs

kr(N)

〉

=

〈

∑

s:σs=σN+1

AN+1,s

∑

r:σr=σN+1

kr(N)

〉

+

〈

∑

s:σs �=σN+1

AN+1,s

∑

r:σr �=σN+1

kr(N)

〉

.

(36)

〈

N
∑

s,r

kr(N)AN+1,sδσr ,σs

〉

=

〈

∑

s:σs=σN+1

AN+1,s

∑

r:σr=σN+1

kr(N)

〉

+ (D − 1)

〈

∑

s:σs=σs̄

AN+1,s

∑

r:σr=σs̄

kr(N)

〉

.

(37)

〈

N
∑

s,r

kr(N)AN+1,sδσr ,σs

〉

=
(

1− µ
D − 1

D

)

〈

N
∑

r:σr=σN+1

kr(N)

〉

+ µ
D − 1

D

〈

∑

r:σr=σs̄

kr(N)

〉

.

(38)

〈

N
∑

s,r

kr(N)AN+1sδσr ,σs

〉

=
(

1− µ
D − 1

D

)

CN+1(N)+ µ
D − 1

D

C̄N+1(N)

D − 1

=
(

1− µ
D − 1

D

)

CN+1(N)+
µ

D
(2(N − 1)− CN+1(N))

=2
µ

D
(N − 1)+ (1− µ)CN+1(N),

(39)
CN+1(N) =





D
�

x=mod(N+1,D)+1

1

x − 1
+

µ

D
(mod(N + 1,D)− 1)



(1− δmod(N+1,D),0)+

+ µ
D − 1

D
δmod(N+1,D),0 + 2

�

N

D

�

− 1,

(40)

〈

N
∑

s,r

Ar,N+1AN+1,sδσr ,σs

〉

=

〈

N
∑

s

AN+1,s

〉

= 1.
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 We finally note that, in the case N < D , the expectations in Eq. (35) 
〈

∑

s:σs=σN+1
AN+1,s

〉

= 0 and 
〈

∑

s:σs �=σN+1
AN+1,s

〉

= 1 . This is due to constituency σN+1 not being populated before time N + 1 . As 
a result the average number of links in any given community is given by 

 (ii) Now, this expectation value is similar to CN+1(N) =
〈

∑N
r:σr=σN+1

kr(N)

〉

 . The difference lies in the time 
step at which this is being calculated. Thus it can be given a similar interpretation as the expected num-
ber of links in community N + 1 , at time step N + 1 , excluding the last node. This implies that if at time 
N + 1 the newly created node connects to one of its own community, the quantity in question increases 
by one, in a similar way to what is shown in Fig. 10. We note that, since the last node is excluded, its 
degree shall not be counted. So, the relation with CN+1(N) can be made explicit as follows 

Back to Eq. (9), we finally get the recursive relation we are after for the coefficient bN,
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